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Effects of Windowing on the Spectral Content of a Signal
Pierre Wickramarachi , Data Physics Corporation, San Jose, California

Figure 1. Spectrum of a sine wave with the
Rectangular window: (a) f = f0; (b) f = f0 – ∆f/8;
(c) f = f0 – ∆f/2.

Figure 2. Comparison of spectra for the Rect-
angular window (a) and the Hanning window
(b).

Figure 3. Spectrum of a sine wave with the
Hanning window: (a) f = f0; (b) f = f0 – ∆f/8; (c)
f = f0 – ∆f/2.

Fourier analysis is commonly used to
estimate the spectral content of a mea-
sured signal. When choosing the appro-
priate window, one needs to be aware of
its advantages and pitfalls in order to fit
the measurement situation. The follow-
ing deals with some practical consider-
ations on the effects of windowing.1

The Fourier series assumes periodicity
of the signal in the time domain. An FFT
is actually a Fourier Series performed
upon an interval, Tspan = n∆t where n is
the number of samples observed and ∆t
is the constant time between samples.
Since the sampled time signal may not
exactly contain an integer number of pe-
riods, this assumption may not be truly
satisfied.

In effect, the truncation of the original
signal corresponds to its multiplication
with a Rectangular window of length
Tspan. The Fourier series then assumes
that the signal is the succession of ver-
sions of this truncated signal in the time
domain leading to a spectrum with har-
monic components at frequencies equal
to multiples of ∆f = 1/TSpan.

Let us examine the situation with a sine
wave of frequency f0. In theory the cor-
responding spectrum is a peak at f0.
When a noninteger number of periods is
acquired, this results in signal leakage,
characterized by the smearing of the
spectrum. Figure 1 illustrates this phe-
nomenon by comparing three cases,
where f is the sine wave frequency and ∆f
the frequency resolution.

Case 1(a) allows us to determine the
ideal situation where an integer number
of periods (200) is set for the signal gen-
erator. The corresponding frequency is f0
= 508.626 Hz. In practice this case is not
likely to occur, because the frequency
that is being measured rarely falls on a
frequency line. On the other hand, case
1(b) represents a typical situation where
the leakage is clearly visible. Here f has
been slightly decreased, which results in
a non-integer number of periods within
Tspan. The maximum leakage is obtained
in case 1(c). Why? The answer lies in the
spectrum of the window as shown in Fig-
ure 2(a).

The FFT emulates a bank of parallel
bandpass filters with the center frequen-
cies exactly centered on integer multiples
of ∆f. The width and shape of each filter
is identical and are given by the spectrum
of the observation window shown in Fig-
ure 2. Note that the filter shape is char-
acterized by multiple lobes separated by
zero values at multiples of ∆f and that all
filters in the bank ‘overlap.’

When f of an applied sine corresponds
exactly to a filter center-frequency [case
1(a)], only that filter will respond because
f corresponds to an amplitude notch of all
other filters in the bank. Conversely, if f
is not exactly on a frequency line [case

1(b)], the energy at f is smeared over ad-
jacent frequencies because the secondary
lobes of all other filters overlap f with
nonzero gain and these filters respond in
proportion to this gain. This perverse ef-
fect is maximum when f = f0 – ∆f/2 [case
1(c)], since the frequency f coincides with
the peak of each side lobe.

If side lobes could be reduced in am-
plitude, this error would decrease as
well. This is why people have used a
number of windows to weight the trun-
cated signal such that the starting value
and the ending value are zero. This pro-
duces a signal that appears periodic in
Tspan, meeting the basic assumption of the
Fourier Series. Weighting avoids the
sharp discontinuities induced by the
Rectangular window and yields reduced-
amplitude side lobes as desired. Figure
2(b) shows the spectrum of the well
known Hanning2 window. Observe that
the amplitude of the first side-lobe is re-
duced from –13.2 dB to –32.2 dB. More
importantly, notice that the amplitudes of
subsequent side-lobes fall off at 60 dB/
decade as opposed to 20 dB/decade for
the Rectangular window.

These improvements come at a cost.
The width of the primary lobe essentially
doubles, eliminating the first set of zero-
amplitude points. The primary lobe of the
Rectangular window has a –3 dB band-
width of 0.85 ∆f. That of the Hanning
window is increased to 1.4 ∆f. However,
the benefits far outweigh the cost as
shown in Figure 3. Here the Hanning win-
dow is applied to the three cases previ-
ously examined. Indeed results with the
Hanning window are close to case 1(a)
done with the Rectangular window (ideal
case).

However, the Hanning window exhib-
its a deficiency. Like the Rectangular win-
dow, its primary lobe has significant cur-
vature or ‘ripple’ across the ±∆f band.
When a sine falls “exactly between cells,”
its amplitude is reported 15% (–1.42 dB)
lower than it would be at the filter cen-
ter-frequency. The Rectangular window
exhibits this same fault, but more pro-
nounced at 36% (–3.92 dB).

When the application requires an accu-
rate measure of peak amplitude (e.g. ro-
tating machinery), the Flat-Top window

is usually selected. Its spectrum is char-
acterized by a nearly flat main lobe across
fi ±∆f, which reduces maximum ampli-
tude error to 0.1%! As for the side lobes,
their amplitudes remain at –70 dB below
that of the main lobe, which strongly re-
duces leakage. However this window
must be used with care, particularly if the
periodic signal of interest is ‘buried’ in
broadband noise. The Flat-Top window
should only be applied to clean periodic
waveforms. It is indeed a poor choice for
random-signal or mixed-signal analysis
because it lacks selectivity. A Hanning
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Table 1. Comparison of windows for FFT analysis.
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Figure 5. Transfer functions: (a) baseline; (b)
with Rectangular window; (c) with Exponential
window.

Figure 6. Time responses: (a) with Rectangular
window; (b) with Exponential window.

Figure 4. Comparison of spectra of a sine wave
buried in random noise with: (a) the Flat-Top
window; and (b) the Hanning window.

window is a far better choice when try-
ing to find a tone masked by random
background. The Flat-Top window lacks
selectivity for two reasons. First, its pri-
mary lobe is over twice as wide as that of
the Hanning window suppressing addi-
tional zeros. Second, there is no roll-off
of the side-lobes with frequency. Both of
these characteristics render the Flat-top
window sensitive to broadband noise,
compromising its ability to ‘find ’  a
masked tone.

A window’s sensitivity to broadband
random noise is standardly characterized
by its equivalent noise bandwidth Nb.
This one-number description of a compli-
cated shape may be found as follows.
Consider an ideal (unity gain) rectangu-
lar ‘brickwall’ bandpass filter and an FFT
filter that results from applying a window
in time domain. When both filters are
excited with the same random signal, Nb
would simply be the frequency width at
which the ‘brickwall’ filter passes the
same power as the FFT filter. Nb is the
‘Hz’ reported in a g2/Hz Power Spectral
Density measurement.

While a Flat-Top window has a noise
bandwidth of 3.43 ∆f, a Hanning window

exhibits an Nb of only 1.5 ∆f. Note that a
Rectangular window has a noise band-
width equal to ∆f, but it is unsuitable for
random analysis due to its previously
described leakage. Figure 4 compares
spectra of a sine wave in random noise
using the Hanning and Flat-Top win-
dows. Note the superior dynamic range
between the sine peak and the noise floor
provided by the Hanning window.

So when would the Rectangular win-
dow be actually an appropriate choice?
When the waveform is a transient and the
window is large enough to contain the
entire transient. This would apply to
impact testing for instance, where the
response decays from the time of impact.
Note that Tspan should be chosen large
enough such that the response has suffi-
ciently decayed to avoid any leakage due
to the discontinuity at the block end.

When Tspan is not large enough to con-
tain the entire transient (as with lightly
damped structures), leakage errors can
result from the truncation of the signal.
Often people use the Exponential win-
dow to ensure a sufficient decay at t =
Tspan. This approach is not always ad-
equate, because it adds some artificial
damping to the transfer function, as
shown in Figure 5(c). Here a Single De-
gree of Freedom module from the Men-
tor3 system provides the desired transfer
function for this example. The damping
coefficient is adjusted to obtain a lightly
damped system. Then the averaged trans-
fer function is measured by 5 impact
tests, with excellent frequency resolution
(large Tspan). This constitutes our baseline
[Figure 5(a)]. To exaggerate the different
windowing effects in this example, the
sampling parameters are modified such
that Tspan = 98.304 msec. The natural fre-
quency of the baseline is set to ω =
162.125 Hz in order to be close to a fre-
quency line. Hence the leakage observed
in case 1(a) is avoided. Then the impact
test is performed with the Rectangular
window [Figure 5(b)] and the Exponen-
tial window chosen with an appropriate
decay rate [Figure 5(c)]. Although both
windows give a good estimate of ω, the
Rectangular window achieves a better es-
timate of the amplitude (error of 1 dB as
opposed to 6 dB with the Exponential
window). The time responses are dis-
played in Figure 6. Table 1 summarizes
the different characteristics of the win-
dows mentioned here.
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