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Twenty Years of Structural Dynamic
Modification – A Review
Peter Avitabile, University of Massachusetts Lowell, Lowell, Massachusetts

Structural dynamic modification techniques have been
available as a design tool for several decades. This article
reviews the methodology of the technique including both pro-
portional and complex mode formulations. Issues pertaining
to limitations on their use and truncation effects of unmea-
sured modes are discussed. Also discussed is the use of sim-
plistic elements through higher order elements. Discussion on
typical commercial implementations is presented. Finally, the
ever-constant problems with lack of rotational DOF and trun-
cation are presented, as well as attempts to overcome those
issues.

Structural Dynamic Modification (SDM) became a popular
modeling tool in the late 1970s following its development and
implementation in commercially available software running on
desktop computers (albeit predecessors to the IBM PC with
limited memory and computation capabilities compared to
today’s standards). Initial efforts were directed towards imple-
mentation of an efficient modeling technique to determine the
effect of structural changes using modal data, either test or fi-
nite element data, as the basis of the prediction method.

Initial eigenvalue modification techniques required process-
ing matrices that taxed the most powerful of early desktop
computers. The introduction of the Local Eigenvalue Modifi-
cation Procedure (LEMP)1-3 reduced the more computationally
involved eigensolution into a set of second order equations that
could easily be handled by almost any computational device.
This paved the way to commercial implementation of the Struc-
tural Dynamic Modification Process. SDM software4,5 offered
a powerful analytical tool for the test engineer to make quick
and simple predictions of the effects of structural changes to a
test article before actually implementing the changes. Anima-
tion of the modified modes of the system provided a tremen-
dous opportunity to understand the dynamics of the modified
system prior to implementing any actual changes.

The first structural elements utilized simple mass, spring and
dashpot elements to explore the effects of change to a struc-
tural system. Initial approaches to this technique utilized a
proportional mode approximation for the solution of system
equations. While this approach contained some approxima-
tions, the benefit of the computational tool far out-weighed the
errors associated with the proportional mode assumption.

Typical studies included effects of simplistic structural
changes (mass, damping and stiffness) on predicted frequen-
cies and mode shapes, determination of structural character-
istic changes to shift a given resonance, and the effects of the
addition of a tuned absorber on the modal characteristics of a
system. These tools provided a great improvement to the abil-
ity to fine-tune and adjust structural dynamic systems, espe-
cially in a troubleshooting environment.

The use of complex modes and the study of damping changes
to the system required an enhancement to the equations used
for the proportional mode approach. The state space formula-
tion6,7 for the equations was developed to handle any type of
structural change without incurring errors associated with the
proportional mode approach. Although the LEMP process was
also used for this formulation, many software packages con-
tinue to use the proportional mode approach. While very prac-

tical engineering solutions can often be obtained from this ap-
proach, some solutions are plagued by this approximation.8

The LEMP process was the solution scheme of choice until
the computational power of desktop computers achieved rea-
sonable speeds. Then the Eigenvalue Modification Technique
(EMT) became the typical solution algorithm.9 Again, these
equations can be solved using the proportional mode approxi-
mation or by using a full state-space complex mode solution.
An assortment of commercially available software packages
were developed10-15 as well as other in-house implementations
of the technique.

Once desktop computer systems became more powerful and
the EMT became more popular, the introduction of structural
elements (typical of the elemental types found in finite element
modeling software) became commonplace for the modification
of structural systems using modal data as the basis of the com-
putation technique. In addition to component changes on in-
dividual components, system models were also developed
using this technique10 but typically were found only on main-
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Notation
Matrix
[M] = physical mass matrix
[C] = physical damping matrix
[K] = physical stiffness matrix
[A] = physical state space matrix
[B] = physical state space matrix
[U] = modal matrix – real normal modes
[ΦΦΦΦΦ] = modal matrix – complex modes
[I] = diagonal modal mass matrix

[ΛΛΛΛΛ2] = diagonal modal stiffness matrix – unmodified
[ωωωωω2] = diagonal modal stiffness matrix – unmodified
[ΩΩΩΩΩ2] = diagonal modal stiffness matrix – modified
[    ] = modal mass matrix
[    ] = modal stiffness matrix

Superscript
[   ] = a modal quantity

Vector
{   } = acceleration
{   } = velocity
{   } = displacement
{   } = derivative of state space variable of displacement

and velocity
{Y} = state space variable of displacement and velocity
{F} = force – real normal mode equations
{Q} = force – complex mode equations
{p} = modal displacement
{u} = modal vector

Subscript
n = full set of finite element DOF
a = tested set of experimental DOF
d = deleted (omitted) set of DOF
1 = original set of modes
2 = final set of modes

12 = transformation from state 1 to state 2
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frame computers. As the desktop computer became more pow-
erful, these system modeling tools also found their way into
test engineer design software packages.11,13

The first useful structural element in the SDM process to be
considered was a general 3D beam element (useful for beam
and rib types of modification studies).16,17 However, there was
an inherent problem when these realistic structural elements
were used in conjunction with modal data obtained from a
modal test. The test data lacked the rotational degrees of free-
dom (RDOF) that are necessary for coupling the elements that
contain both translation and rotation information. This lack of
rotational DOF was a major obstacle at the introduction of the
SDM technique and still presents unique obstacles to efficient
implementation. A great deal of research effort was expended
in the 1980s to develop techniques for the estimation of rota-
tional DOF18-22 as well as the development of structural ele-
ments that could approximate realistic structural changes by
using only the available measured translational DOF.

Many efforts were devoted to the expansion of measured
mode shapes for the development of rotational DOF. Some of
the techniques utilized shape function approximations22 while
others employed mathematical spline fitting or finite element
approximations.20,21 All of these efforts were undertaken as an
intermediate step while an economical rotary accelerometer
was developed.

Since rotational measurements may not exist or be available,
efforts were focused on approximations of general 3D structural
elements using only available translational information. Beam
approximations using 3-point bending equations13,14,23 were
the first estimates to be used. These provided reasonably good
results for systems that behaved with beam-like responses in
the modified system characteristics. In addition, a Guyan re-
duced beam11 with only translational DOF also proved to be a
very good approximation for systems with beam-like modified
characteristics. These two approaches are still used today due
to continued difficulties of estimating rotational DOF from
measured test data.

However, of all the errors associated with the study of SDM,
the most important effect has always been due to the trunca-
tion of the modes that describe the modal database.24-26 The
lack of all the modes to adequately describe the dynamic space
of the model is by far the most significant error associated with
the SDM process. Attempts have been made to estimate residual
effects to compensate for some of the out-of-band effects, but
these typically are significant only if translational DOF are
associated with errors of the model’s truncation. However, trun-
cating rotational DOF often causes the most error in all SDM
studies and is still a major concern today.

Impedance based techniques were being developed almost
parallel to the SDM process and system modeling tools.27 The
modification of a system using only frequency response func-
tions28 allowed the test engineer to investigate system changes
using only measured functions of the unmodified system. The
main perceived advantage was that a measurement has no trun-
cation associated with its formulation but rotational DOF have
a considerable effect in almost any modeling study. However,
impedance based methods only produce frequency response
functions – the mode shapes are not a result of the process. An-
other key drawback is the rarity that rotational DOF are ever
available from a modal test. Therefore, any realistic structural
changes or system models are always deficient in this regard.
Still, the approach has gained significant popularity during the
last ten years. Research efforts are directed towards the devel-
opment of the necessary DOF to produce accurate system mod-
els. Implementation of the technique for finite element mod-
eling applications typically results in frequency response
information that is affected by truncation of the modes associ-
ated with the modeling process. As in the SDM procedures, im-
pedance based modeling techniques are most affected by trun-
cation for analytical approximations and lack of rotational DOF
for test applications.

In general, the first ten years of the International Modal

Analysis Conference (IMAC) were seen to be the birth and de-
velopment of the Structural Dynamic Modification Technique.
The development of the proportional and complex mode eigen-
value modification technique with the computationally effi-
cient Local Eigenvalue Modification Technique was the sub-
ject of many papers in the early years of IMAC. This was
followed by the development of more realistic structural ele-
ments for component modification studies as well as system
models from component modes. The development of tools to
estimate rotational DOF was evident during this same period.
After the first decade of IMAC, efforts tended to lean towards
the utilization of SDM tools and development of system mod-
eling tools. There was also a trend towards using frequency
response based tools as a mechanism to develop modifications
to components and system models. While the measured FRF
may appear to have all the system characteristics (and not be
affected by truncation), the effects of rotational DOF (and lack
thereof) are important contributors to errors inherent in the
results of these modeling techniques. Even today, the two most
important errors associated with SDM can often be identified
as a lack of rotational DOF to describe the modal database of
the system and the truncation of that database.

This article is intended to summarize pertinent development
of structural dynamic modeling techniques. Inherent problems
that are encountered using the techniques are discussed with
appropriate examples to illustrate key concerns and consider-
ations when employing SDM. The general theory of the modi-
fication process is presented followed by some of the practi-
cal limitations and restrictions that exist in utilizing the
techniques.

Theory
A brief theoretical review of the structural modification pro-

cess is presented herein. Only basic fundamental equations are
presented – more in-depth coverage can be found in the refer-
ences. The basic equations of motion are presented first to iden-
tify the nomenclature used. Both the eigenvalue modification
and local eigenvalue modification techniques for undamped
systems are presented; higher order structural elements are also
discussed. This is followed by a general formulation of the
equations of motion including arbitrarily damped system us-
ing a state space formulation of the equations. All pertinent
nomenclature is defined.

Basic Equations of Motion. The equation of motion for a
multiple degree of freedom system can be written in matrix
form as

These equations are of size (n × n) depending on the size of the
system matrices. Assuming that the damping matrix is propor-
tional to either the mass or stiffness matrix, the eigen solution
at the full space of the physical model can be written as

The resulting eigenvalue and eigenvector are noted as ω1, {ui}.
The eigenvectors can be arranged in column fashion to form
the modal matrix [U]. Typically, all of the eigenvectors are not
used to describe the system. The modal matrix is therefore rect-
angular and of size (n × m).

Using this notation and noting the eigenvalues can be as-
sembled into a diagonal matrix, the eigen problem can be re-
stated as

Using the modal matrix, a transformation can be made from
physical space to modal space using the relationship

Substituting this into the equation of motion and pre-multiply-
ing by the transpose of the projection operator to put the equa-
tions into normal form gives the standard modal space repre-
sentation

(1)

(2)

(3)

(4)
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It is important to note that while part of this equation contains
a diagonal representation of the modal mass and modal stiff-
ness of the original system, the remaining change to the modal
system is far from diagonal.

Solving for the eigenvalues of this new system using

will yield the new frequencies and another transformation
given as

The updated mode shapes can then be obtained from

This procedure can be used to approximate the modified
modal characteristics due to structural changes using only the
unmodified modal characteristics of the system. In general, the
system will always produce higher frequencies than the exact
answer. The more serious the truncation error, the higher the
frequency that will be produced from the modification ap-
proach. Figure 1 shows the modification process schematically.

When transforming the final modified system to the original
physical coordinate system, the relationship of the initial
modes to the final modes becomes very apparent through Eq.
16, which provides very revealing information upon expansion
of the terms of this matrix. The ‘ith’ mode, for instance, can be
written as

Eq. 17 implies that the final system models are obtained from
linear combinations of the starting modes. If a mode that has a
significant contribution is not included in [U1], then the final
system mode in [U2] can be seriously in error. This truncation
effect is discussed later in more detail.

Local Eigenvalue Modification Technique. The eigenvalue
modification technique requires an eigensolution to be per-
formed for matrices that are the size of the number of modes
in the modal space solution. The modification equations can
be written in a more efficient form using a singular value de-
composition of the change matrices in modal space. Without
supplying those details here, another formulation of these equa-
tions provides tremendous computational advantages and is
referred to as the local eigenvalue modification technique. For
instance, a general change of the physical system of stiffness
can be spectrally decomposed as

The importance of this formulation lies in the fact that the
singular value decomposition provides vectors that identify the
linearly independent pieces that comprise the entire change
matrix. These can be written in normal SVD format or as the
summation of all the linearly independent pieces that form the
change matrix. The later formulation allows for the individual
manipulation of each change to the system independently of
all other changes.

Assuming that only one type of change (i.e., mass, damping
or stiffness) and only one physical change are to occur, then
the equations can be re-written into an alternate form. The SVD
format of the change to the system can be included in the eigen-
value modification technique. With some manipulation, the re-
sulting equation can be used for the determination of the modi-
fied frequencies of the system for stiffness and mass changes,
respectively:

When the mode shapes are scaled to unit modal mass, then
this relationship reduces to

It is important to note that the diagonal modal mass matrix is

and the diagonal modal stiffness matrix is

Expressing the modal space representation of the system in
general terms of the modal mass and modal stiffness gives

(The bar overscore denotes a modal quantity.)
It is very important to note that all of the eigenvalues of the

system are generally not available. This implies that the equa-
tion size is determined by the number of modes retained in the
description of the system. Therefore, these equations are of size
(m × m) and are generally much smaller than the physical ma-
trices describing the system. Provided that a sufficient num-
ber of modes is retained, not having all the modes does not pose
a problem. However, this often is a problem. When all the
modes of the system are not available, then the system is said
to be ‘truncated.’

Physical Changes to System Mass and Stiffness. Any changes
to the physical system can be written in terms of the modified
mass and stiffness as

The modified mass and stiffness of the system is comprised of
the original mass and stiffness plus the change in mass and
stiffness as

Another eigensolution at the full space of the physical model
can be performed using

While this eigensolution can be performed, the use of the modal
space representation provides numerical efficiencies due to the
reduced size of the modal matrices compared with the physi-
cal matrices. The physical matrices are typically many orders
of magnitude larger those from modal space equations for most
engineering applications of structural systems.

Structural Dynamic Modification. Any changes to the physi-
cal system can be projected from physical space to modal space
through the modal vectors obtained from the original unmodi-
fied system. While this modal projection will never produce
uncoupled equations, there is tremendous computation ben-
efit due to the significant reduction in size of the modal space
equations when compared to the physical set of equations.

Typically once the structural changes are applied in modal
space, these modal space equations are fully populated and not
diagonal. Two approaches are commonly used for the solution
of these equations: the eigenvalue modification (EM) technique
and the local eigenvalue modification procedure (LEMP).

Eigenvalue Modification Technique. Considering a change
to the system matrices and using the modal space solution as
a starting point for the modification, the modification equation
can be written as

where
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where the ααααα  coefficient results from the singular values of the
decomposed change matrix for the stiffness or mass and the {t}
are the so called “tie vectors” that result from the decomposi-
tion for the stiffness or mass.

The LEMP was a very important step in the numerical imple-
mentation of the modification equations at a time when com-
putational resources were extremely limited. One advantage of
the LEMP is that rather than solving a ‘2m’ order set of poly-
nomial equations, the problem was reduced to ‘m’ second or-
der polynomials that were much easier to solve. Another im-
portant feature of the procedure was that the eigenvalues of the
modified system were always bounded by the unmodified
eigenvalues of the original system. For any numerical proce-
dure used to find the roots of the second order polynomial, the
bounds of the root were clearly known, thereby minimizing
computational effort. However, the drawback of the LEMP was
that only a single modification could be performed. After the
modification was made, the system equations had to be up-
dated and additional modifications had to be explored; this
tended to be a tedious process. As faster machines became
available, the LEMP was eventually replaced by the eigenvalue
modification technique.

The LEMP was originally implemented for simple structural
elements and was later extended to include higher order ele-
ments such as beams, generalized beams and plates. At the time
of the LEMP’s development, computation capabilities were ex-
tremely limited. This procedure provided a viable approach for
investigating structural changes to a system using only modal
data as the basis of prediction. Today, the LEMP approach is
rarely used due to the significantly vast amount of computa-
tional resources available even on the slowest of machines.

This technique is widely used in many commercially avail-
able software packages. An extension of this method allows for
the development of a system model from the component modes
of substructures. The basic equations are extended in modal
space to address two components, A and B, as

where the modal matrices of the two components, A and B, are
written in stacked form as:

The physical changes to the system are projected to modal
space using the modal matrix. The resulting set of equations
are then solved to find updated frequencies and mode shapes.
This modal modeling approach for SDM and System Model-

ing can be found in many commercially available software
packages.10-15

Complex Mode Solution. The equations presented above
were developed in the absence of damping. In some structural
dynamic modification approaches, a proportional model ap-
proximation is used for the development of the modification
equations. At times, very good modification predictions can be
obtained especially when considering only mass and stiffness
changes for a proportionally based set of equations. However,
when the starting mode shapes are complex in nature or the
modifications to be investigated include damping, then the
state space solution procedure must be used to ensure accu-
rate results. These equations are presented below to show the
basic formulation.

In order to develop the proper set of equations, a supplemen-
tary equation is required to describe the equation of motion in
state space form. This is presented as

or

where

(Note that some papers and other references use [A] and [B]
notation that is interchanged from this notation.)

An eigensolution can be performed for this set of equations

This solution will yield complex frequencies and mode shapes.
It is important to note that the matrices are now (2n × 2n) and
that the mode shapes obtained are (2n × 2m) and are complex
valued.

The modal transformation can be written as:

where the mode shapes are complex valued with both displace-
ment and velocity components as

The transformation can be substituted into the equation of
motion and premultiplied by the transform of the projection
operator (to put the equations into normal form) to obtain

Figure 1. Schematic of the modification process.
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which is analogous to the proportional based solution without
any damping included. (It is very important to note that if the
damping is zero or proportional to the mass and stiffness ma-
trices, these equations will reduce to those previously devel-
oped.)

Now the equation of motion in modal space can be written
as

As before, structural changes can now be considered as

where

and must be written in state space form as

where

with

This modified equation in modal space can be written as the
original unmodified modal quantities plus the change in modal
quantities as

where

The eigensolution results in the modified system. In the equa-
tions above, any changes of mass, damping and stiffness can
be handled. In addition, the LEMP can be easily included to
add computational efficiences.7 Again, the LEMP restrictions
are that each individual modification needs to be made one at
a time.

In this set of equations using the full state space solution,
the proper mathematical solution is obtained for arbitrary
damping. If the damping is in fact proportional, then these
equations reduce to the proportional mode approach. However,
it is very important to note that the structural modifications
studied can in fact disrupt any proportionality that may exist
in the original set of modes. If this is the case, then the full com-
plex mode solution in state space needs to be utilized.

Structural Modification Using Response Functions. An in-
teresting parallel method that uses frequency response func-
tions with an impedance approach is referred to as the Struc-
tural Modification Using Response Functions (SMURF)
technique.27 It is presented here as an interesting alternate ap-
proach that affords some better understanding of the results
obtained from the SDM approach and is included for complete-
ness.

For reference, recall that the frequency responses are made
up of the mode shapes of the system depending on the particu-
lar point to point frequency response function considered us-
ing

Consider the beam shown in Figure 2. For a cantilever beam,

the frequency response at Hcb when xa = 0 is desired; this cor-
responds to a pinned beam at the end of the cantilever. The re-
sponse at ‘a’ is related to the force at ‘a’ and ‘b’ through

With the constraint xa = 0, the force at ‘a’ is

and the response at ‘c’ due to an excitation at ‘b’ must include
the effects of the reaction force such that

With some simple substitutions using the equations above, one
can see that the frequency response function between point ‘c’
and ‘b’ with the tip of the cantilever beam restrained can be
obtained from the frequency response measurements of the un-
constrained original system as

In its simplest form, this is the basic equation for impedance
modeling. This technique has been extended to handle mul-
tiple modifications simultaneously and used as a system mod-
eling technique. (This impedance modeling approach will be
used in the example section to illustrate truncation effects with
the SDM approach.)

Structural Dynamic Modification Utilization Issues
The theory was presented that is applicable to all structural

modification techniques. There are many issues pertaining to
the success of the modification process, with the major items
discussed in this section. The major issues pertain to truncat-
ing modes that define the modal data base and the lack of ro-
tational DOF. However, other issues of scaling mode shapes,
rigid body modes, higher frequency modes, and complex vs.
proportional modifications are also important considerations.
These are discussed in the following sections.

Truncation of Modes. The modes that are used to describe
the modal data base will inevitably suffer from modal trunca-
tion. This is a severe limitation that is encountered in any ex-
perimental modal test. Only the lower order modes of the sys-
tem will be obtained from the test data. Even the finite element
model will have a limited number of modes to describe the
modal database. However, the finite element model can extract
additional modes, if necessary, when performing structural
dynamic modifications.

Actually, the higher frequency modes are not the only modes
of concern. Many times an experimental test is conducted to
obtain the lower order flexible modes of the structure in a free-
free configuration. All too often the rigid body modes are not
extracted from the test data. Many times this is due to the poor
quality of the data collected at such a low frequency with the
instrumentation used to address the flexible modes of the sys-
tem. In addition, many test engineers do not necessarily asso-
ciate the rigid body modes as part of the description of the
modal database, believing that only the flexible modes are of
concern. The rigid body modes are a critical set of modes for
structural dynamic modifications. Approximations have been
attempted to estimate these necessary rigid body modes from
a variety of different measurement and analytical techniques.
Rigid body modes are discussed in a separate section.

Efforts have also been expended to estimate residual com-

(42)�H
x
F

H H H Hcb
c

b
cb ca aa ab= = − −1

Figure 2. Cantilever beam example.(30)
�

�

�
�

�
B p A p = Q t
















{ } −
















{ } ( ) 

(31)
M x + C x + K x = F t2 2 2[ ] { } [ ] { } [ ] { } ( ){ }�� �

(32)

(33)

(34)

�

�

�
�

�
I + B p - + A1 12 1 12

















 
















{ }

















∆ Λ ∆ 
















{ } { }p = Q(t)

(36)

(37)

B Y A Y = Q t2 2[ ] { } − [ ] { } ( ){ }�

A = A + A ; B = B + B2 1 12 2 1 12[ ] [ ] [ ] [ ] [ ] [ ]∆ ∆ 

∆
∆

∆ ∆
∆

∆
B =

0 M

M C
 and A =

M 0

012
12

12 12
12

12[ ] [ ] [ ]
[ ] [ ]









 [ ] [ ] [ ]

[ ] −−[ ]








∆K12

(35)

(38)H j
q u u

j p

q u u

j p
ij

k ik jk

kk

m
k ik jk

k

( )
( ) ( )

* *

*ω
ω ω

=
−

+
−=

∑
1

(39)x H F H Fa ab b aa a= +

(40)F H H Fa aa ab b= − −1

x H F H Fc ca a cb b= + (41)

C B A

M = M + M

C = C + C

K = K + K

2 1 12

2 1 12

2 1 12

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

∆

∆

∆

∆ Φ ∆ Φ

∆ Φ ∆ Φ

A = A

B = B

12 1
T

12 1

12 1
T

12 1

  [ ] [ ][ ]

  [ ] [ ][ ]



19SOUND AND VIBRATION/JANUARY 2003

pensation terms to account for the higher frequency terms that
have been excluded from the modal database due to truncation.
Static correction terms, residual shapes and other approxima-
tions have been used to assist in the modification process to
improve results. Many of these generally improve the modifi-
cation results but often are limited because most structural sys-
tems require DOF that relate physical rotational information
in almost any real structural change that is investigated. Rota-
tional effects are covered in the next section.

Modal truncation is likely the most critical of all the modi-
fication errors that are encountered. Reference [26] contains
several models to illustrate some of these truncation effects,
while some of the more important models are presented in the
Appendices. Appendix A presents a simple example to illus-
trate the effects of truncation for a simple 6 DOF system. Ap-
pendix B presents a modification of a free-free beam to approxi-
mate a simple support beam and a cantilever beam using the
SDM process to illustrate some additional truncation effects.
A system model is presented in Appendix C to show how sys-
tem modes may be affected by truncation.

Rotational DOF. The experimental modal database is largely
comprised of only translational DOF. The measurements ob-
tained are almost exclusively translational DOF. The rotational
measuring device has not found its place into affordable, eco-
nomical, accurate use for experimental modal testing. Twenty
years ago this was a major obstacle in all structural dynamic
modification and system modeling studies, and it still plagues
the analysis process today.

At that time, many different approaches were investigated
to estimate rotational DOF. Approaches that use spline fits of
measured data, analytical representations of curvature, and
analytical expansion methods were numerical approaches to
estimate these necessary DOF.

From the experimental side of the problem, it is very expen-
sive to measure rotational DOF for most routine modal tests,
which has led to many attempts to estimate rotational DOF.
This began with closely-spaced accelerometers being added to
the structure; later a housing was designed that incorporates
two accelerometers to estimate rotational DOF. These ap-
proaches provide some information but suffer from measure-
ment inaccuracies such as cross axis sensitivity. Others have
attempted to intentionally mass-load the test structure with
‘calibrated’ mass adjustments to produce known effects, allow-
ing for the ultimate estimation of rotational DOF. Further re-
search and effort continues today to attain an accurate, eco-
nomical device for measuring rotational DOF.

In order to illustrate the rotational DOF truncation effect, the
cantilever modification of Appendix B is extended for rota-
tional DOF truncation. The modal database contains different
sets of translational DOF and rotational DOF to show the ef-
fects of truncation, shown in Appendix D. To further illustrate
some additional points, the truncation of rotational DOF on the
synthesis of FRFs is illustrated with discussion on the effect
of modification of the cantilever using either the modal based
approach or the impedance based approach. This model is
discussed in Reference [29] and some of the pertinent results
are shown in Appendix E.

Mode Shape Scaling. The experimental modal database must
be obtained from accurate calibrated measurements. Mode
shape scaling must be clearly identified and considered prior
to performing any structural dynamic modification. Since the
modification equations use the physical properties of mass,
damping and stiffness in the modal equations of motion, the
equations must utilize consistent units. For most experimen-
tal modal test results, the animation is simply a display of the
‘amplified’ shape characteristics and does not necessarily have
any physical units. However, when the mode shapes are scaled
in a particular fashion, such as unit modal mass, then there is
a direct relationship between the mode shapes and physical
quantities.

If improper calibration units are used for the collection of
experimental data, the mode shapes will be scaled with a bias

error. This will have a direct impact on the modal change
matrix in modal space (the projection of the physical change
in the system using the mode shapes of the system). Obviously,
if the mode shapes are scaled incorrectly, then the projected
change to the system in modal space will be directly affected.

Drive Point Measurements. During the collection of modal
data, the drive point frequency response function is necessary
in order to provide the proper calibration and scaling factors
for the measured modes. The residues obtained from the modal
parameter estimation process are sufficient for the definition
of the system characteristics. However, the mode shapes form
the frequency response function from information related to
both the input and response mode shapes for each of the modes
of the systems. Only the drive point measurement contains
information that allows the residue to be related to the mode
shapes.

This important point is the main reason why operating data
cannot be used to determine the effects of structural dynamic
modifications. Operating data does not have any scale infor-
mation relative to the mode shapes of the system. While oper-
ating data is extremely useful in studying structural dynamic
systems, this data contains no scale information. Drive point
measurements are required in order to obtain accurately scaled
mode shapes.

Rigid Body Modes. For many structural modification stud-
ies involving either the constraint of a structure to ground or
the connection of one substructure to another substructure,
rigid body modes are required. These modes are necessary in
order to define the inertial characteristics of the component.
If these rigid body modes are not included in the modal data-
base for these types of structural changes, then significant er-
rors will result. The rigid body modes are a required portion
of the adequate description of any free-free modal component.

In many cases, the rigid body modes comprise a necessary
part of the modal description of the system and cannot be ig-
nored. If these modes are not included, then for all practical
purposes the modal data base is truncated (even though the
rigid body modes are the lowest modes of the database). Care
must be exercised when incorporating rigid modes into the
measured experimental flexible modes. These rigid body modes
must be scaled in a manner that is consistent with the scaling
of the measured flexible modes.

In addition, the rigid body modes obtained from a finite el-
ement model will have a frequency of 0 Hz and the modes will
be repeated. This is generally not true of the rigid body modes
obtained from testing. The tested rigid body modes will not
have a frequency of 0 Hz and will most likely not be repeated.
This is an important point when performing structural dynamic
modifications. First, the complete mode set used to describe
the system (rigid body modes and flexible modes) must be
scaled in a consistent fashion. Second, many commercially
available implementations do not properly handle repeated
roots and often do not handle modes that have a frequency at
0 Hz. Since most tested structures do not have 0 Hz rigid body
modes, this is typically not a problem. However, caution needs
to be exercised when augmenting a modal data base with ana-
lytically derived rigid body modes or when implementing a
structural dynamic modification procedure using a free-free
component described by the finite element modes of the struc-
ture. Care must be taken to assure that the software can ad-
equately handle both 0 Hz rigid body modes as well as repeated
roots.

Complex vs. Proportional Modes. Many times, proportional
modes are used for the approximation of structural dynamic
systems. Typically, this is a good approximation for most struc-
tural dynamic studies. However, when dealing with the struc-
tural dynamic modification process, a complex mode solution
is required to obtain accurate modified system characteristics.
Reference [8] contains several models that illustrate some of
the effects of using proportional mode approximations when
performing modifications that truly require a complex mode
solution scheme. The results of those studies can be summa-
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rized with the following statements regarding proportional
mode and complex mode solutions.

When in doubt, a complex mode solution will always pro-
duce the proper mathematical solution. However, a propor-
tional mode solution generally will produce a reasonably good
solution when the starting modes are indeed proportional and
the changes involve only mass and stiffness. These types of
changes on a proportional mode approximation generally do
not cause the solution to become very complex – the modes
tend to remain close to proportional. However, a proportional
mode solution will often contain errors when damping modi-
fications are investigated. As each individual modification is
investigated, errors will accumulate because the proportional
approximation ignores the complex phasing that results from
the modified system. In this case, a complex mode solution
scheme is necessary.

When a proportional mode solution is used and the initial
unmodified modes are not real normal modes or proportional
modes, but actually contain some phasing in the description
of the modal database, then any changes of mass, damping or
stiffness will always tend to accumulate error as modifications
are performed. In this case, when the starting modes are not
real normal modes, then one of two approaches are necessary.
One approach is to employ the full state space solution scheme
and utilize the complex mode structural modification proce-
dure. This will be necessary – especially if the unmodified
modes are believed to be truly complex. However, if the modes
are believed to be proportional but the measurements or modal
parameter estimation process caused the modes to have phas-
ing that is believed to not truly exist, then the mode shapes
should be rescaled to obtain a real normal mode approxima-
tion of the shapes. This second approach is needed if the modes
are actually believed to be more appropriately real normal
modes. This will tend to minimize errors from the modifica-
tion process.

Other Issues. Of course, there are a variety of other issues
that cause problems for the structural dynamic modification
process. These relate to simple and often obvious matters that
are overlooked, such as geometry definition, accurate calibra-
tion, consistency of units (weight vs. mass descriptions and feet
vs. inches), lack of measured DOF for connection of structural
modification elements, and a myriad of user blunders that
cause errors in the modification procedure. Careful execution
of this approach will yield accurate results (excluding the ef-
fects of truncation and rotational DOF that have been dis-
cussed).

Summary
Structural dynamic modification has been available for over

two decades. The technique is useful for the study of structural
changes to a system to determine optimum design changes.
Issues of truncation and lack of rotational DOF have caused
difficulties with the technique since its inception. Some of
these problems were discussed along with some of the other
effects that need to be considered.

A simple 6 DOF model is used to illustrate some key points
pertaining to truncation and the matrices involved in the SDM
process.26 The model is shown in Figure A1. Note that the
physical set of equations involve matrices that have coupling
of the various DOF of the model. The eigensolution uncouples
those equations to create a set of linearly independent SDOF
systems, illustrated in Figure A1. Notice that all the modes are
not retained in the description of the system (as shown by sev-
eral modes in the cross-hatched area). These modes are not nec-
essarily needed in order to obtain an acceptable solution re-
garding the system response.

To illustrate some of the effects of the structural dynamic
modification process, a simple structural change is shown in
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Appendix A: 6 DOF Example
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Figure A1. 6 DOF physical and modal model.

Figure A2. 6 DOF model with physical modification.

Figure A3. 6 DOF model with modal change matrix.
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Figure A4. 6 DOF model truncation for an unmodified and a modified
system.
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Figure A2. This change appears very discrete in the matrices
of the physical model. However, when a structural modifica-
tion is performed, the projection of the physical change ma-
trix to modal space produces a very significant amount of cou-
pling to the original unmodified modes of the system, shown
in Figure A3. While the original modal stiffness is clearly a di-
agonal representation in modal space, the change in modal

stiffness is far from diagonal. The effect of the physical modi-
fication projected in modal space is to couple every one of the
unmodified modal SDOF systems to each other and to recon-
nect them all with additional stiffness back to ground.

With an understanding of this effect, the modal truncation
problem can be clearly seen. For the unmodified system, the
truncation effect is related to the inclusion or removal of modes
to describe the database. However, for the modified system,
there is an effect of the projected change in modal stiffness due
to physical modifications. The effects of truncation can be con-
ceptually stated as follows: If the change in stiffness that
crosses the imaginary boundary between the kept modes and
the unkept modes is very small, then the effects of truncation
are minimal. But if the change in stiffness between the kept
modes and unkept modes is very large, then the effects of trun-
cation are significant. Unfortunately, the unkept modes are not
available to ascertain their effects.

A simple free-free beam is used to describe a modal database
with 5 modes (2 rigid body and 3 flexible) for a structural dy-
namic modification involving only two stiffness changes: one
to simulate a simple support and one to simulate a cantilever.26

The various beam configurations are shown in Figure B1 and
the results of the structural modification (which involves only
two stiffness modifications) are shown in Table B1. The fre-
quencies from the exact solution are shown for reference and

Appendix B: Free-Free Beam for Simple Support and
Cantilever Beam Modifications
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Figure B1. Modal beam and proposed modifications.

Free-Free Beam

Simple Support
Modification

Cantilever
Modification

No.

1
2
3
4
5

Free

0
0

128
367
738

SDM

24.8
162.8
476.0
1274.5
9437.8

Ref.

21.6
139.3
396.1
781.8
1292.0

SDM

72.0
288.4
646.0
9108.3
9593.6

Ref.

71.9
285.7
636.5

1114.9
1706.3

Simple Support Cantilever

Note: Frequencies in italics are approximations of constraint modes.

Table B1. Frequencies of different modifications.

Figure B4. Cantilever beam modal data.

Figure B5. U12 projection matrix for the simple support beam and can-
tilever beam modifications.

Figure B6. Free-free mode combinations for simple support beam modi-
fication for mode 1.
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Figure B2. Free-free beam modal data.

Figure B3. Simple support beam modal data.
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to assist in the evaluation of the accuracy of the structural
modification solution. The original frequencies and mode
shapes for the free-free beam are shown in Figure B2. The
modified frequencies and mode shapes for the simple support
modification study are shown in Figure B3. The modified fre-

quencies and mode shapes for the cantilever modification
study are shown in Figure B4.

Before the lower frequencies are discussed, it is important
to note that the last two frequencies of each set for the modi-
fied modes are very high in frequency. This is due to the fact
that only 5 modes are used for the modification of the modal
system. In both cases, these two higher frequency modes are
approximations of the constraint modes of the system. These
are approximations of the modes necessary to constrain the
system to ground. Discussion of these constraint modes are
beyond the scope of the information presented here but can be
found as part of the description of the mode sets available for
component mode synthesis.

For the simple support modification, the results compare
very well to the exact solution. The results are very acceptable,



23SOUND AND VIBRATION/JANUARY 2003

Figure B7. Free-free mode combinations for simple support beam modi-
fication for mode 2.
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Figure B8. Free-free mode combinations for simple support beam modi-
fications for mode 3.

Figure B9. Free-free mode combinations for cantilever beam modifica-
tion for mode 1.

Figure B10. Free-free mode combinations for cantilever beam modifi-
cation for mode 2.
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Appendix C: Free-Free Beam and Shell for
Development of Frame System Model

especially considering that only 5 modal DOF were used for
the modal modification process. However, the cantilever beam,
which also has only two stiffness modifications to describe the
change, has much more error associated with the predicted
modified modes. The reason for this can be seen upon investi-
gating the U12 matrix. This provides information regarding the
linear combinations of the unmodified modes that form the fi-
nal modified modes. The U12 matrix is shown in Figure B5 for
the simple support and cantilever beams. Each column of this
matrix identifies the proportions of each mode necessary to
form each final system mode for both modification cases. It is
this linear combination effect that can be graphically observed
in the following figures for the simple support and cantilever
beam modifications. The simple support beam is shown in
Figures B6, B7 and B8 for modes 1, 2 and 3, respectively. The
cantilever beam is shown in Figures B9 and B10 for modes 1
and 2, respectively. Visual observations of these figures along
with the U12 matrices in Figure B5 reveal the reason for the
errors.

Basically, the simple support modified modes can very eas-
ily be accomplished from the linear combinations of the modes
from the free-free beam. That is to say, the starting modes and
final modes are very similar. It is a very easy task to form lin-
ear combinations from the original unmodified modes to cre-
ate the final modified modes. However, the same is not true for
the cantilever beam modification. In fact, it is extremely diffi-
cult to create the final modified cantilever configuration from
the starting modes of the original unmodified free-free modes;

many more modes of the free-free beam are necessary in order
to improve the final modified results. The final modes of the
cantilever system do not appear similar to the starting modes
of the unmodified free-free beam and many modes are neces-
sary in order to improve the accuracy of this modification.

Two simple modal components for a beam and shell are used
to form a system model.26 The intent of this model is to show
that all of the final modified system modes are not equally af-
fected by the modal truncation. The reference frequencies of
the full model of the structure based on physical matrices are
shown in Figure C1, along with the modes resulting from the
modification to form the system from two modal components.
(Note that the beam modal description is the same as that used
in Appendix B.) In particular, the final system modes 4 and 5
will be discussed to illustrate some of the effects of truncation
for different final modes of the system. The U12 matrix is shown
for the first six modes in that figure; the 4th and 5th columns
relate to the scaling coefficients for the final modified 4th and
5th system modes, respectively. The 4th mode of the modified
system appears to be significantly affected by truncation
whereas the 5th mode appears to have almost no error associ-
ated with the effects of truncation. A graphical presentation of
the mode combination is shown in Figures C2 and C3 for the
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Figure C1. Free-free mode combinations of beam and shell for frame
system model development.

Figure C2. Free-free mode combinations of beam and shell for frame
system model for system mode 4.
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Figure C3. Free-free mode combinations of beam and shell for frame
system model for system mode 4.

No.

1
2
3

Ref.
Freq. (Hz)

21.6
139.6
398.6

10 Modes (Hz)
(1-10 TDOF)
(1-10 TDOF)

22.2
144.9
411.4

10-5 Modes (Hz)
(1-10 TDOF)
(1-5 RDOF)

24.8
162.6
473.7

5 Modes (Hz)
(1-5 TDOF)
(1-5 RDOF)

24.8
162.8
476.0

Table D1: Frequencies of different truncated set combinations

The effects of truncation are critical to any structural modi-
fication study. In many modifications, the rotational DOF are
much more critical than the translational DOF. An extension
of the cantilever modification in Appendix B is used to illus-
trate this effect. The modification of the cantilever is made with
5 free-free modes and 10 free-free modes. However, the modal
database is evaluated with different sets of modes: First with
only 5 translational and 5 rotational DOF, followed by 10 trans-
lational and 5 rotational DOF, and then finally with 10 trans-
lational and 10 rotational DOF. The model is shown in Figure
D1 and the results are shown in Table D1.

The inclusion of additional translational DOF in the inter-
mediate case (10 TDOF and 5 RDOF) has minimal effect on the
improvement of the modification prediction. Only when extra
rotational DOF are included does the modification prediction
improve. This clearly shows that these rotational DOF are far
more critical for this modification. Since many real world
modifications of structural elements involve rotational effects,
the lack of rotational DOF will generally prove to be respon-
sible for the majority of the truncation effects.

Figure D1. Cantilever beam used to form modified pinned configura-
tion.

To further illustrate the effects of truncation, a simple, FRF-
based modal modification prediction is discussed.29 The

Appendix E: Pin Modification at the Tip of a Cantilever
Beam Using FRF Modification

Appendix D: Cantilever Modification to Illustrate RDOF
Truncation

final 4th and 5th system modes, respectively.
Upon reviewing the 5th column of the U12 matrix, the origi-

nal unmodified modes of the two separate components are suf-
ficient in linear combinations to form the final 5th system mode
of the structure. In fact, the 2nd free-free flexible mode of the
beam and the 5th mode of the shell appear to be the most domi-
nant modes from a visual perspective, in the final 5th mode of
the system; this is confirmed upon reviewing the U12 matrix.
These two modes naturally merge to form the final 5th system
mode characteristic; that is why this mode does not suffer be-
cause of truncation.

The same is not true of the 4th modified system mode. This
system mode requires many more modes of the free-free beam.
In the final 4th system mode characteristic, the mode shape re-
lated to the beam portion of the system appears to behave very
much like a beam with both ends fully built-in. Recalling the
cantilever beam of Appendix B, the cantilever modification re-
quired many modes for an accurate approximation. The same
is true of the beam portion of this frame system model – the

beam suffers from modal truncation and more modes are re-
quired to accurately model this particular system mode.

It is very important to notice that truncation does not have
the same effect on all the resulting modified system modes. The
4th modified system mode (128 Hz) is seriously affected by
modal truncation whereas the 5th modified system mode (305
Hz) is relatively unaffected by truncation.
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Figure E4. Cantilever beam synthesized FRF for all modes, 7 modes and
5 modes for rotational effects at the tip of the beam.

Figure E1. Cantilever beam and pin modification.

Figure E2. Cantilever beam drive point FRF for pin modification at tip
of the cantilever beam.

Figure E3. Cantilever beam synthesized FRF for all modes, 7 modes and
5 modes for translational effects at the tip of the beam.

Cantilever Beam

Built-in with Pinned End

simple cantilever in Appendix B is used again to study the
effects of a pin modification at the free end of the cantilever
beam, shown in Figure E1. In order to understand the modifi-
cation and the results anticipated, a drive point measurement
at the tip of the cantilever (where the pin connection modifi-
cation is to be made) is shown in Figure E2. As the stiffness of
the spring used to approximate the pin modification is in-
creased, the frequencies of the modified cantilever beam will
increase. However, the modified frequencies of the cantilever
beam with the pin will never become larger than antiresonant
frequencies of the unmodified cantilever viewed from the point
of constraint. These antiresonances are physical ‘roadblocks’
to the shift of the natural frequencies of the modified system.
Actually, the antiresonances are the frequencies where the tip
of the beam has no motion. The physical interpretation is that
the cantilever beam appears to have no motion of the tip at the
frequencies that are analogous to adding a pin at this location.
Therefore, the antiresonances specify the shift in frequency
when the stiffness of the constraint approaches infinity.

The synthesis of a frequency response function can be per-
formed using the modes of the system with either residues or
mode shapes for the formulation of the function. The poles or
modes are global parameters of the system. As higher modes
are truncated, the peaks associated with the lower order modes
are relatively unaffected in terms of their frequency location.
However, the same is not true for the antiresonances, which are
strongly affected by truncation. As more and more modes are
truncated, the antiresonances shift upwards in frequency (see
Figure E3).

This further explains the modal modification truncation ef-
fect. As more and more modes are truncated from the modal
database, the antiresonances shift higher in frequency. Since
the antiresonances are ‘roadblocks’ to the modification, the

upward shift in frequency helps explain why the modal modi-
fication always produces modified frequencies that are higher
than the true modification. The truncation effect is very clearly
seen in the modal database but it is now apparent that the FRF
modification approach will also suffer from truncation when
the FRFs are obtained from a synthesized function.

To further illustrate the truncation effect, a rotational DOF
at the tip of the beam is used to synthesize a FRF as seen in
Figure E4. As the modes are truncated from the database, the
antiresonances shift upwards in frequency. However, they are
observed to shift substantially more than the translational FRFs
seen in Figure E3. Therefore, the effects of truncation will be
much more pronounced on the rotational DOF when compared
to the translational DOF. This is the main reason why the modi-
fications of the cantilever suffer much more from truncation
when compared to the simple support modification of Appen-
dix B.


