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A set of scaled mode shapes is a complete representation of
the linear dynamic properties of a structure. Mode shapes can
be used for a variety of different analyses, including structural
modifications, forced response simulations, excitation force
calculations from measured responses, and frequency re-
sponse function (FRF) synthesis for comparison with experi-
mental data. When mode shapes are obtained experimentally
from operating data, they are not properly scaled to preserve
the mass and elastic properties of the structure. By operating
data, we mean that only structural responses were measured
– excitation forces were not measured. In this article, we re-
view the traditional methods for scaling experimental mode
shapes using FRFs, and also introduce two new methods that
do not require FRF measurement. The new methods combine
a search algorithm with the SDM (Structural Dynamics Modi-
fication or eigenvalue modification) algorithm to perform a
series of structural modifications until proper scaling of the
mode shapes is achieved. Details of the methods and examples
of their use are included.

Mode shapes are unique properties of a structure that may
each be represented by a mode shape vector, {uk}DOF¥1, with
vector entries representing the motion at each degree-of-free-
dom (DOF) modeled or measured. Note that {uk} merely de-
scribes a shape, not the absolute value of vibratory motion. That
is, the amplitude ratios between all vector elements are fixed,
but the length of the vector may be arbitrarily selected. Such
vectors are often termed eigenvectors. Each is paired with a
complex eigenvalue containing a natural frequency at which
the mode shape is easily excited and a damping factor describ-
ing how rapidly oscillations at the natural frequency in the
mode shape decay with time when excitation is removed.

A complete description of a mode consists of an eigenvalue,
an eigenvector and a Modal Mass. This latter item retains the
physical-unit scaling between force and resulting motion and
is an absolutely essential element in any modal description. It
is the one modal parameter that is not detected by an experi-
mental Operating Deflection Shape (ODS) analysis.

Modal Mass Matrix. The mode shapes of a finite element
model are defined in a manner which “simultaneously diago-
nalizes” both the mass and the stiffness matrix. This is the so-
called orthogonality property: when the mass matrix is post-
multiplied by the mode shape matrix and pre-multiplied by its
transpose, the result is a diagonal matrix, shown in Equation
1. This is a definition of modal mass.

where:
[M](DOFs¥DOFs) = mass matrix.
[FFFFF](DOFs¥modes) = [{u1}{u2}...{um}] = mode shape matrix.

T = denotes the transpose.

modes = number of modes in the model.
The modal mass of each mode k is a diagonal element of the

modal mass matrix,

wk = damped natural frequency of mode k.
Ak = scaling constant for mode k.

Equation 2 indicates that Modal Mass is related to the length
of the mode shape vector. That is, the size of the scaler Modal
Mass depends upon the convention used to scale the corre-
sponding mode shape vector.2,3

Scaling Mode Shapes to Unit Modal Masses. One of the com-
mon ways to scale mode shapes is such that the modal masses
are one (unity). This is called ‘orthonormalization’ or unit
modal mass (UMM) scaling. When a mass matrix [M] is avail-
able, the mode vectors would simply be scaled such that when
the triple product [φφφφφ]t[M][φφφφφ] is formed, the resulting modal
mass matrix would equal an identity matrix. However, when
mode shapes are obtained from experimental measurements,
no mass matrix is available for scaling them. Furthermore,
when mode shapes are obtained from operating data, i.e., no
excitation forces are measured, traditional scaling methods
cannot be used either.

First, we will review the traditional scaling methods that rely
on FRF measurements (where the excitation forces are mea-
sured), and then introduce two new methods that do not re-
quire FRF measurements.

Scaling Mode Shapes Using FRFs
Traditional UMM mode shape scaling requires either the

measurement of a Driving Point FRF, or a Triangular Measure-
ment which involves three FRFs. Experimental mode shapes
are UMM scaled by using the relationship between residues
and mode shapes.3

where:
[rk](DOFs¥DOFs) = residue matrix for mode k.

Residues are the constant numerators of the transfer function
matrix when it is written in partial fraction form as:

where:

Experimental FRFs are merely values of the transfer functions
measured along the jw-axis in the S-plane.4

Equation 3 shows that each residue matrix [rk] is formed by
multiplying each mode shape {uk} by its own transpose. This
causes every row and column of the residue matrix to contain
the mode shape, multiplied by a different shape component.
This unique outer product is why experimental mode shapes
can be obtained by measuring just one row or column of the
transfer function matrix.

Each element of the residue matrix then, is the product of
two mode shape components (uik and ujk) and the scaling con-
stant Ak

Residues have unique values, and therefore have engineering
units associated with them.

As asserted by Equation 4, a transfer function has the engi-
neering units of motion/force and the form of residue/pole.
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Since poles have the dimension radian/second, residues have
motion/force-second physical units.

Equation 3 can be written for the jth column (or row) of the
residue matrix and for mode k as

where:
k = 1,..., modes
n = DOFs = number of DOFs of the mode shape.

The importance of this relationship is that residues are
unique in value and reflect the unique physical properties of
the structure, while the mode shapes are not unique in value
and can therefore be scaled in any manner desired.

The scaling constant Ak must always be chosen so that Equa-
tion 6 remains valid. The value of Ak can be chosen first, and
the mode shapes scaled accordingly, or the mode shapes can
be scaled first and Ak calculated so that Equation 6 is still sat-
isfied.

In order to obtain UMM mode shapes, we simply set the
modal mass equal to one (1) and solve Equation 6 for Ak. So,
for UMM scaling

Driving Point Measurement. UMM mode shape vectors are
then obtained from the jth column (or row) of the residue ma-
trix by substituting Equation 7 into Equation 6

Notice that the driving point residue rjjk (where the row in-
dex (j) equals the column index (j)), plays an important role in
this scaling process. The driving point residue for each mode
k is required in order to use Equation 8. These residues are ob-
tained by making and curve fitting the corresponding driving
point FRF measurement.

Triangular Measurement. All driving point FRFs occur along
the diagonal of the transfer function matrix. A driving point
FRF measurement is often difficult to make. Furthermore, be-
cause the contributions of all modes “sum together” in a driv-
ing point FRF, it is often more difficult to accurately curve fit
than an off-diagonal measurement. Consequently, UMM shapes
obtained from Equation 8 are often error prone.

As an alternative to the driving point FRF, three off-diago-
nal FRFs can be made to provide the driving point UMM mode
shape component ujk required in Equation 8. The following re-
lationship can be derived from Equation 5:

This expression for ujk can then be substituted into Equation
8 to yield UMM mode shapes.

Equation 9 requires that three FRF measurements, involving
three DOFs – DOF(p), DOF(q) and DOF(j) – be made and curve
fit to obtain the required residues. DOF(j) is the reference
(fixed) DOF for the jth column (or row) of the transfer function

matrix. The two measurements Hjp and Hjq would normally be
made along with the rest of the FRFs in the jth column (or row).
One additional measurement Hpq is required to satisfy Equa-
tion 9. Since the measurements Hjp, Hjq and Hpq form a triangle
in the transfer function matrix, they are called a triangular mea-
surement.

An Example. To illustrate triangular measurement, Figure 1
depicts an FRF matrix for a structure with 4 DOFs, numbered
1 to 4. The circled measurements in column 3 depict a tradi-
tional modal test, where DOF 3 is the reference DOF. For tri-
angular measurement, one extra measurement H12 is also re-
quired. The residues from H12, together with those from
measurements H13 and H23 would be used in Equation 9 to cal-
culate the UMM mode shape component u3k for each mode k.
Then, u3k can be used together with residues from H13, H23 and
H43 to obtain the UMM mode shape components u1k, u2k and
u4k respectively, for each mode k.

Notice that the driving point measurement H33 was not
needed in order to calculate the 4 UMM mode shape compo-
nents. Therefore, the total number of required measurements
remains the same (in this case four), whether the driving point
or the triangular measurement method is used for scaling.

Off-Diagonal Measurements
In addition to providing an alternative method for obtaining

UMM mode shapes, Equation 9 also allows structures to be
tested differently, by measuring a set of only off-diagonal ele-
ments instead of a single row or column of the transfer func-
tion matrix. This alternative testing method offers a significant
advantage for testing larger structures. For example, the 7 mile
long San Mateo bridge (Figure 2) cannot be tested by using a
single reference and measuring one row or column of FRFs.

Suppose that the off-diagonal elements shown in Figure 3 are
measured instead of a column of FRFs. UMM mode shapes can
still be obtained from this set of measurements in a manner
similar to the previous case. Residues from measurements H12,
H13 and H23 can be used three different ways in Equation 9 to
obtain the UMM mode shape components u1k, u2k and u3k re-
spectively, for each mode k. Finally, mode shape component
u4k is calculated by using residues from H34 and mode shape
component u3k.

But the real advantage of this second example is the way in
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Figure 1. Triangular measurement example.

Figure 3. Off-diagonal measurements.

Figure 2. San Mateo Bridge.

H H H H

H H H H

H H H H

H H H H

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙̇
˙
˙
˙

H H H H

H H H H

H H H H

H H H H

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙̇
˙
˙
˙



20 SOUND AND VIBRATION/NOVEMBER 2003

which the measurements are made. Each FRF is a two channel
measurement, made between a pair of DOFs. In this case, the
modal test could be laid out so that each pair of DOFs is “physi-
cally close” to one another.

For instance, an impact hammer, accelerometer and 2-chan-
nel analyzer or data acquisition system could be used to move
along a structure making measurements between pairs of neigh-
boring DOFs. Any size of structure could be easily tested with
this method. By comparison, measuring one row or column of
the transfer matrix requires that one DOF (either the acceler-
ometer or the impact DOF) remain fixed as a reference. This
can cause signal-to-noise as well as electrical cabling problems
when testing large structures since some DOFs will be physi-
cally distant from the reference DOF.

ODS Measurements
So far, we have only addressed mode shape scaling when

FRFs are measured. Experimental mode shapes are most com-
monly obtained by curve fitting a set of FRF measurements.
However, an FRF measurement requires that all of the excita-
tion forces causing a response be simultaneously acquired with
the response. Measuring all of the excitation forces can be dif-
ficult, if not impossible in many situations. FRFs cannot be
measured on operating machinery or equipment where inter-
nally generated forces, acoustic excitation and other forms of
excitation are unmeasurable.

Operating Deflection Shape. On the other hand, one or more
vibration responses can always be measured, no matter what
forces are causing the vibration. When two or more response
measurements are made on a machine or structure, this is called
an Operating Deflection Shape (ODS), or simply a Deflection
Shape.

Like a mode shape, an ODS is defined with a magnitude and
phase of the vibration response at each measurement point. In
order to define a valid ODS vector, the magnitude and phase
of each response relative to all others are required at each of
the response measurement points.

Time Domain ODS Measurements. In a set of time domain
ODS measurements, relative magnitude and phase are implic-
itly assumed. This requires that all responses are simulta-
neously acquired, or at least measured under conditions when
a repeatable event can be captured using a trigger.5

Simultaneous acquisition of all responses requires a multi-
channel acquisition system that can simultaneously acquire all
of the response signals. This requires a lot of transducers and
signal conditioning equipment, which is expensive.

Frequency Domain ODS Measurements. The advantage of
making a set of frequency domain measurements is that rela-
tive magnitudes and phases of two or more response measure-
ments can be assured and simultaneous acquisition is only
required using as few as two channels at a time. It will also be
assumed that the machine or structure is vibrating in a station-
ary manner.5,8,9 If this is not the case, then further signal pro-
cessing may be required.6

Measurement Sets. When the data acquisition system does
not have enough channels to simultaneously acquire all of the
channels, then data must be acquired in multiple measurement
sets.9 To ensure proper relative phases between multiple rov-
ing (different) responses acquired with multiple measurement
sets, at least one channel must be used as a reference (fixed)
channel, and it must be measured in all measurement sets.

To preserve the correct relative phase among all responses,
a Cross Power Spectrum (XPS) measurement must be made
between each roving response and reference response. In or-
der to see how this measurement can be used to obtain mode
shapes, the relationship between the response Auto Power
Spectrum (APS) and the FRF is considered first.

Relationship Between the Response APS and FRF. An FRF
is defined as the Fourier spectrum of a vibration response di-
vided by the Fourier spectrum of the force that caused the re-
sponse

where:
X(w) = Fourier spectrum of response.
F(w) = Fourier spectrum of excitation force.

w = frequency variable.
The FRF is a 2-channel measurement and requires that both

the force and the response signals be simultaneously acquired.
The magnitude squared of the FRF can be written as,

where:
X(w)X(w)* = APS of the response.
F(w)F(w)* = APS of the excitation force.

* = denotes complex conjugate.
Because the response spectrum is divided by the force spec-
trum, we know that any peaks in the FRF must be due to modes
(or resonances) of the structure. Resonance peaks will also
appear at the same frequencies in the APS of the response.
Equation 11 also leads to the following result:

Flat Force Spectrum Assumption: If the APS of the excita-
tion force is assumed to be “relatively flat” over the frequency
range of measurement, then any peaks in the response APS are
due to modes of the structure.

Response APS Matrix. Equation 11 can be generalized to a
matrix of FRF products involving multiple roving and reference
responses. The diagonal elements of this matrix are the same
as Equation 11 for each response, while the off-diagonal ele-
ments are complex valued,

where:

If the Flat Force Spectrum Assumption is again made, then
the above matrix is proportional to a matrix of XPSs formed
between each roving and each reference response. This matrix
is simply referred to as the Response XPS Matrix,

where:

Because of the Flat Force Spectrum Assumption, resonance
peaks that would appear in the FRFs due to modes will also
appear at the same frequencies in each element of the Response
XPS Matrix. Also, the values of a column of this matrix at any
frequency is an ODS.

Operating Mode Shapes From a Column of the Response
XPS Matrix. Operating mode shapes can be obtained by curve
fitting a parametric model of an FRF to the square root (or RMS)
of elements from a column of [XPS(ωωωωω)].6 Since forces are not
measured, these operating mode shapes are not UMM mode
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shapes. Furthermore, if it is assumed that FRF measurements
cannot be made, the operating mode shapes cannot be scaled
to UMM mode shapes by using the previously described meth-
ods. Two new scaling methods are introduced below that do
not rely on FRF measurements.

Review of the SDM Method
The SDM (or eigenvalue modification) method uses a set of

UMM mode shapes from an unmodified structure, together
with one or more finite element representations of a structural
modification (e.g. mass, stiffener or tuned absorber addition)
to calculate a new set of modes for the modified structure.10

This process is depicted in Figure 4.
Since the SDM procedure requires a set of UMM mode shapes

for the unmodified structure, if the mode shapes are not scaled
properly, the intended modification will yield incorrect modal
parameters for the modified structure. This fact is utilized in
a search procedure that finds an optimal scale factor (or set of
scale factors) so that SDM yields correct answers from a set of
operating mode shapes.

Scale Factor Search Method
Suppose that a specific modification (such as a mass addi-

tion) to a certain machine or structure is known to yield a new
set of modal frequencies. These new frequencies could be de-
termined experimentally by measuring a single XPS under
operating conditions and curve fitting it. This known modifi-
cation, together with SDM and an optimal search algorithm, can
be used to scale a set of operating mode shapes to UMM mode
shapes.

It is assumed that in a given set of operating mode shapes,
each is correct in shape but will differ from its corresponding
UMM mode shape by a multiplicative scale factor. To determine
an optimum set of scale factors, the SDM algorithm is used to
calculate modified mode shapes, and a search procedure is
used to iterate toward a set of scale factors which yield the
correct modal parameters for the modified structure.

In general, the objective function to be minimized can be
written as

where:
Fknownk = known modal parameter (frequency, damping or

mode shape component).
FSDMk = modal parameter predicted by SDM.

J = Objective function.

Scaling With a Known Modification
The simplest case is to assume that the excitation force spec-

trum is not only flat but has the same value for all frequencies.
This means that all of the operating mode shapes differ from
their corresponding UMM mode shapes by a single scale fac-
tor. The search problem can then be stated in the following
manner,

Single Scale Factor Search Problem: Find a single scale fac-
tor Sf, which when multiplied by a set of operating mode
shapes,

[Sf{u1}Sf{u2}...Sf{um}](DOFs¥Modes) = operating mode shape
matrix.

and used together with the SDM method, minimizes the objec-
tive function J in Equation 14.

The Single Scale Factor Search Problem can be further sim-
plified by using only modal frequencies in the objective func-
tion J. Mass modifications are easy on most real structures, and
the new modal frequencies are relatively easy to determine
experimentally. Therefore, the objective function J becomes
merely a summation of the squared differences between the
known modal frequencies of the modified structure, and those
calculated by the SDM method.

Illustrative Example: To illustrate the UMM scaling proce-
dure using a known modification, consider the lumped param-

eter model shown in Figure 5. This structure has two modes,
an “in-phase” mode at 2.82 Hz, and an “out-of-phase” mode at
8.98 Hz, as shown in Figure 6.

Error Due To Unscaled Mode Shapes. To test the Known
Modification search method, a 1 Kg mass was added to each
mass. Using UMM shapes, this modification changed the fre-
quencies to 2.75 Hz and 8.58 Hz. To investigate the effects of
incorrectly scaled shapes on the objective function J, unscaled
mode shapes were simulated by multiplying the UMM shapes
by a range of scale factors (from 10–5 to 105), listed in the first
column of Table 1. The known modification (two 1 kg masses)
was then made using each set of unscaled shapes.

The new modal frequencies and objective function J values
are also shown in Table 1. These results show that as the
unscaled shapes become much less than the UMM shapes (scale
by’s << 1), the modification has no effect on the modal frequen-
cies and J “flattens out” at 0.165. Also, as the unscaled shapes
become much greater in value than the UMM shapes (scale by’s
>> 1), the modification drives the modal frequencies toward 0
Hz, and again J “flattens out” at 81.179.

This behavior indicates that a range of scale factor values can
be found between the extremes where J “flattens out.” For the
2-DOF structure, the range is 0.1 to 10,000. In fact, correct scale
factors (inverses of the scale by’s listed in Table 1) were found
by our Known Modification search method for all cases be-
tween 0.001 and 100,000!

Scaling Based on a Modification Round Trip
One of the unique characteristics of the SDM algorithm is that

it works equally well when modifications are subtracted from
a structure. This capability can be used to perform a modifica-
tion “round trip” to a structure.

In a modification round trip, SDM is used twice: first to add
modification elements to a structure and obtain new mode
shapes, and then to subtract the same modification elements
from the modified structure and recover the original mode
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Figure 5. 2-DOF structure.

Mode 2 Frequency

8.98
8.98 
8.98 
8.98 
8.98 
8.96 
8.88 
8.75
8.58 
7.10 
4.89 
3.58 
2.79 
0.294 
0.0294 
0.00294 
0.000294

Table 1. Modifications using unscaled shapes.

J

0.165
0.165 
0.165 
0.165 
0.165 
0.148 
0.093 
0.030 

0.0 
2.287 
14.444 
26.796 
36.181 
75.564 
80.607 
81.179 
81.179

Mode 1 Frequency

2.82
2.82 
2.82 
2.82 
2.82 
2.81 
2.80 
2.78 
2.75 
2.44 
1.84 
1.41 
1.12 
0.122 
0.0122 
0.00128 
0.000122

Shapes Scaled By

0.00001
0.0001
0.001
0.01
0.1
0.25
0.50
0.75
1.0
2.5
5.0
7.5
10
100
1000

10,000
100,000

20 kg

10 kg

103 N/m

203 N/m
2 N/(m/s)

1 N/(m/s)
x1(t)

x2(t)
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Figure 6. Modes of the 2 DOF structure.

shapes. If the original mode shapes are UMM mode shapes,
then the modification round trip should return the original
UMM shapes. If the original modes are operating mode shapes
(not properly scaled), the round trip will yield different modal
parameters.

Following a modification round trip, the objective function
J is calculated as a summation of the squared differences be-
tween the original modal parameters and those calculated by
the modification round trip. This has the particular merit that
no additional measurements are required. The Fknown(k) param-
eters come from the original ODS data set.

For the 2-DOF Structure model shown in Figure 5 and the
unscaled shape cases shown in Table 1, the Modification Round
Trip algorithm converged on the correct scale factors for all
cases between 0.5 and 1000.

Conclusions
Mode shape scaling is important if a set of experimental

mode shapes is to be used for further modeling and simulation
studies. If the mode shapes are obtained from operating data,
they will not be properly scaled.

As background for the new scaling methods introduced here,
two traditional UMM scaling methods (which rely on FRF
measurements) were reviewed first. However, these methods
cannot be used in situations where the excitation forces can-
not be measured, and consequently FRFs cannot be calculated.

Two new scaling methods, which combine the SDM method
with an optimal search algorithm, were introduced. The first
method (Known Modification) requires that the modal param-
eters of a known structural modification be measured. A simple
mass addition is relatively straightforward to carry out in most
operating environments, provided that it is sufficient to cause
the modal frequency of interest to change. The modal frequen-
cies of the modified structure are a minimum requirement, and
they could be obtained from a single auto auto spectrum mea-
surement. The second scaling method (Modification Round
Trip) is strictly computational, and relies on the fact that a
modification round trip using SDM will return the original
UMM mode shapes, if they are properly scaled. Otherwise,
modes with different modal parameters are returned.

Both of these scaling methods rely on an iterative optimal
search algorithm, and no proof of convergence to a unique so-
lution was given. The types, amounts and physical locations
of the modifications used will clearly influence the conver-
gence performance. It is conceivable that a solution may be
difficult or impossible to find in many situations. Although the
examples given only involved a single scale factor for all mode
shapes, both methods have been extended to a multi-dimen-
sional search for a scale factor for each mode shape. A good
strategy is to search for a single scale factor first, apply it to all
shapes, and then perform a multi-dimensional search for each
mode shape scale factor.

Prior to using either scaling method, operating mode shapes
should be scaled by multiplying them by the inverse of the
square root of the estimated mass of the structure. This will
scale them into the ‘vicinity’ of the correct UMM values, and
improve the convergence of the search methods. Although

more research is required to further validate this approach to
mode shape scaling, it has been shown to work well for simple
cases.
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