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Transient events are sometimes buried in continuous ma-
chinery vibration data. Conditions causing these transient
events include: a bearing ball rolling over a defect, a pit or
chip on the face of a gear tooth, clearance in a bearing that
allows a repetitive pounding, engine rod or main bearing
knock and piston slap. Detection of the magnitude and tim-
ing of these events can be valuable for diagnostics. These can
be identified with time-frequency methods that show fre-
quency content and time of occurrence on a two-dimension
contour plot. Wavelets can also be used to detect magnitude
and timing. The orthogonal wavelet is inexpensive to compute
and has the potential to display something new. The code de-
composes the signal into wavelets, the location and magnitude
of which identify the transient. Partial inverse transformation
also shows regions of the signal where different wavelet lev-
els build up to recreate the transient in the signal. The recent
availability of orthogonal wavelets and MATLAB® wavelet code
has made such analyses convenient. This article explains these
methods and the signal processing calculations involved.

Many problems in machinery diagnostics are characterized
by transient or impulsive events in the vibration signal that
cause the frequency content to vary considerably and regularly
with time. Several methods are available for analyzing transient
events. Signal analyzers average individual spectra to a single
spectrum, but they convert the time signal to a frequency sig-
nal and cannot show any time-frequency variations. The Short
Time Fourier Transform (STFT) or spectrogram is used to dis-
play time-frequency variations in speech analysis but does not
provide sufficient resolution for some machinery diagnostics
problems. The Wigner distribution increases resolution in time-
frequency distributions. It can locate the angular position of
an impact or the discontinuity associated with individual gear
tooth faults.1,2 However, the Wigner distribution has severe in-
terference (cross) terms that confuse the interpretation and re-
quire additional efforts to resolve. The Reduced Interference
Distributions (RIDs) mitigate the Wigner cross terms while pre-
serving sharp resolution. The Choi and Williams distribution3

yields impressive detail and a significant structure in the time-
frequency plane with recognizable impact. Finally, the wave-
let transform has recently become available and offers an ad-
ditional approach.4 With some development, this tool could
become very helpful in machinery diagnostics.

Short Time Fourier Transform
We begin by considering the Fast Fourier Transform (FFT)

that is used in most data collectors and signal analyzers. Per-
forming a FFT results in a complex function of frequency (com-
plex because each frequency component has a magnitude and
a phase). Normally the magnitude is retained and presented
as the spectrum. The spectrum of a vibration signal is a graph
that indicates amplitude or content as a function of frequency.
Usually spectra are averaged, windowed, discrete Fourier
transform magnitudes of vibration time histories.5 The FFT is
actually a Fourier series of a segment of a vibration signal, thus
the FFT will indicate frequency content as the actual sine wave
components that make up the signal (the original signal is the
summation of all these components). Unfortunately for this ap-
plication, the FFT assumes everything in the segment is peri-
odic. This causes errors when evaluating components in the
segment that do not have an integral number of periods. It also
implies a discontinuity where the assumed periodic segments
join. To diminish these “leakage errors” the time segments are

‘windowed’ with bell shaped functions that approach zero at
their ends (e.g., Hanning, Kaiser-Bessel, flattop, etc.). Each term
of each segment value is multiplied by the window function,
causing a reduction in the signal amplitude. To compensate,
the spectra values are multiplied by a window factor. Unfor-
tunately the FFT is not useful for some diagnostic purposes
because it cannot show where impulsive-like events occur in
time. However, the FFT can still be used in obtaining some time
versus frequency data.

The first step in considering a time-frequency representation
is to evaluate the windowed FFT magnitude of adjacent over-
lapping segments of the time signal and observe how the fre-
quency content of those segments changes. This is called the
Short Time Fourier Transform (STFT) and is illustrated in Fig-
ure 1. The signal to be analyzed is in the upper left portion of
the figure and below it are five 50% overlapped segments. In
the next column above time = 0.05 the segments have been win-
dowed to reduce leakage. Next to the windowed segments are
the spectra. To obtain the full STFT, we skip a suitable num-
ber of points, move to a new time and repeat the process. Each
FFT is the frequency content of a windowed segment of the
function centered about time t. Each blip within that window
contributes to the frequency content at time t. Shortening the
window allows for more accurate measurements in the time
domain, but restricts the lowest frequency you can detect (one
entire wavelength must be within the window). Shortening the
window also reduces the number of lines or frequency spac-
ing. The STFT is used on signal analyzers as a ‘waterfall’ plot
or spectrum.

The Wigner and Reduced Interference Distributions
The STFT does not have the time or frequency resolution of

the Wigner distribution. In this autocorrelation-based ap-
proach, the signal is analyzed as a list of numbers plotted on a
graph. Imagine that there are two copies of the list side by side.
The autocorrelation function (ACF) involves multiplying the
signal (i.e., the list) by itself, number by number, and adding
up the values.5 Next we shift the lists by one value, remultiply
and add. The shift is called a lag and the values of the calcula-
tions for each shift are the ACF. The FFT of the ACF turns out
to be the spectrum squared, which is nothing new. But consider
a symmetrical ACF: Imagine now we have a single copy of the
signal (the long list of numbers). As an example, start 128 num-
bers down from the top; take that number and square it. Now
take one number above and below it and multiply those to-
gether; then move one number above and below those and
multiply them together. Continue until we have covered 128
numbers in each direction. We now have a list of 128 values
for the multiplications, with the squared value of our center
point at the top. We then take the values below the first value,
flip them end for end, and put them on top of the list, making
the list 255 numbers long. That is the symmetrical autocorre-
lation function for that center point. Take the FFT, skip a few
points and do it again. This is a rough approximation to the
Wigner distribution. The actual Wigner requires windowing the
255 values before you FFT them and converting the signal to a
complex function. Even a rough approximation of the Wigner
distribution can highlight discontinuities in the signal and in-
dicate the frequency content better than the STFT.1,2 Unfortu-
nately the Wigner distribution generates artificial cross terms
at times and frequencies where there is nothing happening. It
finds the actual discontinuities but also adds some fictional
discontinuities.6
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The reduced interference distributions (RIDs) were invented
to eliminate the Wigner’s unwanted cross terms. Approximately
10 RIDs exist, including the Choi-Williams distribution.3,6 Like
a waterfall plot, these time-frequency distributions can be dis-
played as a terrain map with time and frequency axes and el-
evation indicating content. The RIDs perform specific averag-
ing of adjacent time and frequency values on a time/frequency
map. The cross terms fluctuate rapidly and the averaging
smooths them out, more or less. With the Choi-Williams, I have
noticed that amplitudes are affected and cross terms are almost
completely eliminated.

Machinery Vibration Analysis Examples
To illustrate what you can expect from these methods, con-

sider Figure 2. It shows some accelerometer data taken from
the intake valve cap on the head of the high pressure cylinder
of a large reciprocating compressor. The time interval shown
is about one revolution. The burst of acceleration at 59 msec
is caused by the intake valve channels slamming open. The
burst at 72 msec is when they close. Other impact events in-
clude the opening and closing of the intake and exhaust valves
from the three cylinders.

Figure 3a shows a contour plot of an STFT of the data. In or-
der to display the impact events somewhat sharply in time, I
used a very short 64 point FFT (equivalent to a 32 line display).

With a normal length FFT virtually all time detail would be
lost, because the STFT responds to the impact anywhere within
its window. Figure 3b is a three dimensional mesh plot of this
analysis that shows the complexity of the time/frequency con-
tent. The contour plot precisely shows the location of ampli-
tude peaks in the time/frequency plane whereas the mesh plot
shows the “big picture,” overall arrangement.

Figure 4a shows a contour plot of a Wigner analysis of these
same data. Depending on the number of contours plotted, it can
be quite precise with respect to time. However, notice in the
corresponding mesh plot (Figure 4b) that several more peaks
occur in the impact. Compare the region prior to t = 0.06 be-
tween 0 and 7500 Hz to the STFT of Figure 3b. Many of these
peaks are fictitious “cross terms,” the biggest drawback to the
Wigner method.

Figure 5a is a contour plot of the same data using the Choi-
Williams RID. It has reduced the interference caused by the
cross terms and appears to be the most precise of the three. The
three-dimensional mesh plot for these data is shown in Figure
5b. Although beautiful, the mesh plot contains too much in-
formation to grasp by itself; the contour plot remains a good
map to the location of the high amplitude regions. Examina-
tion of contour plots using trial and error contour levels along-
side the mesh plot provides the most revealing information. In
the following section, these three methods are reviewed for
comparison with wavelet analysis.

Wavelet Analysis
Wavelet analysis of machinery vibration data is a different

form of time-frequency analysis. There are two major catego-
ries of wavelet transforms: continuous and orthogonal; continu-

Figure 1. Five time segments from a vibration signal, 50% overlapped
running from 0.01 to 0.04 sec. From 0.04 to 0.55 sec, the segments are
multiplied term-by-term by a Hanning window. At 0.06 sec, the FFT is
applied to each segment. The sequence of FFTs form the STFT of the
signal.

Figure 2. Acceleration from an intake valve cap on a large reciprocat-
ing compressor. The burst of acceleration at 59 msec is from the intake
valve channels slamming open. The burst at 72 msec is when they close.
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Figure 3. a) Contour plot of the STFT of the compressor data. b) Mesh
plot of the STFT of the compressor data.
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ous is easier to describe.8 The wavelet transform, or distribu-
tion, is a short wavy function that is stretched or compressed
and placed at many positions on the signal to be analyzed. The
wavelet is then term-by-term multiplied with the signal; the
sum of those products is the wavelet value. The amount that
the wavelet is stretched or compressed is called its scale and
it is called translation when the wavelet is moved from posi-
tion to position.

Figure 6 illustrates a continuous wavelet transform. Figure
6a shows an antisymmetrical wavelet (the imaginary part of the
Morlet wavelet) centered at t = 0.003 sec. In Figure 6b, the
wavelet has been flipped left to right. Notice that the wavelet
is only nonzero for a small region. Figure 6c shows the signal
we want to analyze, a portion of acceleration data from an air
handler. Figure 6d shows the result of a term-by-term multi-
plication of the second and third figures. Adding up the val-
ues of Figure 6d would give the wavelet distribution value for
this scale (frequency) and position of the wavelet. We would
hold the frequency or scale constant, advance the wavelet
slightly and calculate a new coefficient. After we had advanced
the wavelet at this frequency across our signal, we would se-
lect a new frequency or scale and repeat the process.

Figure 7a presents a contour plot of the same compressor data
using my Morlet continuous wavelet MATLAB analysis. No-
tice its ability to pick out the discontinuities. The correspond-
ing mesh plot for this analysis is shown in Figure 7b. Although
I have no proof, I prefer the Choi-Williams analysis to the
Morlet. All of these must be compared to the STFT, which is a
known understandable analysis. After establishing this back-
ground, we will now examine the unusual orthogonal wave-
lets.

Orthogonal Daubechies Wavelets, a Transform
The orthogonal wavelet is a true transform that converts a

length of data equal to a power of two (e.g., 512, 1024, 2048,
etc.) data points into a transform of the same length;9 the in-
verse transform returns the original data set. It is interesting
to note that the wavelet transform decomposes the signal into
transients (the wavelets). The type of wavelet used determines
the wavelet shape; each of the values of the wavelet transform
is the magnitude of an individual wavelet. The position or plac-
ing of each transform in the list of values gives the location and
duration of that wavelet. Whereas the FFT tells us how to build
up the signal from the same number of sines and cosines as
there are data points, the wavelet transform tells how to build
up the signal from the same number of wavelets as there are
data points.

The transform looks quite different. Partial inverse transfor-
mation shows regions of the signal where the different wave-
let levels build up to recreate the transient in the signal. I have
experimented with 10 of these wavelets, the nine Daubechies
and Newland’s harmonic.10 It takes many pages of detailed
math to prove the transforms will work, but this can be done
much faster using MATLAB programs to perform the forward
and inverse transformations. Daubechies11 discovered her nine
different wavelet transforms in the late 1980s and computed
the coefficients needed to implement them. The Daubechies-4
wavelet transform uses 4 coefficients and the Daubechies-6
uses 6 coefficients. The others are the Daubechies 8, 10, 12, 14,
16, 18 and 20 transforms. Newland10 gives the MATLAB pro-
grams12 and the numerical values of the required coefficients
to perform the forward and inverse transforms. He also presents
a harmonic wavelet transform and the MATLAB programs for

Figure 4. a) Contour plot of a Wigner analysis of the compressor data.
b) Mesh plot of the Wigner analysis of the compressor data.

Figure 5. a) Contour plot of a Choi-Williams analysis of the compres-
sor data. b) Mesh plot of a Choi-Williams analysis of the compressor
data.
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using it. The availability of orthogonal wavelet software10 for
high level signal processing programs has recently made such
analyses convenient and easy to use. These programs are copy-
righted so they are not presented in this article; you must ob-
tain your own copy. The Daubechies Wavelet coefficients are
used to keep transforming the signal into half smooths and half
details. The detail portion is saved each time while the smooth
portions are repeatedly transformed into more smooths and de-
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tails until we have all details and only two smooth values. We
get 11 levels for 1024 points; so in effect we are analyzing into
11 bins as opposed to our normal minimum of 400.

Numerical Recipes13 explains the calculating and program-
ing of the orthogonal wavelet transform in an understandable
manner. Matrix (1) illustrates the process for a 4 coefficient
Daubechies wavelet, where the cs are the coefficients.

Rearrange the output column with the smooths in the top half
and the details on the bottom. Next, apply Equation (1) to the
top half (the smooths) and again break those into half smooths
and half details. You will end up with N/2 details for the first
level, N/4 details for the second level, N/8 details for the third
level, etc. The process is finished when you are down to just
two details and two smooths.

To perform the inverse transform, the procedure is reversed
with the transpose of matrix (1) or:

Figure 8 is a plot of the 2048 Daubechies-4 wavelet transform
values of the compressor data just as they are returned by the
“wavedn.m” program.10 The values plotted are the sets of de-
tails and the final two smooths. The right half of the plot is the
10th level of 1024 details, the finest detail of the decomposi-
tion representing the shortest and narrowest wavelets. Going
from right to left, the next 512 points are the details from the
9th level. Again moving to the left, the next 256 values are the
8th level details. Newland calls the final two values (the two
leftmost values of Figure 9) the –1th (–‘one’th) and the 0th
(‘zero’th) level values.

The transform tells how to construct the signal from the
wavelets. The positive or negative height of the wavelet is given
by the value of the transform; where the wavelet value is placed
in the transform shows the interval of time over which the
wavelet applies. A shorter time interval means a narrower
wavelet. The convention is as follows (now starting from the
left):
The 1st value, called the –1th level, applies to the whole time

interval. This is the DC level.
The 2nd value, called the 0th level, also applies to the whole

time interval. It has part of the wavelet shape.
The 3rd and 4th values are the first level and apply to each half

of the time interval respectively.
The 5th through the 8th values are the 2nd level and each ap-

plies to 1/4 of the time interval.
The 9th through the 16th values are the 3rd level and each

applies to 1/8 of the time interval.

Figure 6. An illustration of the first four steps in the calculation of a
continuous wavelet transform coefficient. The wavelet is centered at t
= 0.003. The sum of the values in the fourth plot would be the wavelet
coefficient for this frequency (scale) and position.

Figure 7. a) Contour plot of a Morlet continuous wavelet analysis of the
compressor data. b) Mesh plot of the Morlet continuous analysis of the
compressor data.
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Figure 8. The Daubechies-4 wavelet transform of the compressor data
(2048 values).

Figure 10. Daubechies-4 wavelet reconstruction of the original signal.
The levels were separately inverse transformed to display the contri-
bution of each level to the composition of the original signal.

Figure 9. Daubechies-4 wavelet coefficients for each level of the wave-
let analysis of the compressor data. The higher levels show the
discontinuities.

The 17th through the 32nd values make up the 4th level and
each applies to 1/16 of the time.

The 33rd through the 64th are the 5th level and each applies
to 1/32 of the time.

The 65th through the 128th are the 6th level and each applies
to 1/64 of the time.

The 129th through the 256th are the 7th level and each applies
to 1/128 of the time.

The 257th through the 512th are the 8th level and each applies
to 1/256 of the time.

The 513th through the 1024th are the 9th level and each ap-
plies to 1/512 of the time.

The 1025th through the 2048th are the 10th level and each ap-
plies to 1/1024 of the time.

And so on.
For example, the 304th value of a transform is in level 8 and
occupies the 48th slot in the 256 time intervals.

To view the wavelet transform values graphically in a mean-
ingful way, we should plot each level as a constant during the
time values to which it pertains. Such a plot is presented in
Figure 9 for the 2048 point compressor data. Consider the list
of values plotted in Figure 8, a vector ‘a.’ The left most value
(of Figure 8), a(1), is the –1th level and it applies to all the time
values. It is the DC level of the transient and is shown as the

bottom line on Figure 9. The second value, a(2), (again of Fig-
ure 8) the 0th level, also applies to all time values but has a
portion of the wavelet shape. It is the second line from the
bottom of Figure 9. The first level is the third line up from the
bottom and has two values: a(3) and a(4). They are so close in
value that the line appears to have a constant value. The four
values of the second level (fourth line from bottom) can be
barely seen; its fourth value is a little higher than the other three
and shows as a step in the last quarter of the line. The eight
values of the third level are plotted as the fifth line up from
the bottom. Toward the right side of the figure a slight stair-
case can be seen with stairs 1/8 of the line length. The sixth
line up from the bottom or the fourth level has 16 values that
are more visible. The 32 values of the fifth level are even
clearer. In this case I analyzed 2048 data values. This results
in 1024 values in level 10, 512 in level 9, 256 in level 8, 128 in
level 7 and so on down to two values in level 1. The top three
levels pick out the discontinuities. Again, each of the values
is the size or height of the transient. Where the value is placed
in the 2048-value transform tells where the wavelet is located
in time and how wide or narrow it is.

Figure 10 shows the components of the discontinuities bet-
ter and may be the best use of orthogonal wavelets for diagnos-
tics. It shows the inverse transforms of the wavelet analysis
level by level, so that you can see which part of the signal is
built up by each level. The sum of the 12 levels exactly adds
up to the original signal shown at the top of the figure.

Some Additional Insight
Suppose the WT is the program that does the wavelet trans-

form on a vibration signal and the IWT is the program that does
the inverse. A set of values, such as those plotted in Figure 8,
is what the IWT program expects to receive. If we give the IWT
program a transform of all zeros, it will transform them into a
signal of all zeros. One way to understand what the WT accom-
plishes is to put single nonzero values in various positions of
an all-zeros transform and then perform the IWT. Think of a
signal that consists of 512 values. It has a transform 512 num-
bers long that we will call ‘b.’ If we make ‘b’ all zeros except
for a ‘1’ in the first position (the –1th level position) and per-
form IWT, we will get back 512 ‘1s.’ The –1th level or first value
is the DC value of our signal. If we make ‘b’ all zeros, except
for a ‘1’ in the sixth position (2nd level, 2nd position) and run
IWT, we get back 512 values that are plotted in Figure 11 show-
ing the Daubechies-4 wavelet. This procedure can be used to
examine any of the wavelets.

Hubbard’s ‘elementary’ book9 states that the automatic fin-
gerprint classification problem was solved at least in part by
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Figure 11. The Daubechies-4 wavelet in position 6, with a value of 1. It
was formed by inverse transforming the 511 zeros and a single one in
position 6.
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wavelets. On page 105, she shows a plot of the time history of
the microphone signal of the spoken word ‘greasy,’ sampled at
8000 times per sec. Below that plot is a matching pursuit analy-
sis of the signal. “. . . Most of the signal is characterized by a
few time-frequency atoms: although the original signal has
3000 samples, it can be reconstructed from only 250 atoms,
with a signal to noise ratio of 40 dB . . .”

Hubbard’s writing caused me to think of the FFT of a 45-
minute microphone signal of some wonderful symphony,
sampled at 44,000 Hz. This would be 118,800,000 samples. The
next higher power of two is 27, giving us 226 lines or 67,108,865
frequency values, amplitudes and phases. (When you FFT N
even values, you get back N/2+1 distinct values, two of which
are real and N/2−1 are complex. Thus N values are returned,
but they only apply to N/2+1 frequencies.) If we perform an
inverse FFT on them, we would get back the exact symphony.
Somewhere in the symphony there would be a symbol crash.
It would be very difficult to find in the FFT, because the FFT
would just be 67 million amplitudes and phases. A wavelet ap-
proach would find the symbol crash and would even find a
bearing signal or chipped tooth as well.

Other wavelet approaches veer away from the idea of a short,
variable length wavelet convolved with the signal to be ana-
lyzed at various time locations. There are the wavelet packets
and matching pursuits analysis. One analysis used these and
proposed a dictionary of families of informative wavelets to and
a procedure that would test different wavelet families on a ma-
chinery vibration signal to see which provided the most infor-
mation.14

Conclusion
The Choi-Williams distribution seems to display time/fre-

quency characteristics with the most precision. However, the
short time Fourier transform provides a more accurate calcu-
lation of the amplitudes and might be best for slowly varying
time/frequency characteristics. The Wigner distribution can
locate time events and is quick to compute, but it does intro-
duce spurious cross terms. The Morlet wavelet is a very logi-
cal analysis to perform and seems like it should produce an
analysis as good as the STFT. In my testing of it, however, it
seems to form suspicious vertical constant time ridges that
suggest impacts not found in the other analyses.  The
Daubechies orthogonal wavelets can quickly accomplish time/
frequency analyses. With further development, I expect they
will become very useful. All of the analyses can be computed
on a PC with high level signal processing software such as
MATLAB. I made a few modifications to the programs of Refer-
ence 10 and would be happy to provide the m-files that were
used to prepare Figures 9 and 10.
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