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Obtaining modal parameters from operating data has re-
cently gained widespread acceptance. This article reviews
popular curve fitting methods and their application to oper-
ating data.

Modal testing, also referred to as Experimental Modal Analy-
sis (EMA), underwent a revolutionary change during the early
1970s with the implementation of the Fast Fourier Transform
(FFT) in computer-based FFT analyzers. Prior to that time,
model testing had been done primarily with analog equipment.
FFT-based EMA on the other hand, required the development
of new digital signal processing methods.

Modal parameter estimation is a key step in FFT-based EMA.
This step, also called curve fitting, has received more attention
than any other during the past 30 years. Numerous methods
have been developed and the technical literature contains
hundreds of papers documenting many different approaches.

Modal analysis is used to characterize resonant vibration in
machinery and structures. A mode of vibration is defined by
three parameters; modal frequency, modal damping and mode
shape. Modal parameter estimation is the process of determin-
ing these parameters from experimental data. Furthermore, a
set of modal parameters can completely characterize the dy-
namic properties of a structure. This set of parameters is also
called a modal model for the structure.

Two recent S&V articles have described different approaches
to modal testing; one that relies on carefully controlled multi-
shaker excitation,3 and the other that strongly suggests artifi-
cial excitation is not required at all.4 Regardless of whether
artificial excitation is used or not, both approaches rely heavily
on modal parameter estimation. Both articles devote the ma-
jority of their discussion to this subject.

Which Method Do You Choose?
Although time, budget, and physical constraints will most

certainly play a part, the EMA method you choose will strongly
depend on what you intend to do with the modal data. The two
most common uses of modal data are:
1. Trouble shooting noise or vibration problems.
2. Confirming the validity of computer generated finite element

models.
Finite element analysis (FEA) is commonly used in the de-

velopment of most new machines, structures and products of
all kinds. Once a finite element model is validated, it can be
used for simulations, calculating stresses and strains, and for
investigating the effects of structural modifications on the vi-
bration properties of a structure. Since both EMA and FEA yield
a set of modes for a structure, modal parameters are used to
compare experimental and analytical results.

Trouble shooting only requires enough data to characterize
the problem so that a solution can be found. Verifying a finite
element model usually requires much more extensive and ac-
curate modal testing.

If no artificial excitation is required and excitation forces do
not have to be measured, simply acquiring and processing op-
erating response data sounds like an easier way to do modal
testing. When possible, however, controlling and measuring the
excitation forces is the preferred way to do modal testing be-
cause the assumptions required for modal parameter estima-
tion are less restrictive. But for those cases where the excita-
tion forces are not known and/or cannot be measured, curve
fitting a set of measurements post-processed from operating
data can still provide usable modal parameter estimates.

What Are Operating Data?
Operating data are certainly what the name implies. They

are data that are acquired while a machine or structure is un-
dergoing vibratory motion during its operation or use. For
modal parameter estimation, the definition can be extended
further: Operating Data are any vibration data that are acquired
without simultaneously acquiring the excitation forces.

Shape Data. Whenever the vibration responses at two or
more points and directions (degrees-of-freedom or DOFs) on
the surface of a structure are measured, a vibration shape is de-
fined. That is, a shape defines the magnitude and phase of the
motion of one DOF relative to any other DOF. An Operating
Deflection Shape (ODS) is the magnitudes and phases of two
or more DOFs of operating data acquired from a machine or
structure. An ODS, therefore, defines the relative motion be-
tween two or more DOFs on a structure. An ODS can be de-
fined for a specific frequency or for a moment in time.2

Structural resonances can be thought of as structural weak-
nesses. That is, at certain natural frequencies, a structure will
readily absorb energy and vibrate with an excessive level of
vibration. Therefore, as the frequency of a (single frequency)
sinusoidal excitation force approaches one of its resonant fre-
quencies, the vibration level of a structure will grow. When
sinusoidal excitation is applied to a structure at or near a modal
frequency, its sinusoidal response or deformation will be domi-
nated by its resonant vibration. Furthermore, its ODS will look
like the mode shape associated with the resonance.

Observing Mode Shapes. One of the earliest modal testing
methods takes advantage of this resonant property of struc-
tures, allowing one to actually see its mode shapes. A strobe
light test is very straightforward. While exciting a structure
with a shaker driven by a sine wave signal, the structure sur-
face is illuminated with a strobe light that is triggered by the
sine wave signal. This causes the deformation of the surface
to stand still, displaying the ODS of the structure at that fre-
quency. If the excitation frequency is then adjusted to be close
to a modal frequency, the ODS becomes dominated by the mode
shape, and hence is a close approximation of the mode shape.

Strobe light testing was used to observe mode shapes long
before digital computers or FFT analyzers were available, and
it is still probably the cheapest and easiest way to do modal
testing today. It does have some drawbacks however. In gen-
eral, it works best on smaller structures and in darkness, and
it requires that the deformation of the structure be visible. Also,
there is no preservation of the data for further post analysis.

A modern implementation of this technique uses a laser
vibrometer to rapidly scan the surface of the structure, mea-
suring the surface velocity at many points and displaying the
ODS using a color map on a computer screen. The cost of this
equipment is of course much higher than a strobe light, but at
least the ODS data can be saved for further use.

Both of these modal testing techniques are measuring oper-
ating data in the sense that the sinusoidal excitation force is
not measured. Although both techniques employ a carefully
controlled excitation force, they both suffer in several ways
compared to other techniques:
1. Since only one mode is excited at a time, some type of search

procedure must be used to locate all of the modes. This can
be time consuming.

2. Exciting just one mode and not several at a time can be dif-
ficult, if not impossible, with many structures.

3. Only the modal frequency and mode shape are estimated.
Modal damping is not estimated.

Modal Parameter Estimation
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Structural Excitation
All excitation forces can be classified as either narrow band

– like a single frequency sine wave – or broad band. The most
common broad band signals are random, swept sine (or chirp),
and transient (or impulsive).5 Variations of these signals in-
clude burst random, burst chirp, and random transient.

A sine wave is classified as narrow band because its spec-
trum is very narrow, containing essentially a single non-zero
frequency. All of the broad band signals have a non-zero fre-
quency spectrum over a broad range of frequencies. Broad band
excitation signals have the following advantages,
1. They excite many modes at a time.
2. They can be controlled to minimize distortion or nonlinear

response of the structure. (Modes are only defined for struc-
tures that obey a set of linear, stationary equations of motion.)

3. They can be designed to minimize a signal processing error
caused by the FFT called leakage.

4. Random signals can be used together with spectrum en-
semble averaging to effectively linearize the nonlinear re-
sponse of a structure.

5. Many structures are excited by ambient forces which can be
assumed to be broad band in nature.

Structural Dynamic Models
All modal testing is based on the assumption that the vibra-

tional behavior of a mechanical structure can be represented
either by a set of differential equations in the time domain, or

by a set of algebraic (spectral) equations in the frequency do-
main.

Time Domain Model. Modes are defined as solutions to the
time domain differential equations shown in Figure 1. This set
of differential equations describes the dynamics between n-
discrete DOFs of the structure. Equations are defined between
as many DOFs on a structure as necessary to adequately de-
scribe its dynamic behavior.

For real structures, these equations are usually defined by
using finite element modeling to derive the mass and stiffness
matrices. (Damping is ignored because it is too difficult to
model.) From an experimental point of view however, it is more
straightforward to define the equations of motion in the fre-
quency domain.

Frequency Domain Model. The dynamic behavior between
any pair of DOFs of a machine or structure is described in the
frequency domain by a transfer function. A transfer function
matrix model describes the dynamics between n-DOFs of the
structure and contains transfer functions between all combi-
nations of DOF pairs, as shown in Figure 2. Even though these
equations do not explicitly contain mass, damping, or stiffness
matrices, all of the inertial (mass), elastic (stiffness) and energy
dissipating (damping) properties of a real structure are con-
tained in the transfer functions.

Frequency Response Function (FRF). Figure 3 contains a plot
on the S-plane of a transfer function for a single mode or reso-
nance. Notice that it is only plotted over half of the S-plane so
that its values along the jω-axis can be clearly seen. Since the
Laplace variable is complex valued, the transfer function is also
complex valued. Therefore, it is plotted both as real and imagi-
nary parts and as magnitude and phase. The S-plane is also
called the complex frequency domain. Any element of the
transfer function matrix can be measured from a real structure.
However, instead of measuring it over the entire S-plane, only
its values along the jω-axis are actually measured.

The transfer function evaluated along the jω-axis in the S-
plane is called the Frequency Response Function (FRF). Fig-
ure 3 shows the FRF for a single resonance plotted along the
jω-axis. All commercially available FFT analyzers are capable
of estimating an FRF in the presence of extraneous measure-
ment noise. This involves simultaneously acquiring both an ex-
citation force signal and a corresponding vibration response
signal, followed by some digital signal processing.5

Modal Frequency and Damping. Notice that the transfer
function in Figure 3 has two peaks in it, and that its value goes
to infinity at the peaks. The locations of these peaks are called
the poles of the transfer function. The coordinates of a pole are
the modal frequency and damping of a mode.

Several well known definitions of modal frequency and

Figure 1. Time domain dynamic model.

Figure 2. Frequency domain dynamic model.

Figure 3. Transfer function and FRF for a single mode.
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damping are shown in Figure 4. σ0 is called the half power
point damping, and will be used for curve fitting comparisons
later on.

Curve Fitting Methods
The two most popular curve fitting methods either curve fit

experimental FRF data using a parametric model of the FRF,
or curve fit experimental Impulse Response Function (IRF) data
using a parametric model of the IRF. The Rational Fraction
Polynomial (RFP) method is used for curve fitting FRFs, and
the Complex Exponential (CE) is used for fitting IRFs.

The FRF and its corresponding IRF form a Fourier transform
pair. That is, an IRF is obtained by applying the Inverse FFT
to an FRF, and the FRF can be recovered by applying the For-
ward FFT to the IRF. Therefore, either FRFs or their equiva-
lent IRFs can be curve fit by starting with either one and using
the FFT to transform to the other.

Many variations of the RFP and CE methods have been pro-
posed and documented.6,7 Only a straightforward application
of both methods was used for curve fitting the operating data
presented later in this article. Other types of curve fitting based
on state-space models have also been used for curve fitting
operating data.4

Frequency Domain Curve Fitting Model. The transfer func-
tion matrix can also be written in partial fraction expansion
form as,

where:
m = the number of modes of vibration.

[rk] = (n by n) residue matrix for the kth mode.
pk = –σk + jωk = pole location for the kth mode.
σσσσσk = half power point damping of the kth mode.
ωωωωωk = damped natural frequency of the kth mode.

* = the complex conjugate.
j =

This partial fraction form clearly shows that the response of
a structure at any frequency is a summation of contributions
from each of its modes. Therefore, ideally speaking it is impos-
sible to excite only one mode of a structure by excitation with
a single frequency sine wave.

Partial fraction expansion results in a different numerator for
each transfer function. These numerator constants are as-
sembled into a matrix called the residue matrix. Residues in-
dicate the strength of a resonance relative to all others in a
particular transfer function. This curve fitting model [Eq. 3] is
used to estimate modal parameters by curve fitting experimen-
tal FRF data. Since the experimental FRF data is only defined
along the jω-axis in the S-plane, the curve fitting model is only
evaluated for s = jω. The unknown poles and residues of the
curve fitting model [Eq. 3] are estimated during the curve fit-
ting of FRF data.

Furthermore, it is clear from Eq. 3 that every FRF contains
the same denominator terms, which contain the same poles or
modal frequency and damping parameters. Therefore, modal
frequency and damping can be estimated from any FRF, or from
multiple FRFs measured on the same structure. This property
is used by all global6 and multiple reference (or poly reference8)
curve fitting methods.

Residues and Mode Shapes
The key to all modal testing is the following relationship

between the modal residue matrix and the mode shape.

The residue matrix is formed by an outer product of the mode
shape vector with itself. Without this relationship, structure
testing would be extremely time-consuming, and probably not
practical enough to even consider in most cases. Eq. 4 shows:
Every row and column of the residue matrix contains the mode
shape.

Using this relationship, the transfer function matrix is rep-
resented in terms of poles and mode shapes in the following
way:

{uk} = n-dimensional complex mode shape vector for the kth

mode.
Ak = a scaling constant for the kth mode.

t = the transposed vector.
The following assumptions were made in order to derive Eq.
5:
1. Linearity – The structural dynamics are linear and station-

ary, adequately described by either the time domain [Eq. 1]
or frequency domain [Eq. 2] equations.

2. Maxwell’s Reciprocity – The matrices in either the time do-
main or frequency domain equations are symmetric.

3. Distinct Pole Locations – Each resonance is described by a
pair of distinct poles.
Measuring One Row or Column of FRFs. Since the mode

shape is contained in every row and column of the residue
matrix: Only one row or column of the FRF matrix needs to be
measured and curve fit in order to obtain mode shapes.

Another way of putting Eq. 4 into words is: Every row and
column of the residue matrix contains the mode shape multi-
plied by one of its own components.

This makes it clear that if a row or column is chosen where
the mode shape is zero, called a nodal point, then the entire
row or column of residues for that mode will be zero also. This
conclusion is known by every modal testing practitioner. In
other words, if the structure is excited or its response is mea-
sured at the nodal point of a mode shape, no FRF measurements
from the row or column will contain a resonance peak for that
mode.

Impulse Response Function. Since the IRF is the Inverse
Fourier transform of the FRF, each element of an FRF matrix
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Figure 4. Modal frequency and damping as poles.

Figure 5. An IRF.

S-Plane
Frequency

Conjugate
Pole

Damping

Critically
Damped

ω0 = Damped Natural Frequency

σ0 = Half Power Point Damping ζ0 = cos(β0) = Percent of Critical Damping

Ω0 = Undamped Natural Frequency

ω0

Ω0

β0

σ0

X

X

X

X

XX

−1



4 SOUND AND VIBRATION/JANUARY 2003

has an equivalent IRF in the time domain. Modal parameters
are therefore estimated from one row or column of an IRF ma-
trix in the same way as they are estimated from one row or
column of an FRF matrix.

Time Domain Curve Fitting Model. An IRF matrix with the
same size and DOFs as its corresponding FRF matrix is repre-
sented as a summation of exponential terms with modal param-
eters in them:

where:
[I(t)] = (n by n) IRF matrix.

Note that just like the FRFs, each IRF is also a summation of
contributions due to each mode, and that each modal contri-
bution is itself a summation of two complex exponential terms.

Eq. 6 can be rewritten as a summation of damped sinusoidal
responses, making it clear that it is indeed the analytical ex-
pression for an IRF, as shown in Figure 5.

where:
|rk| = (n by n) matrix of residue magnitudes
αααααk = (n by n) matrix of residue phases.
Eq. 7 clearly shows the role that each modal parameter plays

in an IRF. Modal damping σσσσσk defines the exponential decay
envelope for each mode, modal frequency ωωωωωk defines the sinu-
soidal frequency for each mode, and the residue defines the
amplitude of response of each mode. The Complex Exponen-
tial curve fitting method uses the analytical model in Eq. 6 to
estimate the modal parameters of a structure from experimen-
tal IRF data.

Response Spectrum Matrix
The subject of this article is estimating modal parameters

from operating data. Recall that operating data are acquired in
any situation where the excitation forces are not measured. Is
it possible to curve fit operating data using an FRF or IRF curve
fitting model? The answer is ‘Yes,’ but a strong assumption
regarding the unknown excitation forces is required.

An FRF matrix model is obtained by substituting s=jω into
the transfer matrix model in Figure 2:

where:
{X(jωωωωω)} = n-dimensional vector of response Fourier transforms
{F(jωωωωω)} = n-dimensional vector of force Fourier transforms
[H(jωωωωω)] = (n × n) FRF matrix.

The Response Spectrum matrix is formed by taking the outer
product of Eq. 8 with itself.

where:
[Gx,x(jωωωωω)] = {X(jω)}{X(jω)}T

= (n × n) Response Spectrum matrix
[Gf,f(jωωωωω)] = {F(jω)}{F(jω)}T

= (n × n) Force Spectrum matrix
T = the transposed complex conjugate.

Each row or column of the Response Spectrum matrix con-
tains the spectrum of each measured response multiplied by
the conjugate spectrum of a reference (or fixed) response. Each
row or column corresponds to a different reference response.
The diagonal elements of the Response and Force Spectrum
matrices above are called Auto Spectra and the non-diagonal
elements are called Cross Spectra.

A row or column of the Response Spectrum matrix can be
curve fit to estimate modal parameters, provided that the fol-
lowing assumption is made.

Flat Force Spectrum: If the excitation Force Spectrum ma-
trix can be assumed to be “relatively flat” over the frequency
range of the modes of interest, then elements of the Response

Spectrum matrix can be curve fit using an FRF (or IRF) curve
fitting model.

If the excitation forces are known to have a flat spectrum over
the frequency range of the modes of interest, then the peaks in
a Response Spectrum are caused by structural resonances. The
difficulty with all operating data is that unless the forces can
be measured, there is no guarantee that the above assumption
is met. If a machine or structure contains any rotating or re-
ciprocating parts, its Force Spectrum matrix will not be flat.
Even in cases where a structure is excited using a flat force
spectrum, impedance mismatches between the exciter and the
structure will cause peaks in the response spectrum that are
not due to resonances. Impedance mismatches can also cause
the Force Spectrum to dip at resonance peaks.

On the other hand, there are excitation forces that you can
assume to have a flat spectrum. For instance, traffic on a bridge
or wind blowing against a building are assumed to be broad-
band and random in nature, with a flat spectrum. If an excita-
tion force is impulsive in nature, its spectrum is also assumed
to be flat.

The Response Spectrum and the FRF. To see more clearly
how an FRF curve fitting model is applied to a row or column
of Response Spectrum matrix data, consider a case of only one
(unknown) excitation force. Using Eq. 8, the responses are writ-
ten,

The reference response is represented by,

where Cf is the Fourier transform of the flat spectrum force.
Therefore, the row or column of the Response Spectra ma-

trix corresponding to the reference response would be written:

Each Response Spectrum in Eq. 12 is equal to the product of a
unique FRF multiplied by the flat force Auto Spectrum and the
conjugate of the FRF between the force and the reference re-
sponse. Taking the square root of each Response Spectrum
provides a row or column of data that is proportional to a row
or column of FRFs, and is therefore suitable for curve fitting.
A similar result is obtained when multiple (unknown) forces
are assumed.

Measurement Sets. The definition of a ‘shape’ requires that
all measured responses have correct magnitudes and phases
relative to one another. In order to ensure that a set of vibra-
tion measurements taken from two or more DOFs has the cor-
rect relative magnitudes and phases, two methods of measure-
ment can be used,1

1. Simultaneously acquire all responses together.
2. Simultaneously acquire some of the roving responses and a

reference (fixed) response together as a measurement set.
For large tests, where mode shapes with a large number of

DOFs are desired, operating data are usually taken in multiple
measurement sets. An entire test, then, consists of acquiring
two or more measurement sets, with different roving responses
and the same reference response in each measurement set.

Force Level Changes. Force levels can change during the ac-
quisition of multiple measurement sets of data. Therefore, to
obtain valid shape data from multiple measurement sets where
the force levels may have changed, the Response Spectrum
magnitudes must be re-scaled. One way to do this is to calcu-
late an average of all of the reference Auto Spectra from the
multiple measurement sets. Then, the magnitude of each Re-
sponse Spectrum in a measurement set is re-scaled using the
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ratio of the average reference level to the reference level of the
measurement set.

Rational Fraction Polynomial Method Revisited
The Rational Fraction Polynomial (RFP) curve fitting

method6 was first implemented in a commercial FFT-based
EMA system (the Hewlett Packard 5423A Structural Dynam-
ics Analyzer), in the late 1970s. It has also been used in sev-
eral other modal analysis packages including the SMS Star
Modal and Vibrant Technology ME’scope software. The RFP
method uses the rational fraction polynomial instead of the
partial fraction form of the FRF as its curve fitting model. These
two models are shown in Figure 6. The RFP method solves a
set of linear equations for the unknown numerator and denomi-
nator polynomial coefficients. Poles and residues are found by
numerical root solving and partial fraction expansion, as shown
in Figure 7.

Since the RFP method curve fits the FRF data directly, it can
be used in small frequency bands to estimate the parameters
of a small number of modes at a time. This makes it easier to
use since the number of modal parameters obtained from a
curve fitting operation is relatively small.

Out-Of-Band Effects. In order to perform curve fitting in
small frequency bands, any curve fitter must have a way to
compensate for the effects of other modes that lie outside of
the curve fitting band. The RFP method uniquely accounts for
the effects of out-of-band modes by using a higher order nu-
merator polynomial than the order required to estimate the
residues. After the partial fraction expansion, these extra nu-
merator terms are discarded.

Global Curve Fitting. Orthogonal rather than ordinary poly-
nomials are used to improve the numerical stability of the RFP
method, but they also uncouple the numerator and denomina-
tor coefficient solution equations. This allows the curve fitting
problem to be divided into two steps. The denominator poly-
nomial coefficients are estimated by a first curve fitting step,
and hence the poles (modal frequency and damping) are esti-
mated first. Then the residues are estimated by a second curve
fitting step.

Furthermore, the denominator equations can be reformulated
so that data from two or more FRFs can be used to estimate the
poles. This is called global curve fitting.

Complex Exponential Algorithm Revisited
This algorithm was first discovered by R. Prony in 179510 and

therefore has also been referred to as the Prony algorithm. It is
used for curve fitting impulse response data using the complex
exponential curve fitting model in Eq. 6. Two of the most popu-
lar implementations of this method are the Time Domain Poly
Reference method8 and the Ibrahim Time Domain method.9

Two sets of linear solution equations are also created using
the CE method. The first set, called the Toeplitz equations be-
cause of their special form, is solved for the coefficients of the
characteristic polynomial (FRF denominator polynomial). The
poles are then obtained as the roots of the characteristic poly-
nomial. The second set of solution equations, called the Van
der Monde equations, is then solved for the residues. The de-
nominator polynomial equations can also be reformulated so
that data from two or more IRFs can be used for curve fitting.
This yields global estimates of the poles in the same manner
as the RFP method.

The CE method works best with large frequency bands of FRF
data (inverse FFT’d to provide the IRFs) and large numbers of
modes at a time. Although it can be used on smaller frequency
bands of data, it has no means of compensating for the effects
of out-of-band modes like the RFP method. The only means
available is to add extra computational modes to the curve fit-
ting model and discard them later from the results.

Stability Diagram. Since the CE method must compensate
for the effects of out-of-band modes by using extra computa-
tional modes, and since it is numerically stable even for a large
numbers of modes, the best way to use it is with a stability dia-

gram, as shown in Figure 8. A stability diagram is a plot of pole
estimates for different curve fitting model sizes. A typical dia-
gram may display solutions for one mode up to as many as 50
modes. The poles are typically plotted on top of a Mode Indi-
cator function (discussed below). A stability diagram has two
advantages:
1. It helps the user determine how many modes are really con-

tained in a frequency band.
2. By displaying a stable pole estimate for several model sizes,

it confirms that the estimate is correct.

Curve Fitting Steps
In general, curve fitting requires three steps:

1. Determine how many modes are represented in the data.
2. Estimate a pole for each mode.
3. Estimate residues for each mode.
A row or column of residues from the residue matrix corre-
sponding to the same row or column of the FRF, IRF or Re-
sponse Spectrum matrix, is then saved as the mode shape

Mode Indicators. Mode indicator functions are used to help
determine how many modes are represented in a set of experi-
mental data. The number of modes is required in order to

Figure 6. FRF curve fitting models.

Figure 7. RFP solution process.
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Figure 8. Stability diagram.

Figure 9. CMIF indicating three repeated roots.
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specify the curve fitting model size. Both the FRF curve fitting
model (Eq. 14) and the IRF curve model (Eq. 6) involve the same
summation over the number of modes m. Therefore, m must
be determined before using these models.

Modal Peaks Function. Since resonances are manifested by
peaks in FRF or Response Spectrum data, the most straightfor-
ward way to find the number of modes is to count resonance
peaks. Since a single measurement may not contain peaks for
all of the modes, a Modal Peaks Function can be calculated by
summing together squared values of all the measurements in
a data set. Figure 8 shows a Modal Peaks Function as part of
the Stability Diagram.

CMIF. The Complex Mode Indicator Function not only indi-
cates peaks, but it can also indicate closely coupled modes (two
or more modes represented by a single peak) or repeated roots
(two or more modes at the same frequency).11 If multiple ref-
erences of data are used, then closely coupled modes or re-
peated roots can be indicated. Figure 9 shows a typical set of
CMIF curves.

MMIF. The Multivariate Mode Indicator Function can also
indicate closely coupled modes or repeated roots.12 Figure 10
shows a typical set of MMIF curves.

Experimental Results
The RFP and Complex Exponential curve fitting methods

will be applied to three different sets of modal test data. These
three sets of multiple-channel time domain vibration data were
taken from the Z24 highway bridge in Switzerland.13 Each test
was performed under different test conditions.
1. A two shaker test, which provided acceleration response and

excitation force time waveforms in nine measurement sets.
The shakers were driven by uncorrelated random signals
with non-zero spectrum values from 3 to 30 Hz.

2. An impact test, which provided acceleration response time
waveforms, including three reference (fixed) responses, in
nine measurement sets. The impact force was provided by a
100 kg drop weight impactor, but the force was not measured.

3. An ambient test, which provided acceleration response time
waveforms, including three reference (fixed) responses in
nine measurement sets. Excitation was provided by traffic
on an adjacent bridge.

Two excitation forces were used in Case 1, so FRFs were cal-
culated between all response DOFs and the two DOFs where
the shakers were attached. Since no forces were measured in
Cases 2 and 3, only Response Spectra could be calculated for
those two cases.

Ideally, all of the tests should yield the same modal param-
eters. In Case 1, since the bridge was excited with shakers
driven by broad-band random signals, we would expect all of
the modes in the 3 to 30 Hz frequency range to be excited. In
Cases 2 and 3, the excitation bandwidth is unknown.

Case 1 – Multi-Shaker Test. The data acquired for test Case
1 consisted of 117 time waveforms in nine measurement sets.
Each time waveform consisted of 65,536 samples of uniformly
sampled data with a 0.01 sec time increment between samples
(or a 100 Hz sampling rate), giving a total time length of 655.35
sec.

Each measurement set was processed using spectrum aver-
aging, with a 2048 sample spectrum size, 20 spectral averages,
and a Hanning window applied to reduce leakage. The spec-
trum size and number of averages required overlap processing
of 21%, meaning that about 1/5th of the samples from each
sampling window (samples used per spectrum average) were
used in the succeeding sampling window.

A total of 150 FRFs were calculated; 2 columns of an FRF
matrix with 75 unique response DOFs and 2 reference shaker
DOFs. A typical FRF is shown in Figure 11.

Case 2 – Impact Test. The data acquired for test Case 2 con-
sisted of 126 time waveforms in nine measurement sets. Each
time waveform consisted of 8192 uniformly sampled data
points with a 0.01 sec time increment between samples, giv-
ing a total time length of 81.92 sec.

Figure 10. MMIF showing closely coupled modes at 200 Hz.

A typical time waveform is shown in Figure 12. Notice that
the bridge was impacted and allowed to “ring down” 4 times
over the 81 sec acquisition period. Each measurement set was
processed using spectrum averaging, with a 900 sample spec-
trum size and a trigger to begin each sampling window at the
start of an impulse response. Since each signal contained 4
impulse responses, 4 spectral estimates were averaged together
to form the Response Spectrum measurements.

A total of 225 Response Spectra were calculated – 3 columns
of a Response Spectrum matrix with 75 unique response DOFs
and 3 reference DOFs. A typical Response spectrum is shown
in Figure 13.

Case 3 – Ambient Test. The data acquired for test Case 3 con-
sisted of 126 time waveforms in nine different measurement
sets. Each time waveform consisted of 65536 samples of uni-
formly sampled data with a 0.01 sec time increment between
samples, giving a total time length of 655.35 sec. A typical time
waveform is shown in Figure 14.

Each measurement set was processed using spectrum aver-
aging with a 2048 sample spectrum size, 50 spectral averages
and a Hanning window to reduce leakage. The spectrum size
and number of averages caused an overlap processing percent-
age of 69%.

A total of 225 Response Spectra were calculated – 3 columns
of a Response Spectrum matrix with 75 unique response DOFs
and 3 reference DOFs. A typical Response Spectrum is shown

Figure 11. FRF and curve fit overlaid.

Figure 12.  Typical impact time waveform.
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Figure 14.  Typical ambient time waveform.

Table 1. FRF modal frequencies and damping

Frequency (Hz) Damping (Hz)
Mode

1
2
3
4
5
6
7
8
9

CE

0.028
0.089 
0.157 
0.192 
0.389 
0.637 
0.924 
0.459 
0.818

RFP

0.029
0.079 
0.161 
0.151 
0.245 
0.516 
0.855 
0.490 
0.785

CE

3.87
4.82
9.78 
10.5 
12.4 
13.2 
17.3 
19.3 
26.6

RFP

3.88
4.82 
9.77 
10.5 
12.3
13.0 
17.3 
19.3 
26.6

Mode

1
2
3
4
5
6
7
8
9

RFP
(Between

References)

1.00
0.89 
0.94 
0.99 
0.99 
0.74 
0.65 
0.59 
1.00

CE
(Between

References)

1.00
0.97 
0.99 
0.97 
0.06 
0.10 
0.30 
0.17 
0.92

RFP
&

CE

1.00
0.91 
0.99 
0.99 
0.01 
0.11 
0.96 
0.98 
0.98

Table 2. FRF mode shape MAC values.

Table 3A. Impact modal frequencies

Frequency (Hz)
Mode

1
2
3
6
8

Ref 3

3.86
4.79 
9.78 
13.1 
19.5

Ref 2

3.84 
4.80 
9.76 
13.2 
19.4

Ref 1

3.85
4.91 
9.76 
13.4 
19.3

RFP

3.88
4.82 
9.77 
13.0 
19.3

Table 3B. Impact modal damping

Damping (Hz)
Mode

1
2
3
6
8

Ref 3

0.060
0.089 
0.286 
0.730 
0.770

Ref 2

0.073 
0.091 
0.297 
0.580 
0.562

Ref 1

0.049
0.076 
0.230 
1.06 
0.638

RFP

0.029
0.079 
0.161 
0.516 
0.490

Mode

1
2
3
6
8

FRF & Ref 1

0.97
0.40 
0.90 
0.01 
0.90

FRF & Ref 2

0.98
0.26 
0.96 
0.24 
0.93

FRF & Ref 3

0.99
0.97 
0.96 
0.15 
0.94

Table 4. Impact mode shape MAC values.

in Figure 15.

Analysis
The FRFs were curve fit using both the RFP and CE meth-

ods and those modal parameters were used for comparisons
with the Impact and Ambient curve fitting results. A typical
FRF curve fit is shown in Figure 11. Table 1 contains a com-
parison of the modal frequency and damping estimates ob-
tained by the two curve fitting methods. Table 2 contains the
Modal Assurance Criterion (MAC) values between the mode
shape estimates from the two curve fitting methods. MAC val-
ues above 0.9 indicate that two shapes are nearly alike.

MAC values are listed for shapes between the two references
for each method, and between the best shape estimates of the
two methods. The best shape was chosen as the one with the
largest strength (highest average magnitude) between the two
references. The MAC values between references indicate that
both references did not provide the same mode shape for all
modes. Low MAC values between the methods indicate that
even the best mode shape estimates of both methods did not
match for some modes.

Each of the three references of impact Response Spectrum
data were curve fit using both the RFP and CE methods. Fig-
ure 13 shows a typical curve fit of an impact Response Spec-
trum. Table 3 compares frequency and damping estimates from
curve fitting the three references of Impact data with the FRF
modes. Only the results of the RFP method are shown, but the
CE results are similar. Table 4 contains the mode shape MAC
values between mode shapes for each of the three impact ref-

erences and the FRF mode shapes.
Each of the three references of ambient Response Spectrum

data were curve fit using both the RFP and CE methods. Fig-
ure 15 shows a typical curve fit of an Ambient Response spec-
trum. Table 5 compares frequency and damping estimates from
curve fitting the three references of Ambient data with the FRF
modes. Again, only the results of the RFP method are shown
but the CE results are similar. Table 6 contains the mode shape
MAC values between mode shapes for each of the three impact
references and the FRF mode shapes.

Conclusions
Modal parameter estimation was applied to experimental

data that were taken during three separate tests of a concrete
and steel highway bridge. The first test was performed using
two shakers driven by random excitation signals to excite the
bridge. FRFs were calculated during post-processing using
digital signal processing methods that are commonly available
in many multi-channel FFT analyzers. This case represents a
traditional modal test.The second and third test cases are rep-
resentative of operating data tests. In tests similar to these two
cases, it is not possible to control or measure the forces excit-
ing a structure. Yet these results show that meaningful modal
parameter estimates can still be obtained from response-only
(or operating) data.

Mode shapes of the 4 modes common to all tests are shown
in Figure 16. The first bending mode at 3.8 Hz was easily ex-
cited by all three tests and all of the curve fitting results agree

Figure 13.  Impact response spectrum and curve fit overlaid.
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Figure 15. Ambient response spectrum and curve fit overlaid.

Table 5A. Ambient modal frequencies

Frequency (Hz)
Mode

1
2
3
6

Ref 3

3.85
4.92 
9.91 

–

Ref 2

3.86 
4.94 

– 
–

Ref 1

3.85
4.88 
10.1 
12.9

RFP

3.88
4.82 
9.77 
13.0

Table 5B. Ambient modal damping

Damping (Hz)
Mode

1
2
3
6

Ref 3

0.047
0.066 
0.123 

–

Ref 2

0.049 
0.059 

– 
–

Ref 1

0.049
0.092 
0.153 
0.302

RFP

0.029
0.079 
0.161 
0.516

Mode

1
2
3
6

FRF & Ref 1

0.99
0.53 
0.38 
0.57

FRF & Ref 2

0.98
0.85 

– 
–

FRF & Ref 3

0.93
0.81 
0.75 

–

Table 6. Ambient mode shape MAC values.

closely with one another. The second mode – a transverse tor-
sional mode of the bridge – was not excited as well in the am-
bient test, so its mode shape estimates have significant errors,
with MAC values less than 0.90.

As expected, Case 1 yielded the best results. Whenever FRFs
can be measured under controlled conditions where the exci-
tation forces are measured, the modal parameter estimates are
usually the most accurate. It is clear from the measurements
that fewer modes were excited by impacting (Case 2) than with
the two shakers, and even fewer modes were excited by ambi-
ent excitation (Case 3). Nevertheless, the results show that the
first two modes (3.8 and 4.8 Hz) could be estimated with ac-
ceptable accuracy by curve fitting the operating data from cases
2 and 3.

All of the post-processing and graphics presented in this
article were done with the ME’scopeVES™ software from Vi-
brant Technology, Inc.
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Figure 16. Mode shape estimates of the bridge.


