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Shock’n on Shakers
George Fox Lang, Associate Editor

Electrodynamic and hydraulic shakers have become a com-
monly used platform for shock testing. This article reviews
current controller technology to safely and reliably compen-
sate for the mechanical limitations of both types of shakers
in reproducing desired shock excitations.

Controlled hydraulic and electrodynamic shakers have be-
come the preferred test platforms for modest shock tests. While
drop-test (and other) facilities remain necessary for the simu-
lation of extreme shock pulses, the controlled shaker has
proven very cost effective for more routine product qualifica-
tion and seismic evaluation work. Modern DSP shaker control-
lers now do an outstanding job of reproducing desired transient
pulses safely, reliably and repeatably. Their use saves the enor-
mous time of iteratively designing mechanical drop-targets to
provide a required shock profile. One now merely keys in or
selects the desired acceleration-versus-time shock profile or its
shock response spectrum (SRS) and runs the test.

However, a shaker presents some physical barriers to shock
testing. These devices have a limited range of displacement
stroke and exhibit velocity limits (valve or amplifier induced)
that cannot be exceeded without loss of control. The shaker
controller compensates for these shortcomings by employing
a process termed ‘compensation,’ the focus of this article. While
this compensation process is not without flaws, it opens the
range of testing that can be performed on a single laboratory
system enormously.

The Problem
Shock test profiles are typically described by an acceleration-

versus-time history of a few milliseconds duration. Certain
shapes have become the Classical Shock library. These basic
pulse forms stem from prior drop-testing wherein the test ob-
ject starts in free-fall and collides with a target whose elastic
and crush properties determine the test acceleration profile.
The resulting pulse shapes are almost invariably unipolar as
displacement and velocity were not considerations in their
development. When these same profiles are run on a shaker,
velocity and displacement are the primary concern.

Consider the classic half-sine acceleration shock pulse
shown in Figure 2. Since the acceleration is solely in the posi-
tive direction, the velocity at the pulse’s conclusion is posi-
tive and the test object continues to move at this velocity even
though the acceleration has returned to zero. The test object
has displaced during the shock pulse and will continue to dis-
place at constant velocity until arrested by some barrier. With-
out smarter intervention, the stroke limits of a shaker could
provide this barrier with likely expensive and dangerous re-
sults.

A shaker can only operate over a limited range of displace-
ment, its stroke. Within this range it can only operate in a con-
trolled fashion if its velocity limit is not exceeded. Available
amplifier-voltage limits the maximum controlled velocity of an
electrodynamic shaker, while the flow gain of the control valve
dictates the velocity limit of a hydraulic shaker.

Hence, a shock-test can only be run if the resulting displace-
ments fall within the shaker’s stroke range with peak velocity
within system limits. As a matter of practicality, the test must
start from conditions of zero acceleration, velocity and dis-
placement and return to this state at the conclusion. This can
be accomplished by the use of pulse compensation, which is
automatically introduced by the controller. Most controllers
also perform a feasibility analysis before attempting to conduct
the test and will stop impractical application without risking
the shaker system in any way.

Classical Pulses and their Properties
You will note that the motional responses of Figure 2 were

presented in normalized form. Time was divided by the pulse
duration T, acceleration was divided by the peak acceleration
A, velocity was divided by AT and displacement by AT2. These
normalizations are industry-standards, allowing an accelera-
tion pulse and its integrals to be easily over-plotted within a
reasonable graphic range, without concern for the peak value
of the pulse or its duration or the system of measurement units
employed.

The terminal normalized acceleration, velocity and displace-
ment values of such a plot are termed kA, kV and kD, respec-
tively. These coefficients permit a simple and industry-ac-
cepted means of describing the gross motional characteristics
of a shock-pulse. Graphical Table 1 presents these coefficients
(and others) for a variety of Classical Shock waveforms, includ-
ing those employed in compensation.

The motional changes induced by a pulse of Table 1 may be
converted to a physical unit basis in accordance with:

Note that all pulses in this table start and end at zero accel-
eration. For this reason, each has a kA coefficient of zero. Pulses
with non-zero kA will be discussed subsequently. Table 1 also
includes two less common indicators, kSE and kME. These will
be discussed in context of a spectral representation of the
pulses. These indices may be converted to physical units in ac-
cordance with:

Our focus now returns to utility of the three motional coef-
ficients kA, kV and kD. At time = t0, the displacement, velocity
and acceleration of the object under test are                          re-
spectively. Applying a pulse of amplitude A and duration T
changes all of these parameters. At the conclusion of the pulse,
these state-variables relate to the initial conditions in accor-
dance with:

In our initial considerations, we will deal with pulses char-
acterized by kA = 0 and we can simplify the state relationships
to:

Eq. 7 will provide the basis to understand shock-pulse com-
pensation.

Bouncing Back – Basic Compensation
Figure 2 illustrates application of a half-sine pulse to a test
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object initially at equilibrium. At the conclusion of the pulse,
the specimen is displaced positively and moving with a posi-
tive velocity. This can be modeled by Eq. 7 and the coefficients
of Table 1 as:

Clearly, we need to do something to arrest the motion if this
test is to be conducted on a shaker. The obvious solution is to
apply a pulse of opposite sign. To comply with the test speci-
fications, this added pulse should be low in amplitude. For
sake of example, let’s restrict this pulse to be no more than 20
percent of the amplitude of the test pulse. For a given peak
amplitude, the most influential pulse we can use is a rectangle.
This can be concluded by examining the kV and kD factors in

Table 1; those for a rectangle are the largest.
We again apply Eq. 7, now using the rectangle kV and kD fac-

tors in the matrix and the results of Eq. 8 as the input state-
vector. The results are:

Clearly, to arrest motion, the terminal velocity must equate
to zero. That is, the added negative rectangle must be of such
duration that the area above its curve equals that of the area
under the initial half-sine test pulse. That is:

However, we also want the shaker to come to rest at its origi-
nal mid-stroke position. If we fail in this quest, the controller
is obligated to hold the shaker at an offset position by apply-
ing a DC command . . . forever! The displacement at the end of
the pulse, where velocity is zero, is given by:

This is clearly a non-zero result. For a 20% compensation
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Figure 1. Shock testing on an electrodynamic shaker. Mars Exploration
Rover #1 undergoing vertical axis landing loads pulse testing at JPL on
an LDS Model 994 shaker. Photo courtesy of the Jet Propulsion Labora-
tory, California Institute of Technology.

Figure 2. Normalized responses to a half-sine acceleration pulse. Black
– acceleration/A, blue – velocity/AT, red – displacement/AT2.

Figure 3. Using a negative pulse to drive the velocity to zero leaves a
positive displacement of the shaker armature.
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kA = 0.0
kV = 1.0
kD = 0.5
kSE = 1.0
kME = 0.5

rectangle

half-sine haversine

Fandrich

initial-peak sawtoothterminal-pk sawtooth

triangle

sine damped sine

trapezoid

Table 1. Classical shock pulses and various non-dimensional properties.

kA = 0.0
kV = 0.5
kD = 0.1667
kSE = 0.3333
kME = 0.125

kA = 0.0
kV = 0.5
kD = 0.250
kSE = 0.3333
kME = 0.125

kA = 0.0
kV = 0.6366
kD = 0.3183
kSE = 0.5
kME = 0.2026

kA = 0.0
kV = 0.0
kD = 0.1591
kSE = 0.5
kME = 0.0

kA = 0.0
kV = 0.7797
kD = 0.3898
kSE = 0.6855
kME = 0.5

kA = 0.0
kV = 0.5
kD = 0.3333
kSE = 0.3333
kME = 0.125

kA = 0.0
0.5 < kV < 1.0
1.667 < kD < 0.5
0.3333 < kSE < 1.0
0.125 < kME < 0.5

kA = 0.0
kV = 0.5
kD = 0.250
kSE = 0.375
kME = 0.125

kA = 0.0
0.0 < kV < kD
0.0 < kD < 0.1591
0.0 < kSE < 0.5
0.0 < kME 
      < 0.007976
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pulse (B = 0.2A) the rest position of the shaker is:

This result is illustrated in Figure 3.
Simply increasing the duration of the compensating pulse

will not correct the problem. The shaker could be driven to zero
displacement, but would arrive there with considerable nega-
tive velocity as illustrated by Figure 4.

The solution to this conundrum is not intuitively obvious.
The answer is to apply the negative pulse for longer than nec-
essary to bring the velocity to zero, then apply a positive pulse
to drive the velocity back to zero. This solution is illustrated
in Figure 5. Note the terminal state has zero acceleration, ve-
locity and displacement.

The duration of the compensating pulses cannot be chosen
capriciously. Again apply Eq. 7, this time with a matrix repre-
senting a positive rectangular pulse acting upon the input state-
vector provided by Eq. 9 to achieve the final post-test state. Spe-
cifically:

We require the terminal velocity and displacement to be zero.
That is:

For simplicity, we have used compensation pulses of equal
amplitude and opposite signs. That is, B = C = 0.2A. Imposing
this simplification on Eqs. 13 and 14 results in the simulta-
neous solutions:

As intuition would suggest, these same solution times can
be used for a pre-pulse compensation as illustrated in Figure
6. When we reverse the sequence of pulses in time, the state-
vectors are different. The terminal state-vector for the test of
Figure 6 is given by Eq. 17.

Again we demand the terminal velocity and displacement to
be zero. That is:

and

While the velocity of Eq. 18 is identical to that of the post-
pulse compensation constraint of Eq. 13, the displacement of
Eq. 19 differs from the corresponding constraint, 14. Nonethe-
less, the solutions previously stated in 15 and 16 satisfy Eqs.
18 and 19.
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Figure 4. Using a longer negative pulse to drive the displacement back
to zero leaves a negative velocity at that point.

Figure 5. Applying a negative 20% amplitude rectangle pulse 5.763
times as long as the half-sine, followed by a positive 20% pulse 2.580
times as long, returns the shaker to mid-stroke at zero velocity and
acceleration in 9.343 half-sine durations.

Figure 6. Preceding the half-sine by a positive rectangular pulse of 20%
amplitude and 2.580 times duration, followed by a negative 20% am-
plitude pulse 5.763 as long, leaves the shaker at mid-stroke with zero
velocity and acceleration in 9.343 durations.
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This simple exercise has highlighted several important ob-
servable facts:
1. Compensation is not an option; it is absolutely required to

run an unipolar shock pulse on an electrodynamic or hydrau-
lic shaker.

2. Compensation pulses may be added either before or after the
test-pulse to force the test to both start and end at zero ac-
celeration, velocity and displacement.

3. In general, two pulses of opposite sign must be added to bring
both terminal velocity and displacement back to zero.

4. The compensation pulses may be of much lower amplitude
than the desired test pulse (and they need not be of equal
amplitude to one another). They do not need to have the same
shape as the test pulse.

5. The lower the amplitude of the compensation pulses, the
longer the total controlled-pulse duration will become. (This
can pose a controller problem.)

6. Maximum stroke and velocity occur outside the desired test
pulse, within the compensation interval.

7. When (exclusive) pre- or post-pulse compensation is used,
only half of the available shaker stroke will be utilized.

First, Last or Both?
Should I compensate before or after my specified test pulse?

Is there any merit in doing both? These are two very percep-
tive questions, each suffering test-specific answers.

Shock tests are run for a variety of reasons. Some profit from
pre-test compensation, some from post-test compensation. If
the shock is large with respect to the shaker’s capability, these
specific advantages may need to be set aside. A combination
of pre- and post-pulse compensation may be required, simply
to allow the shaker to generate the pulse within its stroke and
velocity limits.

Consider qualification of an air-bag deployment sensor. The
shock-test is likely run to determine the g-level at which the
sensor switch closed, causing bag detonation. In this situation,
a clear picture of events during the test-pulse rise is required.
Post-pulse compensation is the right answer here, providing
an uncontaminated rising input from the desired zero-g initial
condition.

Now consider testing a computer disk drive, obliged to op-
erate in a hostile travel environment. The shock-test is likely
to include monitoring read/write functioning through and af-
ter the simulated bump. In this instance, pre-pulse compensa-
tion is the right answer so that ‘aftershock’ effects raise no ques-
tion of continued proper function.

Other tests are more pedantic – they are merely run to dem-
onstrate the test object can survive the event and this determi-
nation is not made during the shock-test. Here the use of pre
or post-pulse compensation is a moot point. However, test labs
are always called upon to simulate increasingly hostile envi-
ronments without commensurate upgrade of the available test
facilities. Eventually, you will be faced with running a pulse
too aggressive for the half-stroke of your shaker, or one that
requires peak velocity beyond its control range. This is where
combined pre- and post-pulse compensation can save the day.

Figure 7 illustrates combined pre- and post-pulse compen-
sation of a half-sine using equal amplitude trapezoidal com-
pensation pulses of 20% amplitude. Compare this with Figures
5 and 6 that illustrate the same test-pulse and note:
1. The peak displacement values are centered about the shaker’s

mid stroke, doubling the available displacement range.
2. The total peak-to-peak stroke used is significantly less than

that of a pre- or post-pulse (only) compensated test.
3. The peak velocities are significantly lower for the pre- and

post-compensated test.
4. The total controlled-pulse times are all about equal.

At first blush, this all seems too good to be true. However, it
is the natural result of using shorter compensation pulses. In
fact, the symmetric solution presented is far from optimum.
Modern controllers can combine a myriad of pulse shapes to
provide optimization for stroke, velocity and the energy im-

posed on the test object.
By using two preceding and two following pulses (or follow-

ing pulses of asymmetric nature), the controller can position
the shaker armature to a negative displacement prior to the test-
pulse with a negative velocity equal to about half of the veloc-
ity change induced by the desired test waveform. It will select
these pulses so that the stroke used is centered in the shaker’s
range. Thus, a modern controller allows the shaker system to
deliver the most aggressive test-pulse possible within its physi-
cally limited stroke and velocity capabilities.

Why All of These Pulse Shapes?
The half-sine, haversine, triangle, trapazoid, terminal-peak

sawtooth and initial-peak sawtooth are all elements of the Clas-
sical Shock waveform library. (I should note here that the rect-
angle, triangle and sawtooth waveforms are all specific sub-sets
of the trapazoid, determined by the rise-time and fall-time
durations.) Each of these pulse-shapes has a place in the his-
tory of shock-testing and each is the likely focus of your next
specified test, being someone’s notion of the proper simulation
of an environmental event your product is likely to suffer.

In contrast, the rectangle, Fandrich, sine and damped-sine
pulses are all typically employed as compensation pulses. Each
has desirable characteristics in the eyes of the test feasibility
designer. R. T. Fandrich1 may have been the prototype test fea-
sibility designer. In 1981 he studied the problem of perform-
ing a MIL-STD-810C half-sine pulse of 30 g peak and 11 msec
duration on an electrodynamic shaker with a 1 in. PTP stroke.
His solution is embedded in many controllers and spawned a
host of independently invented, improved solutions to the gen-
eral problem.

One of Fandrich’s concerns was the additional damage po-
tentially induced by the compensating pulses. While he ad-
mired the positioning efficiency of the rectangular pulse, he
feared its rich spectral content (caused by the abrupt rising and
falling edges) might induce unwarranted stress in the test ob-
ject. His solution was to approximate the square pulse with
only first and third harmonic components. (Note that his so-
lution is not simply the truncation of Fourier Coefficients for
a rectangular pulse.) He chose to approximate a rectangular
pulse of amplitude A and duration T by:

I believe that Mr. Fandrich relied heavily on numerical in-
tegration in his landmark work. I respectfully submit that a
closed-form solution provides a slightly more precise state-
ment, which is:
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Figure 7. An example of combined pre- and post-pulse compensation
using four equal-amplitude trapezoidal pulses. Note symmetric stroke
and velocity peaks.
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Indeed, the Fandrich pulse has less frequency content than
a rectangular pulse, although the difference may be less pro-
found than the equation suggests. Figure 8 compares the En-
ergy Spectral Density spectra of a Fandrich pulse and rectan-
gular pulse of the same peak amplitude and duration. Clearly,
the Fandrich pulse attenuates more rapidly as frequency in-
creases. Also clear is the fact that this pulse (like the rectangle)
contains distributed energy across a wide band, not merely
content at two frequencies.

The rectangle spectrum exhibits a zero at every frequency
multiple of 1/T. The first lobe is –13.4 dB below the DC value
and subsequent lobes roll-off at –6 dB/octave. The Fandrich
pulse has a wider primary lobe; with the first zero at 1.25/T.
Subsequent zeros occur at 2.5/T, 3.5/T and so on. The first side-
lobe amplitude is –14.8 dB less than the primary lobe and sub-
sequent side-lobes decay at –12 dB/octave.

Mr. Fandrich also proposed the use of a damped-sine as a
post-pulse compensation. He chose this single asymmetric
pulse as an alternative to two post-test compensation pulses
of opposite sign. The intent here was to have a single pulse with
kD/kV ratio selectable by specifying the damping factor. You
will note from Table 1 that the (undamped) sine is unique in
exhibiting a kV of zero. As damping is applied, this rises rap-
idly relative to kD. It is interesting to note that Fandrich pre-
scribed an unusual damped-sine equation of the form:

He describes evaluating this for positive exponent p and then
applying the waveform in time-reversed sequence. Unfortu-
nately, evaluating closed-form solutions for kV and kD of this
waveform is difficult; an infinite series of sub-integrals results.
Table 1 presents a more conventional damped-sine (in vibra-
tion parlance) description in accordance with:

Figure 9 illustrates typical normalized responses of the con-
ventional damped-sine of Table 1. This plot presents responses
with a damping factor of d = 0.375. kV and kD may be tuned by
selecting d in accordance with:

and

Figure 10 illustrates kD, kV and their ratio as a function of
selected damping factor d.

Some More Recent Contributions
In the 22 years since the landmark Fandrich paper, control-

ler designers have been busy. In addition to the daunting task
of porting shaker control from dedicated racks to friendly per-
sonal computer screens, some designers have returned to the
basic physics of the problem.

One area of recent exploitation is the use of pulses with non-
zero kA coefficients. For example, consider the half-sine pulse
previously discussed. Allow this pulse to ‘overshoot’ by evalu-
ating it for more than a half-cycle excursion as shown in Fig-
ure 11.

This allows the test-pulse itself to be part of the post com-
pensation. As the sine function passes through zero, its slope
is nearly constant. Extending the pulse by 10% provides a very
linear decrease in acceleration to –0.30 of the pulse magnitude.
This is in the ‘neighborhood’ of the post-pulse level that must
be applied to meet MIL-STD-810 requirements. One gets to that
level with no further curve inflections, minimizing spectral
content due to compensation.

Since the pulse no longer starts and ends at the same accel-
eration, a non-zero kA equal to the terminal normalized accel-
eration results. The pulse sequence is obligated to contain
another asymmetric pulse with equal and opposite kA to return
the shaker to zero acceleration at the test end. This can be as
simple as a ramp between the terminal value and zero, perhaps
with a sine (or other waveform) added to it. Alternatively, a
partial sine cycle might be selected as the (single) complemen-
tary post-test pulse.

As shown in Figure 12, the variation of kA with overshoot is
highly linear up to 30% of the test-pulse amplitude, owing to
the near-linear slope of a sine passing through zero. When
pulses with non-zero kA are included in the test sequence, the
general state-vector of Eq. 6 applies in lieu of the simplified
statements of Eq. 7.

It is refreshing to see that the refinement of shock-test con-
trol still includes return to the basic physics of the problem.
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Figure 10. Range of damped-sine kD and kV coefficient variation pro-
vided by selection of damping factor, d.

Figure 9. Normalized acceleration, velocity and displacement responses
of a damped-sine for damping value, d = 0.315.Figure 8. Comparison of the normalized energy spectral density of a

rectangle and Fandrich pulse of the same peak amplitude and dura-
tion.
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Figure 12. Variation of  kA, kV and kD coefficients with overshoot of half-
sine period.

Figure 11. Half-sine pulse with 10% period overshoot ends at –0.3A ac-
celeration level.
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We all appreciate the advancements PCs offer, but only when
the underlying solution is technically astute!

An Art-State Audit
I have alluded to continued development effort in this field

and feel obliged to provide some hard evidence of it. To this
end, I posed a challenge to controller manufacturers and they
responded with a vengeance. My challenge was to provide their
2003 solution to the problem that plagued Fandrich in 1981 –
perform a 30 g by 11 msec half-sine test on a shaker of 1 in.
(PTP) stroke capacity while respecting all tolerance limits of
MIL-STD-810C (yes, I know we’re up to F!).

Each manufacturer was asked to provide his solution as a g-
versus-time Excel file. These have been collectively plotted in
Figure 13. I think we learn from the similarities and from the
differences. It is clear that the general form of alternating posi-
tive and negative compensation pulses before and after the test-
pulse is common to all solutions. It is also clear that different
designers have taken different routes to solving this problem,
and solving it well.

Presenting Pulse Spectra Properly
Spectrum (FFT) analysis is applied to all kinds of signals.

The appropriate amplitude scaling is different for periodic,
random and transient signals. Measuring spectral amplitude in
gs (or volts or any other transduced linear unit) is proper for a
periodic signal or a mixed signal dominated by essentially sta-
tionary tones. The preferred scaling for this type of measure-
ment is root-mean-square (rms) amplitude.

When a continuous random signal is measured, we require
power spectral density (PSD) amplitude scaling in g2/Hz to
provide an instrument-independent amplitude description.

(25)SE y dt
T

= Ú ��2

0

Figure 13. Current commercial solutions to the 30 g by 11 msec half-
sine problem. Dashed lines – upper and lower bounds per MIL-STD-
810C.
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When a transient pulse is analyzed, the correct spectral am-
plitude unit is energy spectral density (EDS), expressed in
g2sec/Hz. Any other scaling provides an amplitude answer de-
pendent on the specifics of the hardware making the measure-
ment, never a desirable thing.

The area under a PSD curve is the continuous random
signal’s mean-square value (overall-rms2), often termed the
signal power. The area under an acceleration ESD curve is the
signal energy defined by:

The acceleration signal energy thus has units of g2sec (or
related acceleration and time units). This provides the ‘g2sec’
portion of the g2sec/Hz units of an ESD. The “per Hz” dimen-
sional component is the same as that of a PSD, the noise band-
width of the spectrum analyzer making the measurement. Table
1 lists the (total) signal energy of each pulse type discussed in
this article as a normalized kSE coefficient. Multiplying kSE by
the square of the pulse amplitude and the duration of the pulse
(A2T) provides the signal energy in physical units.

All spectral plots presented herein are normalized. The fre-
quency axis is multiplied by pulse duration T, so that the hori-
zontal axis is dimensionless. Energy spectral density is pre-
sented vertically. This is divided by AT2 so that the vertical axis
has dimension Hz–1.

Figure 8 presents a comparison of the ESDs of the rectangu-
lar pulse and its band-limited Fandrich approximation. We will
now examine the ESD spectra of the various Classical Shock
excitation pulses.

In Figure 14, the half-sine pulse exhibits zeros at 1.5/T, 2.5/
T, 3.5/T and so on. The first side-lobe is 23 dB below the maxi-
mum value and subsequent lobe peaks fall off at –12 dB/oc-
tave. The haversine (i.e. the Hanning window shape) has a
broader primary lobe and more rapidly decaying side-lobes. Its
first zero occurs at 2/T and subsequent zeros occur at integer
multiples of 1/T. The first side-lobe peak is –32.2 dB below the
main lobe. Higher side-lobes decay at –18 dB/octave.

Figure 15 presents three traces, the triangle pulse, the ini-
tial-peak (IP) sawtooth and the terminal-peak (TP) sawtooth.
As intuition might suggest, the spectral magnitudes of the IP
and TP sawtooth waveforms are identical. (The corresponding
phase spectra are reflections of one another as these two com-
plex spectra are a conjugate pair.)

The triangle wave has wide lobes, with zeros occurring at
integer multiples of 2/T. The first side-lobe is –26.5 dB below
the maximum and subsequent lobes attenuate at –12 dB/octave.
In contrast, the sawtooth waveforms exhibit no zeros. The spec-
trum follows that of the triangle’s primary lobe to a frequency
of 1/T and then rolls off smoothly at a rate of –6 dB/octave.

Figure 16 presents the damped-sine at three different damp-
ing levels (d = 0.0, 0.2 and 0.375.) The undamped sine (d = 0)
exhibits a unique primary lobe that starts with a zero at DC.
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Figure 16. ESD spectra of damped-sine at various damping values d.

Figure 15. ESD spectra of sawtooth and triangle waveforms.

Figure 14. Comparison of the half-sine and haversine pulse spectra.
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The upper-side of the primary lobe is bounded by a zero at fre-
quency 2/T. Subsequent zeros occur every 1/T thereafter. The
first side-lobe is 18.3 dB lower than the primary, and follow-
ing side-lobes diminish at the rate of –12 dB/octave.

As damping is added, the peaks and zeros become less defi-
nite and the spectrum eventually converges to a –12 dB/octave
line (above frequency = 1/T) for high damping. As a matter of
practicality, use of damping in excess of d = 0.375 is unlikely.
At this value, kD and kV converge (see Figure 10) and their ra-
tio remains unity while both diminish thereafter.

Many controllers provide for FFT spectrum analysis (as well
as SRS analysis) of shock-test measurements. However, I am
unaware of any current controller that properly scales the
amplitude of such transient measurements to ESD format as a
matter of course. This is an unfortunate omission as test labs
continue to accumulate libraries of system-dependent g-versus-
Hz documentation.

What causes damage?
The Holy Grail of package design is a means of predicting if

a component or system will fail when exposed to a given shock
pulse, before applying the pulse. I know of no one who claims
to have this answer.

In a landmark work, Gaberson, et al2 addressed the problem
of what to measure during an observable shock to indicate the
damage potential of the event. The proposed modification to
the Shock Response Spectrum (SRS) algorithm has yet to be
incorporated in any commercial controller or analyzer. Dr.
Howard Gaberson has promised to apply these methods to in-
vestigate the effects of compensation pulses on damage poten-
tial, hopefully in a future issue of Sound and Vibration.

The previously mentioned signal energy (kSE) coefficients of
Table 1 and the corresponding energy spectral density distri-
butions just discussed are probable inputs to the damage pre-
diction process. However, signal energy is not synonymous
with the mechanical energy input to a structure under test. The
remaining non-dimensional coefficient kME in Table 1 attempts
to estimate this.

The shaker applies a transient force equal to the test-mass
acceleration product              to the device under test. The in-
tegral of this force with respect to the resulting displacement
is the work done by the shaker on the test article, which must
eventually equate to all resulting energy dissipated by the
structure’s plastic behavior. While some of the dissipation oc-
curs without damage, the overall energy imparted to the test
item seems a very likely index of damage potential.

kME is derived from:

Looking at the kME values in Table 1 suggests that the
Fandrich pulse is no less damaging than the rectangle it re-
places. It further implies that either of these pulses is four times
as likely to produce a failure as a haversine, triangle or
sawtooth of the same peak value and duration. It also denotes
a half-sine as being 162% as aggressive as a haversine of like
proportion. Does this simple one-number statistic provide a
harbinger of potential failure? I suspect not, reflecting on the
observation that a full-sine pulse has a kME equal to zero.

However, kME in consort with other pulse (and structural)
properties may provide a few more lumens as we chart the dark
cave of transient-induced mechanical failure.

Closure
This article has reviewed shock-testing on shakers from sev-

eral aspects. It has provided some lessons in basic physics, in
signal processing and in the history of our industry. It has also
given many manufacturers dedicated to our industry an oppor-
tunity to demonstrate their committed support of our work
through their own research and development. I thank them for
their candor and trust in contributing to this article.
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