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A key step in any digital processing of
real world analog signals is converting
the analog signals into digital form. We
sample continuous data and create a dis-
crete signal. Unfortunately, sampling can
introduce aliasing, a nonlinear process
which shifts frequencies. Aliasing is an
inevitable result of both sampling and
sample rate conversion. It can be ad-
dressed with a properly designed anti-
aliasing filter (AAF). An analog AAF
must be applied before the initial sam-
pling process. If any sample rate conver-
sion, such as decimation, is performed, a
digital AAF must also be applied. An
AAF is one of the limiting factors in sys-
tem performance. An improperly de-
signed AAF, or improper application of
one, can introduce distortion artifacts
that may interfere with certain types of
analysis. Modern AAF architectures
eliminate these artifacts.

The Nyquist sampling theorem defines
the minimum sampling frequency to
completely represent a continuous signal
with a discrete one. If the sampling fre-
quency is at least twice the highest fre-
quency in the continuous baseband sig-
nal, the samples can be used to exactly
reconstruct the continuous signal. A sine
wave can be described by at least two
samples per cycle (consider drawing two
dots on a picture of a single cycle, then
try and draw a single cycle of a different
frequency that passes through the same
two dots). Sampling at slightly less than
two samples per cycle, however, is indis-
tinguishable from sampling a sine wave
close to but below the original frequency.
This is aliasing – the transformation of
high frequency information into false low
frequencies that were not present in the
original signal. The Nyquist frequency,
also called the folding frequency, is equal
to half the sampling frequency fs and is
the demarcation between frequencies that
are correctly sampled and those that will
cause aliases. Aliases will be ‘folded’
from the Nyquist frequency back into the
useful frequency range. Thus a tone 1 kHz
above the Nyquist frequency will fold
back to 1 kHz below, while a tone 1 kHz
below the sampling frequency will ap-
pear at 1 kHz as shown in Figure 1. Fre-
quencies above the sampling frequency
are also folded back.

Aliasing is irreversible. There is no
way to examine the samples and deter-
mine which content to ignore because it
came from aliased high frequencies.
Aliasing can only be prevented by attenu-
ating high frequency content before the
sampling process as shown in Figure 2.
To prevent aliasing completely, we must
apply a perfect filter that passes all en-
ergy from DC to the highest frequency of
interest and rejects all energy at the

Nyquist frequency and above. Unfortu-
nately, perfect filters are not physically
realizable in analog or digital form.
Physically realizable filters must have
variation in the passband, a smooth tran-
sition from the passband to the stopband,
and finite attenuation in the stopband.
Therefore, we must design a filter with
unity gain and low variation in the pass-
band and with the lowest tolerable at-
tenuation in the stopband.

Note that finite attenuation means that
you cannot eliminate aliasing, only re-
duce it. Suppose you sample a signal that
contains a 1 V tone at 1 kHz and a 1 V
tone at 39.9 kHz. You wish to analyze the
data to 20 kHz, so the sampling frequency
fs is 40 kHz. If the AAF gain is –80 dB in
the stopband (above 20 kHz) then the
sampled signal will appear as a 1 V, 1 kHz
tone and a 0.1 mV, 100 Hz tone (the 39.9
kHz tone aliases to 100 Hz and is attenu-
ated 80 dB). The amplitude of the alias is
dependant on the original amplitude of
the out-of-band components and the
amount of attenuation in the AAF. The
effect is harder to analyze in the more
realistic case of broadband energy that
must be rejected. All of the broadband
energy will fold back into the analysis
band. In general, the AAF attenuation
must be chosen considering the desired
noise floor and the frequency content of
the energy that needs to be rejected.

The next consideration is the width of
the transition band. Consider designing
a system with a useful frequency band-
width of 20 kHz and 80 dB of alias pro-
tection. If the sampling frequency is 40
kHz, the AAF gain must change from 0 dB
at 20 kHz to –80 dB at just over 20 kHz.
We must increase the sampling frequency
to make the filter realizable. Consider a
sampling frequency fs = 51.2 kHz. The
Nyquist frequency is 25.6 kHz, which
means that frequencies above 31.2 kHz
will fold back into the band of interest.
Therefore, the AAF gain must go from 0
dB at 20 kHz down to –80 dB at 31.2 kHz
(see Figure 3). The region between the
highest useful frequency and the Nyquist
frequency is known as the guard band.
Frequencies in this range will be attenu-
ated and may suffer from aliasing, and are
usually discarded in the presentation of
spectral results.

So far we have considered the rejection
band attenuation and guardband width as
performance limits in AAF design. Three
more error sources are passband varia-
tion, dispersion, and channel to channel
match. These error sources are in the
passband, and are thus very important in
determining the overall performance of
the system. Passband variation creates
absolute accuracy errors, while disper-
sion, or nonconstant group delay, spreads

out signals over time. Channel to channel
match is important when making cross
channel measurements. Low variation
and low dispersion are both desirable,
but are hard to achieve with high order
analog filters. Channel to channel match
is compromised by analog component
variations. In the above example, sam-
pling at 51.2 kHz and keeping 20 kHz of
information required an 8th order ellip-
tic filter. This filter has high variation and
dispersion across the passband and is dif-
ficult to fabricate.

If we could increase the sampling rate,
we could make the filter less aggressive,
thus reducing the variation and disper-
sion and making it easier to manufacture.
We could even sample at a very high rate,
then perform digital filtering (Figure 2).
It is much easier to make low variation
filters digitally, and dispersion can be
essentially eliminated. Digital filters are
trivially duplicated across channels. This
technique is used in a class of analog to
digital converters called delta-sigma
ADCs. For a 51.2 kHz sample rate, these
converters often sample at 3.2768 MHz,
making the Nyquist frequency 1.6384
MHz. A 3rd order Butterworth filter pro-
vides sufficient anti-alias protection in
this situation. A Butterworth filter is
maximally flat in the passband, has maxi-
mally low dispersion, and is easier to fab-
ricate than an elliptic filter. Additionally,
the lower order means there are fewer
parts, improving the channel to channel
match. The rest of the filtering and
sample rate conversion is performed digi-
tally inside the ADC with digital filters
that can be designed with essentially zero
dispersion.

The advantage of the Butterworth anti-
alias filter in dispersion performance is
significant. Dispersion corresponds to fil-
ter delay that varies with respect to fre-
quency. For instance, a pure delay corre-
sponds to a linear phase shift. If the phase
is not a straight line, the delay will be
different for different frequencies. Thus,
broadband signals, like transients, will be
spread in time, or dispersed. The deriva-
tive of the phase with respect to fre-
quency provides a measure of the delay.
If we examine this function for the two
proposed AAFs shown in Figure 4, we see
that the 8th order elliptic filter has over
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Figure 1. Frequency components above the
Nyquist frequency of 25.6 kHz will create
aliases.
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0.6 more samples of delay at 20 kHz than
when near DC. However, the 3rd order
Butterworth filter has less than 0.015
samples of delay difference. This filter
will not noticeably change the shape of
any time domain pulses.

What if we want to sample at a lower
rate? The examples we’ve discussed so
far use 51.2 kHz sampling to acquire 20
kHz information. What if we want to ana-
lyze data to 10 kHz? We could sample at
25.6 kHz to keep the ratio of passband to
stopband the same. Then the Nyquist fre-
quency would be 12.8 kHz for normal
sampling, and 819.2 kHz for delta-sigma
ADCs. The AAF must be scaled with the
sampling frequency. In fact, as the sample
rate is reduced, the aliasing band might
encounter more energy than initially
thought. For instance, 819.2 kHz is in the
middle of the AM radio band, exposing
the delta-sigma ADC to a strong source of
aliasing energy. If we go to very low
sample rates, the aliasing energy may in-
clude mechanical and acoustic signals,
which will definitely be present in the
acquired data. It is very important that
some AAF be used, whether purely ana-
log or a mix of analog and digital. To sim-

Figure 3. 8th order elliptic analog AAF for 51.2
kHz sampling, 20 kHz useful bandwidth.

Figure 2. An anti-aliasing filter is required before sampling or sample rate conversion.

plify analog design and manufacturing,
the ADC can be used at a fixed sample
rate. Then digital filters are implemented
in a DSP (Digital Signal Processor) for fur-
ther sample rate conversion.

The question might arise, should the
acquisition system use an AAF at all?
After all, oscilloscopes do not include
any filtering. Oscilloscopes, however, are
capable of significantly higher sample
rates than typical frequency domain ori-
ented instruments. A state of the art scope
boasts GHz sample rates. It is quite easy
to start at the high end of the sample rate
range and work down, observing if the
character of the signal changes. Dynamic
signal analyzers and vibration control-
lers, on the other hand, have sample rates
that do not go much above the frequen-
cies they are used to measure, so aliasing
is a larger concern.

Certain analysis techniques, such as
shock response spectrum calculations,
have also historically not included filter-
ing. Suppose the signal is inherently
within the frequency band of interest. An
AAF with high dispersion will tend to
alter the time domain shape of the signal,
spreading it out. However, today’s AAF
architectures create almost no dispersion,
so the time domain shape will be un-
changed. In this case, using the AAF
makes no difference in the final result.
Now suppose the signal has energy be-
yond the AAF cutoff. If you use the AAF,
this energy will be attenuated, providing
a more correct answer. If you do not use
the AAF, this energy will be folded into
the analysis band, contaminating the an-
swer in a manner that is impossible to
characterize.

As we have discussed, the purpose of
an AAF is to attenuate (not eliminate) fre-
quencies that may alias into the analysis
band in the course of sampling. Aliasing
scrambles frequency content and is im-
possible to correct after sampling. Impor-
tant characteristics for an AAF are mini-
mal variation in the passband, linear
phase shift for low dispersion, width of
the transition band, and attenuation in
the stopband. A combination of analog
and digital filters, with appropriate
sample rate conversions, are used in cur-
rent designs of high performance sam-
pling systems. The use of an AAF is al-
ways recommended when sampling
dynamic signals.

Figure 4. Delay versus frequency over 20 kHz
passband for two proposed AAFs.
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