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Automotive and machinery reliability engineers rely
heavily on order analysis for examining rotating machinery.
While many different techniques for order analysis have been
developed, this article introduces the Gabor expansion-based
order tracking approach. Compared to other existing order
analysis methods, this technique is not only more intuitive and
more powerful, but can also be used for applications where
rotational speed information is not available.

Automobile and machinery engineers regard order analysis
as one of the most powerful methods for analyzing rotating
machinery (see front cover). In contrast to the time-invariant
harmonic, which uses Fast Fourier Transforms (FFTs), engi-
neers traditionally achieve order analysis by resampling or
using an adaptive filter-based technique, such as the Vold-
Kalman filter.7 In this article, we introduce the Gabor expan-
sion as an alternative to resampling or adaptive filter-based
methods for order analysis problems. In contrast to the Vold-
Kalman filter, the Gabor expansion is more intuitive, more
powerful and can even be used when rotational speed infor-
mation is not available.

This article begins with a discussion of some real world chal-
lenges faced by industries using order tracking analysis. Next,
the limitations of some FFT-based methods are addressed and
the Gabor expansion-based solution is presented. Applications
from various industrial equipment manufacturers will illus-
trate the effectiveness of order analysis. Finally, the article
concludes by comparing analyses performed by Gabor expan-
sion and adaptive filter-based approaches.

Real World Challenges
Many industries rely on order analysis during the design,

manufacturing and testing phases of product development.
Before introducing the Gabor expansion, we will first briefly
review the basics of classical time-invariant analysis and the
challenge for time-varying harmonic analysis.

Harmonics usually refer to frequencies that are integer (or
fractional) multiples of a fundamental frequency. A simple
example encountered in everyday life is the sound generated
by a running engine and its combination of various vibrations.
Although the causes of vibrations are very different, some may
be associated with the bearings and others may be associated
with the cooling fan. The vibration frequencies are all functions
of the fundamental frequency – engine rotation speed or RPM
(revolutions per minute). For instance, the vibration frequency
related to the bearing may be equal to the fundamental fre-
quency multiplied by the number of balls inside the bearing
housing. The vibration frequency related to the cooling fan may
be equal to the fundamental frequency multiplied by the num-
ber of blades. Traditionally, automobile and machinery reliabil-
ity engineers name the rotational speed (the fundamental fre-
quency) as the first order and a related mth harmonic as the mth

order. Accordingly, the resulting harmonic analysis is referred
to as order analysis. By analyzing the amplitudes and phases
of different orders, engineers can often determine whether an
engine is running normally.

For an illustrative look at the uses of order analysis, consider
the cover photograph, which depicts a factory acceptance test
of a 3000 HP, 3600 RPM induction motor manufactured by
TECO-Westinghouse. Using National Instruments PXI hardware
and LabVIEW™ software, engineers created a test system ca-
pable of order tracking and analysis as well as balancing and
electrical performance testing. To illustrate the need for order
analysis, we conducted a similar test on a 4-pole electrical
motor (a PC cooling fan).

The need for order analysis is apparent when performing

factory acceptance testing of industrial motors, engines, com-
pressors, generators, turbines and other industrial equipment.
Equipment manufacturers such as TECO-Westinghouse Motor
Co. design these factory acceptance tests to include run-up and
coast-down tests where rotational speed changes over time.
Here it is paramount to track phase and amplitude of the 1st,
2nd and other key orders for verification of machine perfor-
mance. These measurements are also used to establish operat-
ing vibration benchmarks for setting alarms, operating speeds,
etc. TECO-Westinghouse is one such company that performs
extensive vibration testing on electric motors prior to customer
shipment.

Another example comes from the automotive industry where
order analysis is an important tool for examining the loudness
of engine components. To serve customers in the automotive
industry, Roush Industries provides testing services and prod-
ucts to analyze the rotational harmonics of automotive com-
ponents. Their Gabriel application performs order domain
analysis as part of their investigations into vibratory and acous-
tic responses of automotive mechanical systems.

An additional automotive example is Roush Industries’
BrakeDAQ, which was designed to replace a manual system
that required subjective driver ratings of brake noise. Results
were completely subjective with no correlation of vehicle pa-
rameters and noise. As a result, Roush was challenged with
correlating vehicle parameters and brake noise, managing and
storing large amounts of data, conducting real-time brake noise
analysis, and objectively determining noise ratings during
event-based acquisition. Their LabVIEW-based solution allows
users to design a custom graphical interface and define each
channel monitored. The frequency and SPL of each brake noise
event can be replayed, allowing easy correlation of noise with
all vehicle parameters (speed, temperature, humidity, brake
pressure, etc.). Thus, results can easily be viewed while in-
vehicle and brake noise can be objectively quantified.

Case Study
A test was conducted using a 4-pole electrical motor with a

tachometer pulse output (two pulses for each revolution),
measured with a National Instruments data acquisition board
and LabVIEW. The test equipment and setup are shown in Fig-
ure 1 and typical measurement results are shown in Figure 2.
Since the motor contains four poles, we expect to observe 4th,
8th and 12th orders – that is, harmonics with frequencies at 4,
8 and 12 times the rotation speed. In addition, the fan has 7
blades, so we also expect to observe 7th, 14th and 21st orders –
harmonics at 7, 14 and 21 times the rotation speed.

The data shown in Figure 2 were collected while the motor
was running at a constant 3000 RPM (50 Hz). The bottom plot
depicts the signal from an accelerometer mounted on the mo-
tor. The plot on the left shows the conventional FFT-based
power spectrum. In the middle is a STFT (short-time Fourier
transform or windowed Fourier transform) based spectrogram
computed by applying a 2048 point Hanning window. While
the x-axis indicates the time, the y-axis represents frequency.
The signal’s energy at particular time t and frequency f is char-
acterized by the color map on the right of the STFT plot.

When the rotational speed is constant at 3000 RPM (50 Hz),
we can clearly see a 4th (at 200 Hz) and 7th order (at 350 Hz)
from both the FFT-based power spectrum and the STFT-based
spectrogram. In this case, both FFT-based and STFT-based
methods work well. Generally speaking, when the RPM (or fun-
damental frequency) does not change with time, the FFT can
be effectively used to compute the phase and magnitude of each
individual order of interest.

However, the frequency associated with the first order may

Gabor Expansion for Order Tracking
Shie Qian , National Instruments Corporation, Austin, Texas



19SOUND AND VIBRATION/JUNE 2003

change, such as when the electrical motor or engine speed
changes. In that case, the FFT-based method will no longer be
applicable. Figure 3 shows two synthetic linear chirp signals.
The signal’s frequency in Figure 3a increases over time,
whereas the signal’s frequency in Figure 3b does not. Compar-
ing FFT-based spectra of these two linear chirp signals, we can
see that the signal’s frequency bandwidth in Figure 3b is wider
than its counterpart in Figure 3a. It can be shown mathemati-
cally that the signal’s frequency bandwidth is proportional to
the rate at which the signal’s frequency and amplitude change.6

The faster the change of frequencies or amplitudes, the wider
the corresponding frequency bandwidth. As the fundamental
frequency bandwidth widens, the bandwidth of related har-
monics will also become wider. Finally, as illustrated in Fig-
ure 4, different harmonics will overlap in the frequency do-
main. In this case, the conventional FFT-based power spectrum
will no longer be able to distinguish the vibrations caused by
different sources (see Figure 5). When the fundamental fre-
quency evolves over time, the resulting harmonics are time
varying. Based on the definition, the term ‘order’ – used by au-
tomobile and machinery reliability engineers – covers both
time-invariant and time-varying harmonics. Therefore, order
analysis can be considered a general harmonic analysis.

Consider the large plots in the middle of Figures 4a and Fig-
ure 5. It is interesting to note that regardless of the change in
RPM (or fundamental frequency), we can always clearly iden-
tify different orders (or harmonics) through a STFT-based spec-
trogram. This suggests that STFT is a better tool for order analy-
sis (or general harmonic analysis). In fact, STFT is not only
good at characterizing time-invariant harmonics, but is also

suitable for time-varying harmonics. Because a hidden fault is
usually much easier to discover at engine run-up/run-down
than at a constant RPM, the technique of order analysis (or gen-
eral harmonic analysis) is very important for engine diagnos-
tics, as well as many other structural dynamics.

As shown in Figures 3, 4 and 5, STFT offers more insight into
the physical process than the FFT, but it is generally not in-
vertible. In some applications, engineers do need time wave-
forms of particular orders. Having corresponding time wave-
forms allows further analysis, such as cross-correlation. Order
tracking refers to the process of recovering the time waveform
of a particular order. How do we perform time-varying har-
monic analysis? Can we extract time waveforms of desired or-
ders from a STFT spectrogram directly?

Solving the Challenges
Due to the limitation of the FFT mentioned in the previous

section, engineers commonly use the short-time Fourier trans-
form (STFT) for visualizing orders of rotating machinery. In
contrast to the classical FFT that describes signals in the time
or frequency domain separately, the STFT characterizes signal
magnitude and phase in the time and frequency domain simul-
taneously. Although it does offer insight into the physical pro-
cess, STFT is usually not invertible. In other words, from a
given STFT, one cannot extract a time waveform of particular
orders. However, we can recover a time waveform from the
modified STFT by the Gabor expansion with special care. With-
out going into mathematical detail, consider the following
example. For a more in-depth mathematical analysis, consult
Reference 6.

The so-called Gabor expansion was first introduced in 1946
by Dennis Gabor, a winner of the 1971 Nobel physics prize for
his contributions to the principles underlying the science of
holography. However, it was not until recently that the Gabor
expansion has been used for processing signals whose fre-
quency contents evolve with time, such as order analysis.

For a given set of discrete time data samples s[k], a modi-
fied STFT is computed by

where        denotes preprocessed data samples s[k] (i.e., peri-
odic extension). The parameters ∆M and N represent the dis-
crete time sampling interval and the total number of frequency
bins, respectively.

From a filter bank point of view, N is nothing more than the
number of channels and ∆M is the decimation factor. We can
roughly consider L as the length of the sequence s[k]. The in-
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Figure 2. When the rotational speed of the fan is constant at 50 Hz (or
3000 RPM), from both the conventional FFT-based power spectrum and
STFT-based spectrogram, we can clearly identify the orders caused by
poles (at 200 Hz, 400 Hz) and blades (at 350 Hz).

Figure 1. Top – The PXI-based data acquisition system contains 24 chan-
nels of 24-bit dynamic signal acquisition, multiple temperature, pres-
sure, and tachometer inputs, and a 6 ½ digit DMM. Bottom – A 4-pole
motor drives the unit under test, a seven-blade cooling fan.
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teger M in Eq. 1 indicates the total number of time points, that
is, M = L/∆M. The total number of coefficients cm,n is equal to
the product MN. In many references, the modified STFT in Eq.
1 is also referred to as the discrete Gabor transform. Accord-
ingly, cm,n is named the Gabor coefficient.

The ratio N/∆M determines the Gabor sampling rate. For
numerical stability, the Gabor sampling rate must be greater
than or equal to one. Critical sampling occurs when N is equal
to ∆M ,  while N/∆M  > 1 is known as oversampling. For
oversampling, the number of Gabor coefficients cm,n is more
than the number of original data samples s[k]. In this case, the
transform in Eq. 1 contains redundancy from a mathematical
point of view.

If all requirements mentioned above are satisfied, we can
recover the original data samples by

that is, the summation of a group of weighted time-shifted and
frequency modulated window functions h[k]. Because it was
first proposed by Dennis Gabor, Eq. 2 is traditionally known
as the Gabor expansion.

The key issue of implementing the Gabor expansion is the
selection of window functions h[k] in Eq. 2 and γ[k] in Eq. 1.
Many different implementation schemes for the discrete Gabor
expansion have been proposed over the years.2 The one used
in this article is an extension of the method originally proposed
by Wexler and Raz.8 This method guarantees the lengths of the

analysis and synthesis window functions to be the same, which
is a very useful property for DSP implementation. The reader
can find a comprehensive treatment of window design from
Reference 6. Note that the positions of the window functions
h[k] and γ[k] can be interchanged. That is, either function can
be used as the synthesis or analysis window function. As a re-
sult, h[k] and γ[k] are referred to as dual functions.

At first glance, the pair consisting of the discrete Gabor trans-
form in Eq. 1 and the discrete Gabor expansion in Eq. 2 seems
to provide a feasible vehicle for converting an arbitrary signal
from the time domain into the joint time-frequency domain or
vice versa. As a matter of fact, it is only true for ∆M = N (criti-
cal sampling). For oversampling (as is the case for most appli-
cations), the Gabor coefficients are the subset of entire two-
dimensional functions. In other words, for an arbitrary
two-dimensional function, there may be no corresponding time
waveform.

However, it can be shown6 that if the functions h[k] and γ[k]
are identical, then Gabor coefficients of the resulting time
waveform will be optimally close, in terms of the least square
error, to the modified Gabor coefficients wm,ncm,n, where wm,n
denote the user defined weighting function. Note that the above
conclusion holds regardless of the selection of the weighting
function wm,n. If wm,n is limited to binary values (that is, ei-
ther one or zero), then it behaves as a mask, preserving cm,n
when wm,n = 1 and removing cm,n when wm,n = 0. Under cer-
tain conditions of this case, we can achieve a time waveform

Figure 3. (a) The signal’s frequency bandwidth is proportional to the
rate of the signal’s frequency change. The faster the frequency changes,
the wider the corresponding frequency bandwidth. (b) While the fre-
quency change rate of the linear chirp signal is equal to zero, the corre-
sponding frequency bandwidth is minimized.
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Figure 4. (a) As the fundamental frequency bandwidth becomes wide,
the bandwidth of related harmonics will become wide, too. Finally, dif-
ferent harmonics will overlap in the FFT-based spectrum. (b) For con-
stant RPM (or constant frequency), both the FFT-based power spectrum
and the joint time-frequency plot clearly identify three distinct harmon-
ics.
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Figure 5. When different orders overlap in the frequency domain, the
conventional FFT-based power spectrum will no longer be able to dis-
tinguish the vibrations caused by different sources, whereas the STFT
can. Hence, the STFT is a better tool for order analysis.

Figure 6. The fourth and seventh orders extracted by the Gabor expan-
sion-based method. While the fourth order in (a) relates to the number
of poles, the seventh order in (b) is directly associated with the number
of fan blades. Figure 6b shows that the vibration caused by the cooling
fan blades will get substantially larger when the fan speed changes
(passing the resonant frequency).

whose Gabor coefficients are exactly inside the area defined
by the mask function wm,n. Readers who are interested in this
topic can consult Reference 9.

Finally, making the analysis and synthesis window functions
identical (γ[k ]  and h[k ])  normally requires significant
oversampling. For the sake of memory consumption and com-
putation speed, we usually seek the orthogonal-like Gabor
transform.6 In this case, we can often have a very similar pair
of dual functions with a relatively low oversampling rate.

Results
This section considers several examples showing the effec-

tiveness of the Gabor expansion method. The testing illustrated
in Figure 6 used a 4-pole electrical motor. The analysis func-
tion is a 2048-point Hanning window. The number of frequency
bins N is equal to the window length Lw. The oversampling rate
is four, which is a 75% overlap. In this case, the difference be-
tween the analysis and synthesis windows is negligible. Con-
sequently, the distance between the masked Gabor coefficients
and that of the extracted time waveform, in the sense of the
mean square error (MSCE), is minimal because the analysis and
synthesis window are almost identical. By limiting the weight-
ing function wm,n to binary values, the resulting weighting
function behaves as a mask, preserving cm,n when wm,n = 1 and
removing cm,n when wm,n = 0. The center frequency of the se-
lected order is automatically computed from the rotational
speed, whereas the bandwidth of the weighting function is
manually selected.5

The results of the Gabor expansion-based order tracking
analysis of a 4-pole electrical motor are shown in Figures 6a
and 6b. This shows how we extract the 4th and 7th orders: the
7th order directly associates with the number of fan blades
while the 4th order relates to the number of poles. It is inter-
esting to note that from Figure 6b, the vibration caused by the
cooling fan blades will get substantially larger when the mo-
tor speed passes the resonant frequencies. Generally speaking,
a strong first order usually indicates unbalance while the sec-
ond order often signifies misalignment.

When using Gabor expansion-based order tracking, the
length of the window functions and the lower boundary of the
rotational speed determine the extracting resolution. In Figures
6a and 6b, the sampling frequency is 4000 Hz, and the window
length is 2048 points, so each frequency bin corresponds to
4000/2048 Hz. Because the lower boundary of the rotation
speed is about 19.5 Hz – approximately 10 frequency bins – we
can comfortably distinguish between components with a reso-
lution of 0.1 orders. The longer the window function, the bet-
ter the order resolution. On the other hand, the longer the win-

dow function, the poorer the time resolution. Therefore, we
cannot arbitrarily increase the window length for a good order
resolution.

In addition to the Gabor expansion-based approach intro-
duced in this article, adaptive filters such as the Vold-Kalman
have also been successfully used for order tracking.7 Figure 7
presents the results of an experiment for comparing the Vold-
Kalman filter shape to the Gabor expansion-based approach.
A long sequence of uniformly distributed random noise was
passed through a constant frequency Vold-Kalman filter utiliz-
ing a series of HC (harmonic confidence) factors to sharpen the
filter. Note that bigger HCs require more computational time.
The spectra of these filtered sequences are illustrated at the left
of Figure 7. Next, the identical data were subjected to a Gabor
expansion-based order extraction by using two different mask
widths both centered on 1 kHz. The spectra of these sequences
are shown at the right of Figure 7. These illustrations show that
the Gabor expansion-based approach is far more selective than
even the sharpest of the Vold-Kalman filters, not to mention
computationally faster. This is mainly because the Gabor ex-
pansion-based time-varying filter is a non-causal system,
whereas the Vold-Kalman filter is causal.

In the insets of Figure 7, the spectra of the extracted signal
components are compared more closely to the spectrum of the
original signal. An inspection shows that the Gabor expansion-
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Figure 7. The left graph shows spectra of a broadband random noise
sequence and selected extractions by a 1 kHz Vold-Kalman Filter. The
right graph shows spectra of the same sequence and constant 1 kHz
Gabor extractions with different mask widths. Obviously, the Gabor ex-
pansion-based approach is far more selective than even the sharpest
of the Vold-Kalman filters.

Figure 8. The upper graph is vehicle interior sound pressure for a wide
open throttle sweep with a 5-bin wide mask at 4th order. The lower graph
is the parent signal and 4th order extraction by Gabor order tracking.

Figure 9. 4th order extractions from a wide open throttle sweep by both
Vold-Kalman filter and Gabor order tracking. The Gabor expansion-
based approach duplicates each detail that is present in the Vold-
Kalman extractions. However, it produces a smoother result.

based order extractions reproduce the spectrum of the origi-
nal signal exactly inside the mask, while the Vold-Kalman fil-
ters closely approximate it but do not reproduce it exactly. The
reader can find a more comprehensive comparison in Reference
1.

Although Gabor expansion-based order tracking is clearly
more selective than the Vold-Kalman filter in terms of reject-
ing out-of-band/mask energy, there is a finite width restriction
of the mask in that all spectral artifacts of smearing and leak-
age error should be captured to accurately reproduce the sig-
nal. Using higher over-sampling rates in the time/frequency do-
main is one way to sharpen the image and effectively narrow
the mask width requirement. In Vold-Kalman filtering, the
analogous choice is between filter bandwidth and filter re-
sponse time. The limitation here is that a wide filter may not
be well suited to isolate closely spaced orders from each other.

Consider the example of a full throttle run-up of a vehicle
on the road, including shifts. Order analysis of a signal of this
type defies all traditional methods that are ill equipped to
handle the rapid transient that occurs during the shift. How-
ever, it is a perfect application for both the Vold-Kalman filter
and the Gabor expansion-based method.

The STFT-based spectrogram of the run-up shown in Figure
8 clearly indicates three regions separated by gear changes. A
5-bin wide mask positioned over the fourth order throughout
the sweep is represented as a dark line running throughout the
graph. Figure 9 compares the 4th order component extracted
from the sweep by the Gabor expansion approach to the iden-
tical 4th order component extracted with a Vold-Kalman filter.
Figure 9 also superimposes the envelope of both of these sig-
nal components, which is augmented by two insets to reveal
details. The close comparison of the two methods is obvious.
In fact, the Gabor expansion-based approach duplicates each

detail that is present in the Vold-Kalman extractions, but it
produces a smoother result. This is a direct consequence of the
superior stop-band selectivity of the non-causal Gabor expan-
sion-based approach. Additional optimization of harmonic
confidence may produce a better Vold-Kalman extraction for
this example. However, the fundamental equivalence of the two
methods is clear.

Conclusions
This article introduced a discrete Gabor expansion for order

tracking – a popular application in the automobile industry,
as well as many other areas in which harmonics are driven by
rotating components. The powerful method presented here
gives more insight into the underlying physical process. Be-
cause it is particularly well-suited for interactive analysis, we
can perform order tracking without a tachometer signal, draw-
ing the mask by hand as long as the order is visible and suffi-
ciently resolved.
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