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This article presents common-sense guidelines for single-
axis sweep sine and random vibration testing. Several actual
case histories are included as well to demonstrate these tech-
niques.

Single-axis shakers (mostly electrodynamic1) are widely
employed for modal analysis, failure simulation and environ-
mental testing in many research and design projects. In particu-
lar they are used for automotive and aerospace applications and
(in combination with laser-vibrometers) for testing miniature
high-technology MEMS sensors. A test engineer should have
a good theoretical background to help prevent new designs
from encountering long and costly feedbacks for design correc-
tion actions. Demonstration skills and teamwork with design
and manufacturing engineers are also desirable. Many theoreti-
cal and experimental ‘details’ on shaker testing are not clearly
covered, although they save time and assure high quality. This
article presents helpful guidelines for sweep sine and random
vibration testing, general relationships between natural and
resonant frequencies and fatigue failure testing. Simple (but
useful) equations are derived and applied to predict or inter-
pret test parameters and results. The practical examples pro-
vided here are based on real case histories with names and
project/test details changed.

Maximum Shaker Acceleration
Phil, a young dynamic testing engineer, was engaged in mea-

suring the fundamental resonant frequencies of two aluminum
condensers for an automotive air conditioning system. He
bolted the condensers, with no rubber vibration isolators, sym-
metrically to an aluminum fixture as shown in Figure 1. He
installed accelerometers on the top of each specimen and
started a sweep sine test in the vertical direction at an excita-
tion of 4 g pk and sweep rate of 0.5 octave/min. The sweep sine
frequency range of 80-160 Hz was recommended by Jay, a fi-
nite element modeling engineer, who estimated the condenser’s
natural frequency to be 113 Hz. The acceleration seemed high
for an experimental modal analysis but Phil did it on purpose
to later employ the results on a fatigue test at an acceleration
of 4 g pk. From an equation found in a manual, Phil calculated
the maximum shaker acceleration

where the combined mass of the armature and fixture was 24
lb and the mass of one condenser was 8 lb. The manual stated,
however, that the dynamic response of the fixture and test item
may reduce the calculated rating but did not provide details.
To play it safe, Phil introduced a “safety factor” of 5. But even
in this case, the calculated value (50 g pk/5 = 10 g pk) was well
above 4 g pk; the test setup seemed right. Nevertheless, the
sweep sine test was automatically stopped within 1 min by the
vibration controller because of an overload. It happened repeat-
edly and Phil addressed the problem to his supervisor Robert
who restarted the test at an acceleration of 1 g pk and obtained
experimental data for both condensers. The resonant frequen-
cies measured 102 and 104 Hz (below the predicted value by
approximately 10%) but the peak transmissibilities proved very
high – 48 and 49. To explain what happened, Robert sketched
a single-degree-of-freedom model2 incorporating a mass, base
and parallel spring and dashpot as shown in Figure 2. The base
played the role of the shaker and fixture; the mass, spring and

dashpot simulated the test unit parameters. Assuming that the
base moved harmonically with a displacement , so
the differential equation for the displacement  of the
mass took the form:

where ω = 2πf was the angular frequency of vibration and K =
k (1+iη) was the complex spring constant combining the spring
constant k and loss factor η. In the ideal case of viscous damp-
ing (Figure 3), the loss factor equals

where the quantities c and cc = 2 Mk are the coefficients of
viscous damping and the critical damping, respectively; ωn =
2πfn = k M/ is the angular natural frequency and fn is the
natural frequency.

In general, the loss factor may be governed by multiple en-
ergy dissipation mechanisms. For the all-metal structures, the
loss factor includes two main components: (1) the internal loss
factor that appears in most solid materials with alternating
stresses due to hysteresis and (2) the so-called structural loss
factor depending on vibration energy absorption at junctures,
edges and adjacent structures. It is also true for building ele-
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Figure 1. Test setup for 1-DOF shaker test on two condensers symmetri-
cally installed on the fixture.
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Figure 2. Single-degree-of-freedom vibration system. The damping el-
ement is a dashpot but in Equation (2), a more general case of damp-
ing is considered.
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ments: walls, window glazing, ceilings, etc.3,4 The internal fric-
tion component is typically constant and the structural com-
ponent normally decreases with frequency so the total loss fac-
tor tends to reduce with frequency (Figure 3). It is noteworthy
in the literature, that damping in vibratory systems is com-
monly considered viscous for mathematical simplification and
all other damping mechanisms (hysteresis, etc.) are modeled
by an equivalent damping component obtained from equal
energy considerations. It must be emphasized again that the
damping component in Equation (2) may simulate multiple
dissipation mechanisms. The solution of Equation (2) is

From Equation (4), one can find the transmissibility

where a = –yω2 and a0 = –y0ω2 are the accelerations of the mass
and base, respectively. The transmissibility (Figure 4) is the
modulus of the frequency response function defined as the
Fourier transform of the output divided by the Fourier trans-
form of the input. The frequency response function should not
be confused with the transfer function defined as the Laplace
transform of the output divided by the Laplace transform of the
input. These terms are often used interchangeably and are
sometimes a source of misunderstanding. The other important
result following from Equation (4) is the amplitude of the force
developed by the spring

From Equation (6), the maximum spring force equals

where Tpeak = T(fr) if the resonant frequency fr belongs to the
test frequency range (fr ≈ fn provided that η << 1) and Tpeak ≈ 1
if the resonant frequency is well above the test frequencies.
Using Equation (7), the maximum shaker acceleration limit can
be expressed as

where Mj and Tpeak j are respectively the mass and peak trans-
missibility of the single-degree-of-freedom structural compo-
nents moved by the shaker (j = 1, . . .). Considering the arma-
ture and fixture like the systems with Tpeak ≈ 1 and substituting
the numeric data into Equation (8), Robert calculated the maxi-
mum shaker acceleration as

Thus, the shaker acceleration on Phil’s test notably exceeded
the maximum shaker acceleration. Indeed, test specimens and
fixtures are not ideal single-degree-of-freedom structures with
the same transmissibility at all points. Thus, the average trans-
missibilities should be utilized in Equation (8). For Phil’s test

specimen (Figure 1), the transmissibility is maximum at point
C (in the central position) and close to 1 at point A (near one
of the corner brackets bolted to the fixture). The transmissibil-
ity at point B (between points A and C) should be close to the
average transmissibility used in Equation (8). In any case, Equa-
tion (8) is more accurate than Equation (1) if the transmissi-
bilities can be obtained through the preceding shaker test at a
lower acceleration or evaluated. It is noteworthy that Phil never
measured such a high transmissibility in his prior experience.
He commonly attached the specimens to the fixture through
special rubber isolators with loss factors of 0.15-0.25 (peak
transmissibilities ranged between 4 and 7). However, for all-
aluminum or all-steel structures at relatively high frequencies,
the loss factors may be as low as 0.001-0.010 in order of mag-
nitude. For this test, the average peak transmissibility was 48.5
and according to Equation (5), that corresponds to a loss fac-
tor of 0.02. Structures with high peak transmissibilities may
endure severe internal stresses at their resonant frequencies
that can result in fatigue failure. It makes sense to increase vi-
bration energy absorption in the test fixtures to attenuate in-
herent high-frequency resonances. Fixtures made of magne-
sium are superior because the internal loss factor for
magnesium is notably higher than aluminum or steel.5 How-
ever, in practice this is useful only at frequencies where the
hysteresis outperforms the structural loss component.

Natural and Resonant Frequencies
The transmissibility of a real vibration system occurs not at

its undamped natural frequency but at a somewhat different
frequency called the resonant frequency or the frequency of
maximum forced amplitude.2 It is noteworthy that in books on
vibration theory, the relationship between the two is analyzed
only for the case of ideal viscous damping. For small values of
damping, the frequencies are very close together, but from time
to time they become a matter of dispute. It happened again
when Jay learned that his prediction fell 10% above the aver-
age resonant frequency measured. In Jay’s opinion, it was just
a normal discrepancy between the natural (computed) and
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Figure 4. The transmissibility of the 1-DOF vibration system from Fig-
ure 2. The dimensionless frequency equals f/fr.

Figure 3. The loss factor dependence on frequency for two different
damping mechanisms.
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resonant (measured) frequencies rather than a deficiency of his
computer model. To explain the real tendencies, Robert sug-
gested that in Equation (5),

|ε|<< 1, and η << 1, and transformed Equation (5) to a simpler
form

As follows from this equation, the peak transmissibility
should be attained at a minimum of the function z(ε) = 4ε2 +
η2. The necessary condition for the minimum is

with the only solution

Thus, the ratio of the resonant and natural frequencies is

where both loss factor η and its derivative are calculated at the
frequency f = fn. Several important conclusions result from
Equation (9):
1. If the loss factor, at frequencies equal or close to the natural

frequency, is constant

then the resonant frequency coincides with the natural fre-
quency (fr = fn).

2. If, in the range mentioned, the loss factor grows with fre-
quency

then the resonant frequency is below the natural frequency
(fr < fn).

3. If, in the range mentioned, the loss factor decreases with fre-
quency

then the resonant frequency exceeds the natural frequency
(fr > fn).

4. In case of ideal viscous damping, the loss factor grows with
frequency. Using Equations (3) and (9) one obtains

This equation clearly indicates that the relative difference
between the resonant and natural frequencies is very low for
small values of damping (for instance at η  = 0.1, it comes to
only 0.25%).

5. As mentioned previously for a number of solid structures,
the loss factor tends to reduce with frequency (Figure 3). In
this case, the resonant frequency is expected to exceed the
natural frequency.
Jay checked the calculation, agreed and got back to his FEA

model. For product development, computer modeling is mostly
a good guess until the experiment makes the product speak for
itself. Without a thorough theoretical analysis, neither experi-
mental nor computer modeling can be fully successful.

Random Excitation Test
Phil’s new project was a single-axis vibration fatigue test on

the small auxiliary radiators (2 lb each) for trucks. The radia-

Figure 6. The auto spectral density g2/Hz of the acceleration of the
shaker and sample.

Figure 5. Test setup in the “slip-table” mode.

tors were designed to be bolted to the truck’s frame through two
aluminum brackets with no rubber isolators. Two small radia-
tors were attached to the shaker similar to their “in-vehicle”
installation. As shown in Figure 5, the shaker was arranged in
the “slip-table” mode to excite the radiators in their most vul-
nerable state. First of all, Phil performed a sweep sine test to
measure the resonant frequency (31 Hz) and peak transmissi-
bility (15). The fatigue failure test was to be performed with
random excitation to closely simulate real environmental con-
ditions. The project leader provided Phil with the averaged
auto spectral density (ASD) of the acceleration measured on the
truck frame during a special road test. The curve looked cum-
bersome, but in a rough approximation it can be depicted like
a horizontal segment at a level of 0.01 g2/Hz between 5 and 41
Hz and zero at all other frequencies (Figure 6). In this case, the
total acceleration calculated was

For random vibration, the rms (root-mean-square) accelera-
tion is indeed the standard deviation of the acceleration. Peak
values may numerically exceed the rms value at least by a fac-
tor of 3. The peak acceleration from the road test report ranged
up to 3 g. To implement accelerated life testing, shaker accel-
eration should be increased to appropriately excite stresses in
the specimen. Phil reasonably suggested that the most signifi-
cant stresses develop at the resonant frequency (31 Hz) and cal-
culated the total numbers of cycles for the product lifetime (10
years) and accelerated test duration (24 hours). Using a fatigue
strength dependence on the total number of cycles,6 he calcu-
lated an increased excitation factor of 3. So, the auto spectral
density of the shaker acceleration should be increased to S2 =
0.09 g2/Hz in the same frequency range (5-41 Hz). The calcu-
lated total acceleration in this case was 1.8 g rms. The next im-
portant step was to check that the shaker total displacement
did not exceed the maximum peak-to-peak (pk-pk) displace-
ment. The shaker was designed for a maximum displacement
of 2 in. pk-pk, but it was recommended not to exceed 75% of
that value for long tests. The maximum permissible displace-
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leader approved the proposal and it was implemented with no
delay. The shaker test on the new samples was promptly com-
pleted, the results proved very satisfactory, and mass produc-
tion moved forward.

Summary
This article, written in the form of interrelated case stories

based on the author’s experience, presents some feasible tech-
niques for single-axis shaker testing, an important and some-
times critical part of research, design and manufacturing
projects. The simple (but effective) equations can help vibra-
tion engineers in creating sweep sine and random tests, inter-
preting the experimental data and developing improvement
proposals. The relationship between resonant and natural fre-
quencies, commonly described only in the case of viscous
damping, may be of more general interest. In addition to ex-
perimental and theoretical facts, this article illustrates the ben-
efits of creative engineering teamwork.
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ment was considered to equal 1.5 in. or 38 mm pk-pk. Phil
knew a simple equation

interrelating the peak displacement and acceleration on sine
shaker tests. But what if the acceleration and displacement are
random functions?

Robert helped again. As follows from the previous equation,
the auto spectral density for the displacement should be

where Sa
2 is the auto spectral density for the acceleration. Af-

ter that, the standard deviation for the displacement was cal-
culated as

where L and U equals 5 and 41 Hz, respectively. The pk-pk
value may numerically exceed the rms value more than 6 times
but even with a factor of 9, the shaker pk-pk displacement was
below the permissible value of 38 mm. As for the maximum
shaker acceleration limit in random mode, it should not be a
problem for this test based on Robert’s experience.

Design Improvement
Phil started the vibration fatigue test in random mode. It

proved relatively short. Within 25 minutes, all the specimens
suffered the same critical failure – broken brackets. Phil bolted
new specimens to the fixture through the rubber washers for
vibration energy absorption but with no significant improve-
ment. For effective vibration energy isolation, the rubber iso-
lators should be somewhat loose. When compressed, they are
not very effective. A design modification seemed unavoidable
to fix the problem. It was not good news for the company be-
cause the small radiators should have already been at the pro-
duction stage and the manufacturing engineers were waiting
for the shaker test results as the final ‘go’ condition. Fortu-
nately, Phil found the no-delay and no-cost engineering solu-
tion.

During the test, Phil observed the auto spectral density of the
signals measured by the accelerometers on the test units. Due
to a notable peak caused by the resonance (Figure 6), the rms
acceleration on the units proved as high as 10 g rms. It seemed
beneficial to move the resonant frequency beyond the effective
frequency range of 5-41 Hz. At an engineering meeting, he sug-
gested that steel brackets of the same shape be used in place of
the aluminum ones. It proved very convenient because there
was no need to change the existing tooling equipment. How-
ever, Jay had a concern. The ultimate tensile strength of the
cheap steel recommended by Phil was just twice that of the alu-
minum material in the existing brackets. It may not be suffi-
cient to resist fatigue failure and would have to be experimen-
tally confirmed. However, Phil was positive that the selection
of the material was right because: (1) available tooling may fail
bending a stronger steel; (2) it should be a no-cost modifica-
tion in order to save the company’s money; and (3) most im-
portantly with the steel brackets, the natural frequency is well
outside the effective frequency range. Since the brackets play
the role of springs, the natural frequency of the radiator with
the steel brackets was evaluated as

where fn Al is the measured natural frequency of the radiator
with the aluminum brackets, EAl is the Young’s modulus of alu-
minum, and ESteel is the Young’s modulus of steel. The project
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