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Strictly speaking, the FFT analyzer is intended for use with
harmonically related signals that are stationary in time. In
other words, all signals are in the center of the FFT bin and
never change with the analysis time. We have learned how to
live with non-bin centered data by the use of windows. We still
have a way to go in handling very noisy data. That path is even
longer in being able to extract useful data from transient vi-
bration data. The secret to obtaining useful data in these cases
is an understanding of the FFT process and how it may be used
to provide good approximations of transient data. This article
will discuss several cases where great care must be taken in
setting up the analyzer or very misleading data will be pro-
duced.

The knowledge and understanding of the FFT process by
vibration specialists have greatly expanded since I gave my first
talk on the FFT at the 1980 Annual Meeting of the Vibration
Institute in New Orleans. Then, data acquisition times, win-
dows and the relationship between the A/D sample rate and
the Fmax of the 400 line spectrum were not widely understood.
Today, anyone certified as a Level 1 Vibration Specialist has a
pretty good idea of how the FFT vibration analyzer works. In
fact they probably use one daily in their machinery condition
monitoring program.

In spite of this improved understanding of the FFT process,
there are still some areas where the unsuspecting can get into
serious trouble. In some monitoring programs the number of
averages to take for accelerometer data seems to be a constant
of nature. We always take 8 averages for example. The number
of averages should be determined after a review of the charac-
ter of the data. For extremely noisy data, the combination of
too few averages coupled with very tight vibration limit specs
may lead to an unnecessarily high number of alarms.

Strictly speaking, the FFT process should be used only on
stationary data. In other words, the data must not be varying
in frequency or statistical characteristics. Additionally, it was
intended to only treat harmonic data where each signal is pre-
cisely a harmonic of the center of the first bin. If these rules
were strictly followed, then the FFT would not be the popular
processing tool it has become. One must realize however, that
when one uses the process in nonstationary data situations, one
has to be very careful in setting up the analyzer or serious er-
rors can occur. The FFT has even been used to process tran-
sient data. The idea that the peak hold feature can produce the
amplitude portion of a Bode plot during startups or shutdowns
can result in getting bad data for the response at the critical
speed, depending on the setup of the analyzer. Some of these
situations will be analyzed in this article.

The Number of Averages is a Constant of Nature
The statement that “When looking at accelerometer data from

a new machine, a 400 line spectrum and 8 averages is a rea-
sonable first choice” has been interpreted in some plants as
“Use a 400 line spectrum and 8 averages for all accelerometer
data.” The first statement assumed that one would produce a
spectrum and then depending on the character of the data,
modify the number of lines and the number of averages to pro-
duce a spectrum where the noise level will impact the discrete

frequency signal by an acceptable amount. The random noise
level in the same bin as a discrete signal may add or subtract
from the amplitude of the signal. (This actually takes place in
the real and imaginary spectra before combining them into the
magnitude spectrum.) The number of averages smooths the
noise level to its average value but averages the magnitude of
the discrete signal to a value nearer its actual amplitude. There-
fore, the variability in the discrete signal amplitude will ap-
proach zero if enough averages are taken.

Figure 1 shows the time history of a noise signal including
one discrete frequency component. The spectrum shows a 400
line analysis that has been averaged by summation eight times.
The spectrum appears quite clean. Figure 2 shows the ampli-
tude of the discrete signal after repeating the test ten times. The
actual level of the signal is shown, as are the ten amplitudes
measured, the average of the ten amplitudes and the ±3 σ val-
ues. About 99% of the data will fall between these 3 σ values.
One can see that in two successive tests, the data for the con-
stant amplitude discrete signal varied from 8.5 to 9.7. This is
a 14% increase in the measured amplitude when none existed
in the actual values. Figures 3 and 4 show the same test except
that the number of averages was 64. Of the ten trials, the mini-
mum amplitude was 9.15 and the maximum amplitude was
9.41. This is an increase in the measured amplitude of 2.8%
when none existed in the actual value of the discrete signal.

Suppose the above variations in reading the amplitude of the
discrete signal were coupled with a machine speed that could
vary. Assuming a Hanning window is used, an additional 14%
increase could occur if a speed change moved the discrete sig-
nal frequency from the edge of the bin to the center of the bin.

The lesson from the above data is that there is a relationship
between averaging time or data acquisition time for higher line
spectra and how tight one can set the alert limits for a changed
vibration reading. Eight averages of a 400 line spectrum for all
acceleration data is not a wise rule for data collection. Rather
we must make the decision based on consideration of the time
to take the data and the amount of variability we will accept
in the amplitude of discrete signals.

Beware of Fat Peaks
In an ideal situation, all signals would reside in the middle

of a given FFT bin and not vary from this location during the
time to acquire data. Sometimes in real life this condition can-
not be fulfilled. Figure 5 is a comparison of two time histories
and their respective spectra. Note that the peak amplitude of
both traces is approximately 250 mV. The top spectrum, asso-
ciated with the top time trace only shows a peak amplitude of
180 mV. The bottom spectrum shows the correct amplitude of
250 mV. Besides the different amplitude readings, the major dif-
ference between the two spectra is the width of the peak. Very
close inspection of the top trace would show that the time per
cycle is varying. In other words, the signal is frequency modu-
lated and thus moving through several bins during the data ac-
quisition time. In a real case this means that the machine speed
has varied during the data acquisition time or in the case of an
instability such as oil whip or steam whirl, the frequency of
the signal has varied during the data acquisition period.

The true amplitude of a fat peak can be partially corrected
by taking the square root of the sum of the squares of the data
in each bin. While this correction will partially correct the
amplitude of the varying signal, it may not give us the true
value of 250 mV. The signal resides for some time at the edge
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of the bin, which introduces a picket fence error (reduces the
amplitude by 14% for a Hanning window) in the signal recon-
struction. A solution to the problem would be to reduce the
resolution of the spectrum by either selecting a higher fmax or
reducing the number of lines of resolution. This will increase
the bin width, allowing for better containment of the signal

within its bandwidth.

We Can Make the Vibration Disappear
This example is taken from “Case Histories – Power Indus-

try” by Kevin Guy and published by the Vibration Institute. Un-
stable vibrations began occurring during the operation of a 650
MW turbine generator. Operation would continue for some time
with the vibration levels on the turbine supervisory system
showing 1 to 2 mils but then growing to 8.5 mils for about one
sec. As time went on, the levels became higher and in order to
prevent an alarm, the power level was decreased by 20 MW
which caused the vibration variations to be temporarily elimi-
nated. After a period of time the high vibration excursions
would return and the power would again be reduced.

Vibration spectra were produced from the shaft riders that
were installed on the unit. When using only one average, the
vibration could be higher on a few spectra while the majority
of the single spectra showed low vibration. A sub synchronous
vibration at 1575 CPM was observed. The peak was very wide
and was exciting the shaft critical at 1575 CPM. If several av-
erages of the spectral data were taken, the vibration levels were
low and indicated a smooth running machine. In order to in-
vestigate the spectral width, a zoom spectrum was produced.
This showed even lower levels and when several zoom spec-
tra were averaged, the vibration levels were even lower.

The utility management decided that since this vibration
dropped below the alert level when averaged and was even
lower with a zoom spectrum, this was not the problem. Their
solution was to filter the data below 3000 CPM, which pro-
duced uniformly low vibration readings.

Understanding the FFT process can explain the disappear-
ance of the vibration averaging and using a zoom spectrum.
First, the high vibration would occur on only a few of the non-
averaged spectra. This is consistent with the turbine supervi-
sory system. Averaging the data simply averaged one high vi-
bration spectrum with several low vibration spectra resulting
in a low level of vibration in the averaged spectrum. The exci-
tation occurred over a wide band so that when the bandwidth
was narrowed in the zoom spectrum, the levels became even
lower. The referenced case history did not describe what hap-
pened next but one can be sure this was not the end of that
story.

What Answer Do You Want?
The peak hold option of an FFT analyzer will store the maxi-

mum amplitude that was achieved in a bin during the input
time. It is touted as the way to get the amplitude portion of the
bode plot during coast-downs or startups. This situation is the
epitome of non-stationary data. Using the FFT analyzer in this

Figure 1. The top trace is the time history of a signal containing one
discrete frequency component and a high level of noise. The bottom
trace is the spectrum of these data after 8 averages.

Figure 2. The amplitude of the discrete signal as measured after 8 av-
erages. The test is repeated ten times. The average of the peak read-
ings, the actual input data and the ±3σ levels are also shown.

Figure 3. The top trace is the time history of a signal containing one
discrete frequency component and a high level of noise. The bottom
trace is the spectrum of these data after 64 averages.
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Figure 4. The amplitude of the discrete signal as measured after 64 av-
erages. The test is repeated ten times. The average of the peak read-
ings, the actual input data and the ±3σ levels are also shown.

Figure 5. Two signals of equal amplitude are shown in the top two traces.
The spectra for these two traces are shown below. Note that the spectra
of the data in the top trace show a reduced amplitude and a widened
peak. The bottom spectrum reads the amplitude correctly. Careful ex-
amination of the top time trace shows that the frequency is not constant
but varying.
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case violates the rule that the data must be stationary and leads
to the question, “Is it possible to get a good amplitude versus
speed plot during a coast down?” The answer is yes, if one is
careful to set up the analyzer in a manner that will give it a
chance to get something close to accurate data. If the analyzer
is not set up properly, inaccurate or misleading results can be
obtained. Unfortunately, the results of an expensive FFT ana-
lyzer are usually trusted regardless of how it was set up.

The data presented here are from a classroom demonstration
given by Nelson Baxter in the Level 3 Vibration course, and is
used here with his permission. The first advantage we have
today is that many analyzers allow us to capture the complete
coast-down in the input buffer and then decide how best to set
up the analyzer to handle the data. Not so long ago, one had to
set up the analyzer correctly before the data were seen or use
an analog tape recorder to replay the data until the result was
closer to the actual case.

One of the advantages of modern analyzers is that they al-
low us to select the number of lines of resolution in the spec-
trum. We can select from 200 to 1600 lines of resolution in most
analyzers and have even more choices in some analyzers. One
would think that the highest resolution would be the proper
choice to exactly determine the critical speed.

 Figure 6 shows a complete coast-down and peak-hold spec-
trum. The right panel shows the data needed to fill the input
buffer for a 1600 line spectrum. The spectrum shows that the
peak to peak response at the critical speed is about 2.3 mils. If
we did not observe the data that filled the input buffer and
remained confident with our firm belief that the analyzer can
not lie to us, we might report this as the response of the ma-
chine while it coasted down through the critical speed. We look
at the data in the input buffer that was used to produce the
spectrum and we see two things. For 1600 lines it takes 8 sec
to acquire the data needed to produce the spectrum. During this
time both the amplitude and the frequency have changed dra-
matically. The peak hold value saved in the spectrum is low
because the data were within the bandwidth of the bin for a
very short time. The peak to peak amplitude of the data in the
input buffer also changed during the time taken to fill the
buffer. Clearly we have done something wrong.

We fell into the trap of thinking that higher resolution is bet-
ter. To obtain high resolution requires a lot of data to fill the
input buffer, which takes time. We should have minimized the
time to fill the buffer and not maximized the resolution.

Figure 7 shows the same coast down with a 200 line spec-
trum instead of the 1600 line spectrum. Instead of 8 sec to fill
the input buffer it now takes only 1 sec. The panel at the right
shows the data in the input buffer that is used to compute the
FFT. Now looking at the peak hold coast-down shown in the
middle panel, one can see that the peak to peak amplitude as
the machine coasted down through the critical is 22.3 mils.
Next, looking at the time trace of the data as it traverses the
critical, one can measure the actual peak to peak value of the
maximum amplitude which is 22.4 mils. Notice that there is
almost a ten to one difference in the measured response be-

tween the 1600 line and the 200 line spectrum. The 200 line
spectrum is very close to the actual peak to peak value as mea-
sured from the time trace at the critical speed. The actual RPM
may now be determined by measuring the period of the data at
the critical speed.

I would guess that there has been a lot of incorrect data re-
ported on a machine’s response as it passed through the criti-
cal by analysts that only looked at the peak hold spectrum of
the data. This was particularly true before analyzers allowed
one to store the complete coast down in the input buffer.

Bad Bearing Detection? Now it is Much Easier
Back in the dark ages of vibration analysis in the 1960s and

early 1970s, detecting a defective rolling element bearing
sounded simple but unfortunately turned out to be very diffi-
cult. At the time, equations for the frequency of signals gener-
ated by a defective bearing depended on the location of the
defect, the geometry of the bearing and the speed. Conceptu-
ally the bearing defect frequencies would be calculated and
then the spectrum would be examined for a signal at these fre-
quencies. If a signal were there, then the bearing would be de-
fective. If no signal were detected, then the bearing must be
ok. The problem with this approach was that in many situa-
tions where no signal was detected, the bearing was known to
be defective or worse yet, the bearing soon failed. In cases
where defective bearings were detected using this procedure,
the background noise in the spectrum was extremely low or the
bearing defect was very large.

The reason for the poor success of this method lies in the
nature of the signal generated by the defective bearing. Figure
8 shows the spectra generated for several types of signals. The
top pair shows the spectrum generated by a sine wave, a single

Figure 6. The complete time trace of a coast down is shown in the left
panel. The amount of this transient that is required to fill the input
buffer for a 1600 line spectrum is shown in the right panel. The middle
panel shows the peak hold representation of the transient using 90%
overlap.

Figure 7. The complete time trace of a coast down is shown in the left
panel. The amount of this transient that is required to fill the input
buffer for a 200 line spectrum is shown in the right panel. The middle
panel shows the peak hold representation of the transient using 90%
overlap.

Figure 8. Spectrum energy distribution as a function of pulse shape.
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peak. The next pair of signals shows the spectrum generated
by a square wave. The energy of the signal is shared by all the
odd harmonics of the repetition rate of the square wave. The
fundamental is still the largest signal in the spectrum. The third
pair shows the spectrum for a much shorter duration pulse than
the square wave. The fundamental is still the largest signal in
the spectrum but much more energy is shared with all the
higher harmonics. The fourth pair of signals shows a very short
impact in the time trace. This spectrum shows that there are
many harmonics of the fundamental and all are very low in
amplitude compared with the time trace amplitude. This is the
typical spectrum generated by a hammer in modal analysis
testing.

If the shape of the defect time trace were a sine wave, then
one should have very little trouble in detecting the defect sig-
nal in the spectrum. On the other hand, if the time trace is more
like a hammer impact, then we can see that the amplitude of
the fundamental is very low and shared almost equally with
all harmonics. We can imagine that a ball impacting a pit in
the raceway would produce a signal more like the impact ham-
mer than the sine wave. Figure 9 shows the spectrum and the
time trace for a defective bearing. This figure was furnished
by Nelson Baxter from the Level 3 Vibration course. Note that
the time trace shows a very sharp impact, meaning that the en-
ergy will be spread among many harmonics, as the spectrum
shows. The fundamental defect frequency and its harmonics
are barely detectable. If a little machinery background noise
were added to the time trace, one can see that the evidence of
a defect could easily be obscured. Some early reports on the
use of this technique claimed that the defect showed up in the
third harmonic while others reported seeing evidence in the
seventh harmonic. What was happening in these cases was
much like the impact hammer modal test – the harmonic was

amplified by a resonance. It is quite common to see a bearing
defect pulse excite a structural resonance but this usually hap-
pens at much higher frequencies where very small motions can
produce very high g levels.

Figure 10 shows three traces. In the top trace a simulated
bearing defect impact train is shown. In the middle trace the
spectrum of the impact train is shown. Note that there are very
low amplitude signals at the defect frequency in the lower fre-
quency portion of the spectrum. The data at the high end of
the spectrum are the actual ring down frequency of the train
of impacts shown at the top. This resonance is very strongly
modulated by the defect signal. One could determine the pres-
ence of the defect signal from the sideband spacing of the high
frequency data. In real life cases, machinery noise obscures this
sideband structure or possibly more than one resonance is
excited and overlaps the first resonance. In any event, detect-
ing the low frequency defect frequency or detecting the defect
frequency by the resonant sidebands is very difficult. One
could measure the time between the impacts in the top trace
and convert this period to a frequency to show that it is the
defect frequency of the bearing. This may often be done when
viewing a bearing defect in the time domain. Again, sometimes
machine noise and other resonances preclude making an ac-
curate measurement of the impact spacing.

Suppose one could beef up the thickness of the impact pulse
and also remove the ring down frequency. This is done in the
second trace in the top chart. The line drawn is called the en-
velope of the train of pulses and may be produced by a simple

Figure 12. The top trace is a high frequency modulated by a sine wave.
The second trace is the envelope of the top trace using the Hilbert trans-
form. The bottom trace is the spectrum of the envelope.

Figure 13. The top trace is the signal from a defective bearing. The sec-
ond trace is the envelope of the top trace using the Hilbert transform.
The bottom trace is the spectrum of the defective bearing.

Figure 9. A simulation of the time trace of a defective bearing and the
resultant spectrum of this signal.

Figure 10. The top trace shows the simulated impact and ring down of
a defective bearing. The middle trace is the spectrum of this impact and
ring down. The second signal in the top trace is the envelope of the
impact and ring down. The bottom trace is the spectrum of the enve-
lope.

Figure 11. Hilbert filter and analytic signal.

Time, msec
0 200

Frequency, Hz
0 1k

0

0

1

–1

2

E
n

g
. 

U
n

its

E
n

g
. 

U
n

its
Impact Rate Does
Not Show Up in
Spectrum

Impact Rate
(58 Hz)

Frequency, Hz

500Frequency, Hz

A
cc

el
er

at
io

n,
 g

D
is

pl
ac

em
en

t, 
M

ils 1.0

0.5

0

–0.5

–1.0

0.5

0

0.5

0
1

1

0

2000

Time, msec 1

A
cc

el
er

at
io

n,
 g

Impact Envelope

cos

cos sin
Hilbert Filter

160
80

0
–80

–160

0 0.5 1.0 1.5
Time, sec

0 50 100 150
Frequency, Hz

160
120

80
40

0

E
n
g
. 
U

n
its

E
n
g
. 
U

n
its

E
n
g
. 
U

n
its

160
80

0
–80

–160

0 30 60 90

400
200

0
–200
–400

Time, msec

0 250 500 1000
Time, Sec

0 100 200 300
Frequency, Hz

400
200

 0
–200
–400

150

75

0

E
n
g
. 
U

n
its

E
n
g
.U

n
its

E
n
g
. 
U

n
its

750

500400



22 SOUND AND VIBRATION/SEPTEMBER 2002

Figure 14. Shows the effect of time series averaging for 1, 48 and 256
averages.
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diode, capacitor and resistor network. The circuit must have a
very fast rise time while the decay time is set by the time con-
stant of the RC circuit. The spectrum of the envelope is shown
in the bottom trace. The defect signal is now clearly identified.
One might wonder what the harmonics of the defect frequency
mean. The answer is that they have no physical significance
but only define the decaying pulse shape which is controlled
by the R and C, not by the condition of the bearing. This tech-
nique has dramatically improved the ability to detect defec-
tive bearings and has become one of the standard methods.

Software Envelope Detector
We all know that a function such as an envelope detector,

implemented in hardware, costs money to originally design and
test. In addition, it costs money for parts and labor every time
we make one. If we could duplicate the function in software,
we would still have to design and test it, but it would not cost
anything to ‘build.’ We can charge enough for the software func-
tion to pay the nonrecurring costs. Since there are no recurring
costs, we should increase our profit. In addition, a software
solution does not soak up any power, weighs nothing and uses
no space. Therefore, all other things being equal, a software
solution is preferred. The manufacturers make more money and
the user has a smaller, lighter unit.

It is possible to make a software envelope detector utilizing
a technique called the Hilbert transform. The Hilbert transform
shifts the phase of every signal in the input by 90 degrees,
shown schematically in Figure 11. By utilizing the original and
shifted data one can see that we have a situation analogous to
real and imaginary signals. The amplitude of this signal may
be obtained by taking the square root of the sum of the squares
at each sample of the data. For example, if the signal had a fixed
amplitude, this technique would produce a fixed amplitude DC
value. If the original signal varies with time or has an enve-
lope varying with time, the output of the combination will be
the envelope of the input signal.

Figure 12 shows a high frequency signal modulated by a low
frequency sine wave. The second trace is the result of shifting
the phase of the signal by the Hilbert transform and then com-
bining the ‘real’ and ‘imaginary’ signals to get the amplitude.
This amplitude is the envelope of the signal or the modulat-
ing signal. The bottom trace is the spectrum of the envelope.

Figure 13 shows the same sequence of signals. The top trace
shows raw data from a defective bearing. The second is the en-
velope of the defect signal and the bottom is the spectrum of
the envelope. The fmax of the spectrum is high since the reso-
nance excited by the defect impacts is a high frequency. To
examine the spectrum of the defect signal, a zoom Hilbert trans-
form could be performed. This has the effect of moving the
defect signal to the right in the spectrum. The disadvantage of
the zoom spectrum is that it destroys the typical defect type
signals in the top two traces.

Time Series Averaging – Extracting Signals from Noise
What is required for time series averaging is both the noisy

signal and a pulse synchronized to the data. One possibility is
to use a key phasor marker on the input shaft of a gear box and
a signal from an accelerometer mounted on the gearbox. Al-
though most analyzers perform time series averaging in a more
sophisticated manner, it is easy to picture if one envisions con-
tinually adding the synchronized signal to itself and then stop-
ping the process and dividing the sum by the number of addi-
tions made to arrive at the average value. One can also see that
adding a random noise signal to itself (random phase and sign)
and eventually dividing the sum by the number of additions
will result in a noise signal that will approach zero as the num-
ber of averages becomes large. Figure 14 shows this process for
1 average (raw signal), 48 averages and 256 averages. The syn-
chronized signal emerges from the noisy signal as more aver-
ages are taken.

Figure 15 dramatically shows the value of time series aver-
aging. The top trace is the original signal. The second trace is

the result of 128 synchronous averages. This trace clearly
shows that one pulse is different from the others, such as one
tooth mesh in the signal generated in a gearbox. The bottom
trace is the spectrum of the averaged signal. It is almost impos-
sible from this spectrum to determine that one tooth mesh is
different from the others.

Figure 16 is a plot of the averaged noise amplitude versus
the number of averages. Notice that this is a smooth curve
where the noise level is inversely proportional to the square
root of the number of averages. For example, the fourth aver-
age is one over the square root of 4 times the first average or a
ratio of 1:0.5 It is thus easy to predict the signal to noise ratio
from the number of averages.

Figure 17 is the same type of plot but here the signal is an
unsynchronized sine wave instead of random noise. For the
first few averages, the amplitude drops dramatically as the
unsynchronized signal drifts out of phase with the first signal.
Then the amplitude increases as the signals drift back in phase.
To ensure a good ratio between a synchronized and a non-syn-
chronized signal one must either take a great number of aver-
ages or observe the running average and stop it when the de-
sired ratio is achieved or the non-synchronized signal has
disappeared. Figure 18 shows the results of 16 trials of 8 aver-
ages of a non-synchronized signal. Note that the resulting
amplitude could vary from 30 to 160.

Time Series Averaging Can Also Fool You
To illustrate that there is no one magic data processing tech-

nique, Figure 19 shows data from a single mesh gear box. The
input shaft is bent so that the contact point of teeth varies
around the pitch line circle in a sinusoidal manner. This modu-
lation is clearly shown in both the top time trace and the top
spectrum. Note that if the time series averaging were synchro-
nized to the output shaft, all evidence of the modulation dis-
appears. This illustrates the fact that one should not get locked
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Figure 15. Time series average is used to recover a signal from noise
and display it in the time domain.
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Figure 16. Averaged amplitude of noise versus number of averages.

into one data processing technique. One must look at time trace
data and spectral plots. If time series averaging is used, it is
helpful to obtain plots where the data are synchronized once
to the input shaft and once to the output shaft.

The Inverse FFT
The inverse FFT (IFFT) is a very powerful tool that is not of-

ten used. For example, consider a Fourier transform process
starting with 1024 input samples. The FFT computes a 512 line
spectrum, but to reduce the danger of aliasing, generally only
400 lines are kept and displayed. If all 512 lines and the 512
phase angles are kept, then the inverse FFT may be performed.
The process is as follows:

FFT the 1024 time domain data samples to get 512 real spec-
tral values and 512 imaginary spectral values. Then process
that data to get 512 spectral amplitudes and 512 phase angles.

Figure 17. Averaged amplitude of unsynchronized signal vs the num-
ber of averages

Figure 18. Sixteen trials of 8 averages of unsynchronized signal.

Figure 19. 128 time series averages of a modulated signal when syn-
chronized to the input and output shaft.
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This is the displayed spectrum. IFFT the 512 real spectral val-
ues and 512 imaginary spectral values to get the 1024 time data
samples from the original. This would just be an interesting
process except that the spectral data may be modified before
the IFFT is performed.

Figure 20 (top trace) shows the original time trace of the
combination of three discrete signals and noise. The next trace
is the 512 line spectrum. In the third trace, all data are set to
zero except in the immediate vicinity of the first discrete sig-
nal. The final trace is the IFFT of the modified signal and shows
a relatively clean sine wave.
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Figure 20. Using the FFT and IFFT as a filter: (a) original time trace;
(b) 512 line spectrum; (c) all data set to zero except near the first dis-
crete signal; (d) IFFT of the modified signal.

Figure 21. Using the FFT and IFFT as a filter: (a) original time trace;
(b) 512 line spectrum; (c) all bins set to zero except for discrete signal;
(d) IFFT of the modified signal.

Figure 22. Removing noise from a square wave signal: (a) mixture of a
square wave and noise; (b) spectrum of the top trace; (c) all bins set to
zero except the three harmonics; (d) IFFT.
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Figure 21 is the same process except that all FFT bins have
been set to zero except for the single bin containing the dis-
crete signal. The IFFT now produces a pure sine wave. This
process may be used to filter the data using very narrow band
pass filters. Realize however that if an original signal is modu-
lated and/or is a shape other than a sine wave, then additional
bins must be included to obtain the original signal. One must
include sideband bins for modulated data and harmonics for
non-sinusoidal wave shapes.

Figure 22 illustrates this point for a non-sinusoidal wave
shape. The top trace is a mixture of a square wave (harmonics
1,3 and 5) and noise. The next trace is the spectrum of the top
time trace. In the next spectrum, all bins have been set to zero
except the three harmonics. The final trace is the IFFT, which
now clearly shows square wave character.

Conclusion
The Fourier transform was originally conceived to determine

the harmonic content of a given repetitive wave shape. Noisy
signals and transient phenomena were far from Fourier’s mind
in his original formulation. The Fast Fourier Transform algo-
rithm is now in common use in the vibration analysis of rotat-
ing machinery vibration. We commonly encounter signals that
are not bin centered, very noisy or exhibit transient phenom-
ena. The FFT may still be used in these cases to gain insight
into the condition of the machinery, but it must be realized that
one is skating on very thin ice and serious errors can easily
occur for the careless. The cases discussed in this article show
both sides of the question. Many errors can be encountered by
carelessly following rules of thumb and not understanding the
FFT process. On the other hand, careful, knowledgeable use
of the FFT can provide very valuable insight about the condi-
tion of machinery in noisy and transient conditions.

The author can be contacted at: jlfanalys@aol.com.


