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The shock response spectra computed directly from the time
histories of simulated stationary vibration data are compared
to the expected values for the maximum response peaks com-
puted from the autospectra of the data. The data are assumed
to be random with a Gaussian probability density function and
the results reveal excellent agreement when that is truly the
case. However, for the complex vibration environment gener-
ated by a repetitive shock machine, the shock response spec-
tra computed directly from the time history data are higher
than the expected values. This indicates that for the same
autospectrum, the damage potential of a repetitive shock
machine is greater than that for a truly random vibration. The
same conclusion undoubtedly applies to many other complex
but not random vibration environments such as those pro-
duced by reciprocating engines.

The shock response spectrum (SRS) is broadly defined as the
peak response of a simple oscillator (single degree-of-freedom
system) to an excitation as a function of the natural frequency
of the oscillator.® It was originally introduced to evaluate the
damage potential of mechanical transients, but can also be used
to evaluate the damage potential of stationary random vibra-
tions as measured by the peak value for the response of a simple
oscillator exposed to the vibration over a finite duration.23 This
latter application of the SRS directly competes with the use of
statistical procedures to predict the peak value for the response
of a simple oscillator under the assumption that the excitation
to the oscillator is a stationary random process.2# Since the
SRS does not require the excitation to be random, a direct com-
parison of SRS results to a statistical computation of the maxi-
mum value of the oscillator response can be used to evaluate
the randomness of the excitation. Such a comparison has been
used to detect transients in otherwise stationary random vibra-
tion signals.®> Of interest here is the use of such a comparison
to detect differences between the damage potential of random
vibrations versus the complex (sometimes called quasi-ran-
dom) vibrations produced by pneumatic hammer-type vibra-
tion test machines, commonly referred to as repetitive shock
machines.

Statistical Computation of Shock Response Spectrum

The computation of the shock response spectrum (SRS) for
a stationary random vibration involves the determination of the
maximum value for the response of a lightly damped, linear
oscillator to the excitation, as illustrated in Figure 1a. Assum-
ing an acceleration excitation x(t) produces an acceleration
response y(t), the frequency response function of the simple
oscillator is given by®
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where f_ is the undamped natural frequency and ¢ is the damp-
ing ratio of the oscillator. Assuming the acceleration excitation
X(t) is random with an autospectrum G (f), the response y(t)
of the oscillator will be random with a narrow bandwidth, as
shown in Figure 1b, and will have a standard deviation ap-
proximated by®
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If it is further assumed the autospectrum of the excitation is
relatively uniform at frequencies near the natural frequency f,,
then Equation 2 is closely approximated by®
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It should be mentioned that the standard deviation of the os-
cillator response is often computed in terms of velocity rather
than acceleration,?2 because the stress produced by the reso-
nant response of a structure is proportional to velocity.” For
the application at hand, however, only comparisons of relative
values are of interest, so acceleration units are used since they
are more familiar to most shock and vibration engineers.

It is recommended that a conservative maximum value for
the response of the oscillator to a stationary random excitation
be estimated by?2:3
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where
f, = undamped natural frequency of the oscillator
T = duration of the excitation
g, = standard deviation of the oscillator response, as de-
fined in Equation 2
P(T) = probability that the value Y will be exceeded dur-
the exposure duration T
For design purposes, a probability of P(T) = 0.05 (5%) is
commonly assumed in Equation 4.23 However, to estimate an
SRS, the expected value of Y is needed since it corresponds
to the average value of the SRS as normally computed. The ex-
pected value and standard deviation for the maximum response
of the oscillator is estimated by*
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where all terms are as defined in Equation 4. It follows that the
normalized random error (coefficient of variation) for an esti-
mate of the maximum response of the oscillator is given by
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where the hat (©) denotes “estimate of.” Note from Equation 7

that the normalized random error for estimates of the maximum

response value will be less than ¢ < 0.10 (10%) for f T > 150.
The results in Equations 4 through 7 involve two critical

assumptions:

1. The response y(t) of the oscillator has a normal (Gaussian)
probability density function. As long as the excitation x(t)
is random and the oscillator response is linear, even if x(t)
is not Gaussian, this assumption is often acceptable because
the narrow bandwidth filtering of the oscillator suppresses
deviations from the Gaussian form in the response y(t).8

2. The peak values of the oscillator response are statistically
independent. It is clear from the relatively smooth variations
in the envelope for the peak values of the oscillator response
in Figure 1b that the peak values are not statistically inde-
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Figure 1. lllustration of simple oscillator: (a) schematic diagram. (b) time
history response to random excitation.
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Figure 2. Predicted versus computed shock response spectrum for
Gaussian random data.

pendent. However, computer simulation studies indicate the
statistical independence assumption is acceptable for values
of Y/, > 3.5, which corresponds to f T > 250 for a Gaussian
random process.?

Comparisons of Estimated and Computed Results

Computations were performed on data produced by two
sources: (a) a computer generated random signal simulating a
Gaussian random vibration, and (b) the signal from an accel-
erometer mounted on the table of a commercial repetitive shock
(RS) machine. In both cases, an autospectrum (PSD) was com-
puted using a conventional fast Fourier transform (FFT) based
PSD analysis algorithm,® and a shock response spectrum (SRS)
was computed using the “Ramp-Invariant Method.”® All analy-
ses were performed over T = 6.5 sec of data that were digitized
using a sampling rate of 25,000 samples per sec. The lower fre-
quency limit for the analyses was fixed to 40 Hz to comply with
the second assumption after Equation 7. The upper frequency
limit was fixed at 2500 Hz (10% of the sampling rate) to restrict
the magnitude error in the SRS values to less than 5%2° as well
as to suppress an inherent bias error in the Ramp-Invariant
Method.11 Damping ratios of 5% (¢ = 0.05 corresponding to Q
=10) and 1% ({ = 0.01 corresponding to Q = 50) were used for
all standard deviation and SRS computations. The frequency
resolution for the analyses was 10 Hz for the PSD values and
1/12 octave band for the SRS computations. However, all PSD
and SRS results are presented at 1/3-octave band center fre-
quencies for clarity.

Random Data. The simulated random vibration data were
generated with a PSD of G, (f) = 0.003 g2/Hz over the frequency
range from 40 to 2500 Hz. The directly computed SRS for the
simulated random vibration data, the expected value for the
maximum response given by Equation 5 and the P(T) = 0.05
value given by Equation 4, all computed with 5% damping, are
compared in Figure 2. Note in Figure 2 that the directly com-
puted SRS values are in good agreement, on average, with the
predicted values of Equation 5 and are just enveloped by the
P(T) = 0.05 values of Equation 4, as would be expected with
19 SRS values. It is clear from these results that Equations 3
and 4, using the standard deviation computed from Equation
2, provide accurate results for truly random data.

RS Machine Data. The probability density function for the
table vibration produced by the repetitive shock (RS) machine
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Figure 3. Probability density function for the table vibration of a repeti-
tive shock machine.
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Figure 4. Power spectral density function for the table vibration of a
repetitive shock machine.

used for these studies is shown in Figure 3. Note that the prob-
ability density function for the table motion in terms of accel-
eration values deviates substantially from the Gaussian form.
These results are consistent with the findings in Henderson12
for a different RS machine and, further, would be intuitively
anticipated for a vibration response that is produced by a se-
quence of transients rather than a stationary random vibration.
However, it should be mentioned that these particular RS ma-
chines are both of an early design. Studies of an RS machine
of more recent design revealed a table motion that is much
closer to the Gaussian form.

The PSD values of the vibration generated by the RS machine
at the 1/3-octave band center frequencies used for the compu-
tations in Equations 2 through 5 are shown in Figure 4. The
directly computed SRS values for the RS machine vibration
data, the expected value of the maximum response given by
Equation 5 and the P(T) = 0.05 value given by Equation 4, all
computed with 5% damping, are compared in Figure 5. A simi-
lar comparison of the values computed with 1% damping are
shown in Figure 6. From the results in Figure 5, it is seen that
the directly computed SRS values with 5% damping exceed the
predicted values of Equations 4 and 5 at most frequencies by
margins of up to 3:1. It is clear that Equations 4 and 5, using
the standard deviation computed from Equation 2, do not pro-
vide accurate results for this particular RS machine vibration.
That is, a component exposed to the excitation of the RS ma-
chine would have a substantially higher peak response than
predicted by either Equation 4 or 5. On the other hand, the re-
sults with 1% damping in Figure 6 also reveal higher computed
SRS values than predicted by Equations 4 and 5 at most fre-
quencies, but by smaller margins.

The results in Figures 5 and 6 might be explained as follows.
Repetitive shock machines produce what is essentially a com-
plex periodic vibration with natural and sometimes intention-
ally introduced random modulations of both magnitude and
frequency. Hence, the vibration does have a limited random
character. The half-power point bandwidth for a simple oscil-
lator is approximated by® Bhp = 2{f where the bandwidth of
the oscillator is directly proportional to the damping ratio. The
narrow bandwidth filtering operation of the simple oscillators
essentially invokes the Central Limit Theorem and thus sup-
presses deviations from the Gaussian form where the narrower
the bandwidth, the greater the suppression of non-Gaussian
characteristics.® It follows that the narrower bandwidth for the
1% damping produces a more Gaussian response that makes
Equations 2 through 4 more accurate. This conclusion is con-
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Figure 5. Predicted versus computed shock response spectrum for the
table vibration of a repetitive shock machine. Assumed damping ratio
= 5%.

sistent with findings that show the response of lightly damped
cantilever beams exposed to the vibration produced by an RS
machine is quite close to the Gaussian form, at least at natural
frequencies above about 500 Hz.13

Conclusions

The shock response spectra computed directly from the time
histories of vibration data were compared to the expected value
for the maximum response peaks computed from the autospec-
tra of the data, assuming the data are random with a Gaussian
probability density function. The results reveal excellent agree-
ment for simulated vibration data that are in fact random in
character. However, for the complex vibration environment
generated by a repetitive shock machine, the shock response
spectrum values computed directly from the time history data
with 5% damping (a common damping ratio for many struc-
tural assembles) are substantially higher (by up to 3:1) than the
expected value. The discrepancies between the directly and
indirectly computed shock response spectra are smaller when
computed with 1% damping but the directly computed results
still exceed the indirectly computed results at most frequen-
cies. This indicates that for the same autospectrum, the dam-
age potential of a repetitive shock machine is greater than that
for a truly random vibration. This same conclusion undoubt-
edly applies to many other complex, but not truly random vi-
bration environments, such as those produced by reciprocat-
ing engines.
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Figure 6. Predicted versus computed shock response spectrum for the
table vibration of a repetitive shock machine. Assumed damping ratio
=1%.
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