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This tutorial article tells how to make a calculated change
in a resonance frequency of a structure by changing its effec-
tive mass. The article includes two documented case histories
that illustrate the technique.

Resonant frequency problems are often encountered in me-
chanical systems. When this occurs, the level of vibration is
generally quite high, and this in turn often causes premature
failure of machine components. Often, attempts are made to
address the problem by reducing the forcing function. Such
courses of action include dynamic balancing of rotating ele-
ments and aligning coupled components. It is very important
to maintain good balance and alignment. However, in the case
of a resonant condition, the primary problem is generally not
the magnitude of the forcing function. The problem is that a
forcing function, which may be of modest magnitude, matches
a system resonance or natural frequency. In such a case, the
amplification factor of the vibration can be many fold. The
amplification factor is the ratio of the peak dynamic displace-
ment imparted on a system by an oscillating force with a given
peak magnitude compared with the displacement imparted by
a static force of the same magnitude. Figure 1 is a plot of the
amplification factor versus resonant frequency ratio for several
systems each with a different level of damping. The resonant
frequency ratio is the ratio of the forcing frequency to the reso-
nant frequency. A value of one indicates that the system is at
resonance.

The simple equation for resonant frequency is:

Where:
ωn = resonant frequency in radians per second
K = effective spring constant
M = effective mass.

As stated above, this is a simplified equation. It loses accu-
racy with very large displacements, and it does not account for
the effect of damping. However, for most resonant problems
involving machinery where the displacement of even severe
vibration is still measured in mils, and damping is generally
quite low, this equation works fine.

The subject of this article is how to implement a calculated
change in the resonant frequency by changing the effective
mass. We have the equation for resonance. And, it is assumed
that a resonance at the fugitive frequency has been confirmed.
However, there are still two unknown parameters and only one
equation. In simple systems, the effective mass can be deter-
mined directly by weighing the system. In small machines,
where an entire pump or motor is the vibrating mass, an often
useful approximation is 90% of the total mass. However, in
complicated machinery where the system might be a cantile-
vered bearing pedestal on the side of a large pump or a bear-
ing flange around the input shaft of a gearbox, it is generally
not practical to determine the effective mass directly.

This shortcoming can, however, generally be overcome. The
reason for this is that it is usually possible to determine the
system spring constant. The simplest way to do this is to push
on the system in the orientation of interest until a measurable
deflection is observed. One simple example would be to pull
on the system with a ‘come-along’ and a crane scale, and mea-
sure the resulting deflection with a dial indicator.

Motor Resonance
It has been determined that a two pole electric motor shown

in Figure 2 has a resonance at 7100 CPM, twice running speed,
in the horizontal orientation. It was determined that a force of
1100 lbs will cause a displacement of 1 mil. The motor weight
is 860 lbs. Determine the effective mass of the system.

Solution:
ωn = (7100 cycles/min)(1 min/60 sec)(2π radians/cycle) = 744

radians/sec
K = 1100 lbs/[(1 mil)(1 in./1000 mils)] = 1,100,000 lbs/in.
M = K/ωn

2 = (1,100,000 lbs/in.)/(744/sec)2 = 1.99 lb sec2/in.
The weight of this mass can be determined by multiplying

the mass by gravitational acceleration, 386 in./sec2 = (1.99 lb
sec2/in.)(386 in./sec2) = 767 lbs. If the approximation that the
effective mass is 90% of the total mass had been used, the de-
termined weight  = (0.9)(860 lbs) = 774 lbs; which for all prac-
tical matters is identical to that determined from the spring
constant.

Changing the Effective Mass
to Control Resonance Problems
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Figure 1. Amplification factor versus resonant frequency ratio for sev-
eral critical damping factors.

Figure 2. Electric motor that had a resonance at 2× running speed ~7100
CPM.  The entire motor vibrates as a single mass.

Figure 3. Gearbox that had structural resonances at approximately
36,000 and 44,000 CPM.  The resonance was localized to the area of
the input shaft bearing housing.  The resonance was almost exclusively
in the axial orientation relative to the input shaft.
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Gearbox Resonance
Things do get considerably more complicated when only a

part of a machine is involved in a resonant system. For ex-
ample, a gearbox developed a resonance problem at the gear
meshing frequency. The input shaft speed is 1780 RPM and
there are 20 teeth on the input pinion as shown by the sche-
matic in Figure 3.

In the area of the input shaft bearing, there is a very high level
of vibration at the gear meshing frequencies shown in Figure
4. The existence of a resonance at approximately the gear mesh-
ing frequency was confirmed by a bump test as shown in Fig-
ure 5. In this case, only a part of the machine is involved in
the resonance, and the system is much too complicated to try
to derive any sort of an estimate of the effective mass. In such
machines, it is possible to derive a value for the spring con-
stant by measuring the deflection imparted by a known force.
From the spring constant, the effective mass can be determined.

In this case, however, it was not feasible to impart a static
force on the system. In order to overcome this shortcoming,
data from the bump test were employed. This was done in two
steps. First, system compliance, mils/lb, would have to be de-
termined from existing data. The second step would involve
determining the system amplification factor, the ratio of the
dynamic to static displacement. From these values, the system
spring constant and subsequently the effective mass can be
determined.

It is possible to perform a bump test with units of compli-
ance directly. In this case, however, data were recorded in units
of mobility, in./sec/lb (IPS/lb). Units of velocity in IPS can be
converted to units of displacement by the following equation:

where:
v = velocity, IPS.

= 0.00182 IPS/lb (from the upper trace in Figure 5)
f = frequency, Hz

D = displacement, in. peak to peak
= (0.3183)(0.00182)/(36,011/60)
= 9.65 × 10−7 in./lb
= 9.65 × 10−4 mils/lb

This equation is generally used to convert vibration from
units of velocity to displacement. However, there is no reason
that it cannot be used to convert a transfer function from units
of velocity per unit of applied force to units of displacement
per unit of applied force.

Thus, the dynamic compliance will be 9.65 × 10−4 mils/lb
or 9.65 × 10−7 in./lb. By inverting this value, the dynamic stiff-
ness Kd can be determined:

The next step is to determine the amplification factor using

the following equation:

where:
X = dynamic deflection
K = spring constant

F0 = peak dynamic force
ω = forcing frequency

ωn = natural or resonant frequency
ξ = critical damping ratio

XK/F0 = amplification factor.
Everything on the right side of this equation is known ex-

cept the critical damping ratio. The critical damping ratio is
the ratio of actual system damping to that of critical damping.
Critical damping is the minimal amount of damping required
to prevent vibration when a system is displaced and released.

The critical damping ratio can be determined from the trans-
fer function. Two methods will be employed to determine the
critical damping ratio. The first is the half power method. In
determining the damping of a system, the parameter Q is often
employed. This parameter is a measure of the sharpness of the
resonance and is defined as:

In using the half power method, the total transfer function is
employed. The top trace in Figure 5 is the total transfer func-
tion.

The total transfer function will generate a roughly symmet-
ric peak the center of which will be the resonant frequency. The
steepness of the peak is a measure of the amount of damping
in the system. In the half power method, the frequency of the
resonant value is compared with the frequency at which the
half power values on either side of the resonance occurs. The
half power value is 0.707 multiplied by the peak value. The Q
value is:

where:
ωn = resonant frequency, in this case 36,011 CPM
ω2 = frequency at which the upper half power amplitude oc-

curs, approximately 37,400 CPM
ω1 = frequency at which the lower half power amplitude oc-

curs, approximately 33,800 CPM
Thus:

and

The second method employs the sloped reactive portion of
the transfer function. For transfer functions in which ampli-
tude is measured in units of velocity, the sloped reactive com-
ponent is the imaginary portion. For transfer functions that
measure amplitude in units of either displacement or accelera-
tion, the sloped reactive component would be the real portion.
The lower trace in Figure 5 is the imaginary portion of the trans-
fer function. From such a function, the approximate value of
the Q parameter is:

where:
ωa = the frequency value above resonance at the top of the

slope, approximately 35,000 CPM in this case
ωb = frequency value below resonance at the bottom of the

slope, approximately 37,100 CPM
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Figure 4.  Vibration spectrum of the input bearing in the axial orienta-
tion.  Note the very high level of vibration at approximately 36,000 CPM.
This frequency corresponds to the gear meshing frequency.
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This is a good example of how a relatively small part of the
total system can be involved in the resonance. In this case, the
gearbox weighs approximately 8000 lbs, but the effective mass
of the resonant system is only 360 lbs.

Now, all of the parameters of the resonant system are known.
So, what do we want to do about it? If we refer back to Figure
5, the frequency range from approximately 38,000 to 42,000
CPM has a relatively small amplification factor, and there ap-
pears to be an anti-resonance at a frequency of approximately
41,500 CPM. If the system can be retuned so that this curve is
shifted to the left such that the gear meshing frequency falls
into the trough between 38,000 and 42,000 CPM, the level of
vibration should go down significantly. Care must be taken not
to lower the resonance too much, or we could move the reso-
nance that currently resides at 44,000 down into the range of
the gear meshing frequency.

We will try to move the anti-resonance, currently at 41,500
CPM, down to the gear meshing frequency, 36,000 CPM. In
order to do this, the resonance will be lowered approximately
41,500 − 36,000 or 5500 CPM. This can be done by increasing
the effective mass of the system. The new resonant frequency
for which the system will be tuned will be:

or 3180 radians/sec. Going back to the resonant frequency equa-
tion:

This is the weight of the new effective mass of the system.
In order to implement a change in the effective mass, a con-
centrated inertial mass the weight of which was equal to the
new, target effective mass minus the weight of the current ef-
fective mass should be bolted to the input shaft flange:

The inertial mass was fabricated and installed, and another
bump test was performed. The transfer function indicated that
the resonance had indeed been shifted to approximately the
target frequency and out of the frequency range where the gears
would excite a resonant frequency as shown in Figure 6.

A vibration survey taken immediately after the inertial mass
had been installed revealed that the level of vibration had been
reduced by approximately a factor of four. Another survey
taken after the gearbox had been in service for approximately
one week showed an even more dramatic reduction in the level
of vibration as shown in Figure7.

Thus,

and:

The two methods gave somewhat different values; however,
it is often difficult to obtain a precise value for damping. In
order to reduce the magnitude of error that could result from
relying on a single test, the two derived values will be aver-
aged:

Now that a value has been obtained for the critical damping
ratio ξ the dynamic amplification factor can be determined:

From the dynamic amplification factor and the dynamic
spring constant, the static spring constant can be determined:

By rearranging terms in the resonant frequency equation, the
effective mass can be determined:

where ωn is the resonant frequency:

and:

This mass can be converted to a weight by multiplying by
gravitational acceleration, 386 in./sec2:

Figure 6. Bump test after an inertial mass had been added to the input
flange.  Note that the resonance has been shifted downward to approxi-
mately 29,000 CPM and that at the gear meshing frequency, approxi-
mately 36,000 CPM, the amplification factor is minimal.
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Figure 5. Bump test of the gearbox in the area of the input shaft bear-
ing cap in the axial orientation. The top trace is the total transfer func-
tion, and the lower trace is the imaginary portion. Note the two
resonances at approximately 36,000 and 44,000 CPM.  Also, note that
there appears to be an anti-resonance at approximately 41,500 CPM.
In the top trace, the resonance around gear mesh, lower half power and
higher half power frequencies are 36,011, 33,800, and 37,400 CPM, re-
spectively.  In the lower trace, the top and bottom frequencies of the
slope around gear meshing frequency are 35,000 and 37,100 CPM re-
spectively.
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Figure 7. Vibration spectrum of the gearbox after installing the inertial
mass and running for approximately one week.  Compare the ampli-
tude of vibration at the fugitive frequency in this spectra with that in
Figure 4. The amplitude scales in both Figures 4 and 7 are the same,
and both surveys were conducted under similar operating conditions.

In this case history, it was possible to realize a very signifi-
cant reduction in the level of vibration with a relatively simple
fix. The cost of fabricating and installing the inertial mass was
minuscule compared to the cost of the gearbox.

Conclusions
Because the resonant frequency is a function of the square

root of both the effective mass and stiffness, it is often not prac-
tical to cause a significant change in the resonance by chang-
ing either of these parameters when the entire structure is part
of the vibration system. Such was the case with the motor men-
tioned earlier. In such a case, it would be necessary to add a
much larger mass relative to the mass of the primary system.
In the case of the motor, it was not practical to change the reso-
nance by adding mass to the system, and other methods were
employed to control the vibration. However, in the case of the
gearbox, the effective mass of the vibrating system was a rela-
tively small part of the entire system, and adding an inertial
mass was very effective in controlling the vibration.

P
ea

k 
V

el
oc

ity
, i

n.
/s

ec

0

1

0 20 40 60
Frequency, kCPM

Gear Mesh


