A New Procedure for
Modal Parameter Estimation

Bart Peeters, Geert Lowet, Herman Van der Auweraer and Jan Leuridan, LMS International, Leuven, Belgium

This article looks at the new LMS PolyMAX method for Ex-
perimental Modal Analysis (EMA). PolyMAX is compared
with other EMA methods and two examples are provided. A
theoretical summary of the method is included as well.

Experimental Modal Analysis (EMA) is currently one of the
key technologies used in structural dynamics analysis. Based
on the fundamentals of system identification, it has evolved
into a ‘standard’ approach in mechanical product development.
Modal analysis has, from the start, focused on solving specific
problems related to the testing and modeling of large indus-
trial structures. The merit of each new method or approach has
always been evaluated for the added value it brought to help
application engineers derive better models. EMA is now con-
sidered a ‘commodity’ tool with a continuously expanding ap-
plication base.

Current Limitations of Experimental Modal Analysis
While the range of EMA applications is continuously ex-

panding, the complexity of tested structures is increasing as
well. In the past, isolated structures with low damping were
analyzed. Modal analysis is now being used on complex struc-
tures with high damping such as trimmed car bodies. EMA has
also evolved as a standard tool for Finite Element Model (FEM)
updating and in combination with numerical technologies for
hybrid engineering.

These recent evolutions have highlighted current limitations
of the EMA process:

e The task of selecting the correct modal order and discrimi-
nating between spurious and structural system poles is quite
complex, particularly in the case of high order and/or highly
damped structures. This results in high operator dependance
and numerous iterations of the analysis procedure.

e Whereas the quality of current modal parameter estimation
technologies is acceptable for undamped or slightly damped
structures, there is an increasing need for better modal pa-
rameter estimations of highly damped structures.

e Instead of a variety of parameter estimation techniques, each
optimized for a specific test situation, there is a need for a
single reliable and robust method that can be used in a wide
variety of applications.

In an area where many critics claim no substantial advances
were to be expected, the new LMS PolyMAX method brings a
revolutionary modal parameter estimation technique that is
easy to use, quick to perform, substantially reduces operator-
dependant judgment and delivers high quality modal param-
eter estimations, even on complex data.

In this article, the LMS PolyMAX method was used on two
‘historically’ difficult data sets — a trimmed car body (high
damping) and flutter data (high data noise). A summary of the
analytical foundation of the LMS PolyMAX method is also
included.

Using LMS PolyMAX on a Trimmed Car Body

A typical example of a challenging modal analysis applica-
tion is the structural analysis of a trimmed car body. The trim
material turns a nicely resonating car body into a highly
damped system with large modal overlap. In this example, data
from a Porsche 911 Targa Carrera 4 was used. The accelerations
of the fully equipped car were measured at 154 Degrees Of
Freedom (DOF), while four shakers were simultaneously ex-
citing the structure. This gives a total of 616 FRFs (Frequency
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Response Functions) used in the modal analysis procedure.!
The data were analyzed in a frequency range from 3.5 to 30

Hz using three techniques:

e The Frequency-Domain Direct Parameter Identification
(FDPI) technique which has traditionally been used to ana-
lyze data from highly damped structures.?®

e The Least Squares Complex Exponential (LSCE) method
which is considered an “industry-standard” time domain es-
timation method.?:36

e The new LMS PolyMAX method.

Figure 1 shows the stabilization diagrams for the 3 methods.
FDPI yields a clearer diagram than LSCE, confirming the com-
mon assumption that FDPI is the preferred method in the case
of high damping. However, both are clearly outperformed by
the LMS PolyMAX method, especially at lower frequencies
where it is much clearer than the FDPI diagram while also find-
ing more stable poles.

For the subset of LMS PolyMAX poles that have an FDPI
counterpart, Table 1 shows that resulting estimations for fre-
quency and damping are very close. Also, the mode shapes are
very similar which is evidenced by the MAC values represented
in Figure 2.

The excellent identification results obtained with the LMS
PolyMAX method are confirmed by comparing the measured
FRFs with the FRFs that can be synthesized from modal param-
eters. Figure 3 shows both measured and synthesized FRFs at
one response location (FRFs with respect to 2 out of 4 input
points). Overall, an impressive 93% correlation was reached
between measured and synthesized FRFs.

Figure 4 shows the FDPI and LMS PolyMAX stabilization
diagrams of another trimmed body dataset where 2 inputs and
500 outputs were measured. In the previous example, an ex-
perienced user could have used FDPI to identify a subset of the
structural modes. In this case, the FDPI stabilization diagram
is hard to interpret at all. Again, LMS PolyMAX shows an easier
to interpret stabilization diagram.

Using LMS PolyMAX on Flight Flutter Data

In some cases FRF data are highly contaminated by noise,
such as flight flutter testing. In the example considered here,
both wing tips of an aircraft are excited during the flight with
so-called rotating vanes. These vanes generate a sine sweep
through the frequency range of interest. The forces are mea-
sured by strain gauges. Next to these measurable forces, tur-
bulences are also exciting the plane resulting in rather noisy
FRFs. Figure 5 shows some typical multiple coherences and
corresponding FRFs, which clearly show the noisy character
of the data. During the flight, accelerations were measured at
9 locations, while both wing tips were excited (2 inputs). The
data were analyzed using both the LSCE and LMS PolyMAX
methods. Figure 6 shows both stabilization diagrams. Also in
this example, the LMS PolyMAX method shows some clear
advantages to the LSCE method — selecting poles is intuitive,
clear and reliable. The synthesized FRFs (Figure 7) validate the
LMS PolyMAX estimations, even in the presence of high
amounts of data noise.

LMS PolyMAX — Historical background

The LMS PolyMAX method is a further evolution of the Least
Squares Complex Frequency-Domain (LSCF) estimation
method. That method was first introduced to find initial val-
ues for the iterative maximum likelihood method.” The LSCF

SOUND AND VIBRATION/JANUARY 2004



|1 w3

A
e
X

Zah S Tann

4 o cER EELBUNEENYENAALSABRYERBRTEEAS ©|

foreal. |
BT L : ETE
Ll
[1-30e-3| A
Cc
LN L ] ] i3 L L L. i ]
e s s v s sls d 8 s
i ) ] ] L] L] ] L . s
s s $. %8 8 s+ s
.8 & 3 L) s L] ] s 8 L]
L35} L ] ) L] L] 3 < L.
ELR] ) A g [ 18
'd. % :\\—/i‘/s\ 8
BLE] L] k] d v s
A ¥ ,_H/W\
|41 8 A ] v s
TE I | [ t Y
]
s
s
s
3
s

¥ somEnTEEUNYNNENENNEAL 48NN REBRTER AN

FM . ,
i trew
L3
Figure 1. Stabilization diagrams obtained by applying different param-
eter estimation methods to the Porsche data: (A) FDPI; (B) LSCE; (C)
the new LMS PolyMAX method.
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estimates a so-called common-denominator transfer function
model.? It was found that these “initial values” already yielded
very accurate modal parameters with a very small computa-
tional effort.”%1% The most important advantage of the LSCF
estimator over available and widely applied parameter estima-
tion techniques? is the fact that very clear stabilization dia-
grams are obtained. Further analysis and background informa-
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Figure 2. MAC values assessing the mode shape correlation between
FDPI and corresponding LMS PolyMAX mode shapes.

tion are available in the references.%1!

It was found that the identified common-denominator model
closely fit the measured frequency response function (FRF)
data. However, when converting this model to a modal model
by reducing the residues to a rank-one matrix using Singular
Value Decomposition (SVD), the quality of the fit decreased.”

Another feature of the common-denominator implementa-
tion is that the stabilization diagram can only be constructed
using pole information (eigenfrequencies and damping ratios).
Neither participation factors nor mode shapes are available
initially.'? The theoretically associated drawback is that closely
spaced poles will erroneously show up as a single pole.

These factors provided motivation for a polyreference ver-
sion of the LSCF method, using a so-called right matrix-frac-
tion model. In this approach, the participation factors are also
available when constructing the stabilization diagram. The
main benefits of the polyreference method are that the SVD step
to decompose the residues can be avoided and closely spaced
poles can be separated.'?!® Here we briefly review the theory.

LMS PolyMAX — Theoretical Foundation

Data Model. Just like the FDPI (Frequency-Domain Direct
Parameter Identification) method*®, the LMS PolyMAX method
uses measured FRFs as primary data. Time-domain methods,
such as the polyreference LSCE method5, typically require im-
pulse responses (obtained as the inverse Fourier transforms of
the FRFs) as primary data. In the LMS PolyMAX method, the

Table 1. Eigenfrequencies and damping ratios obtained by applying the
FDPI and LMS PolyMAX method.

FDPI method LMS PolyMAX method
fiHz &% fyHz Sir %
- - 3.96 5.4
= — 4.24 9.6

- — 4.81 11.6
6.02 €1l 560000000000000000 6.02 4.2
8.58 @A 6000a0000000000000 8.57 6.5
14.56 @1 600000000000000000 14.59 5.8

- - 15.74 6.3

- - 17.05 5.8
17.99 B8 600000000000000000 18.25 4.9

- - 20.91 2.7
21.78 &) 6 000a0000000000000 21.81 2.7

— - 22.58 3.4

- - 23.98 0.9

- - 25.12 2.4

— - 25.23 3.1

- — 26.05 2.1
27.03 BB co0000000000000000 27.06 5.2
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Figure 3. Comparison of measured FRFs (green) with FRFs synthesized
from the identified modal model (red). The FRFs between 2 of the 4
inputs (A) and a typical output (B) are shown.

following so-called right matrix-fraction model is assumed to
represent the measured FRFs:

()-S5 [zz ] )

where [H ] e €™M is the matrix containing the FRFs between
all m inputs and all I outputs; [B,]e R™™ are the numerator
matrix polynomial coefficients; [, Je R™*™ are the denomina-
tor matrix polynomial coefficients and p is the model order.
Please note that a so-called z-domain model (i.e., a frequency-
domain model that is derived from a discrete-time model) is
used in Eq. 1, with:

z=¢ JOM (2)

where At is the sampling time.

Eq. 1 can be written for all values of the frequency axis of
the FRF data. Basically, the unknown polynomial coefficients
[ar], [ﬁr] are then found as the least-squares solution of these
equations (after linearization).12-13

Poles and Modal Participation Factors. Once the denomi-
nator coefficients [ar] are determined, the poles and modal par-
ticipation factors are retrieved as the eigenvalues and eigen-
vectors of their companion matrix:
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Figure 4. Stabilization diagrams obtained by applying different param-
eter estimation methods to data from a partially trimmed car: (A) FDPI;
(B) the new LMS PolyMAX method.
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2V =VA (3)
0 0 0 I

o] ] - fap] e

The modal participation factors are the last m rows
of V e CMP*MP; the matrix A € C™P*™P contains the (discrete-
time) poles e%4 on its diagonal. They are related to the
eigenfrequencies o, (rad/s) and damping ratios &; (-) as follows
(* denotes complex conjugate):

Ais A ——é,w V1= élw (4)

This procedure is similar to what happens in the time-do-
main LSCE method and allows a stabilization diagram to be
constructed for increasing modal orders and using stability cri-
teria for eigenfrequencies, damping ratios and modal partici-
pation factors.

Mode Shapes. Theoretically, the mode shapes could be de-
rived from the coefficients [ar][,Br], but we proceed in a differ-
ent way. The mode shapes can be found by considering the so-
called pole-residue model:

[H(0)]- Z{v}<1 > {;}<11H> [LR] +[UR] 5)

-1 JO~ 2’ ]'CO—).; 0)

where n is the number of modes; I denotes complex conjugate
transpose of a matrix; {v;}e ¢! are the mode shapes;
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Figure 5. Flight flutter test data: (A) multiple coherences of a sensor at - | i : ; 12
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the wing tip close to the excitation (red) and a sensor at the back of the
plane (green); (B) corresponding FRFs. The frequency axis is blind for
confidentiality reasons.

< I >e C™ are the modal participation factors and A; are the
poles (Eq. 4). [LRJ[UR]e R™™ are respectively the lower and
upper residuals modeling the influence of the out-of-band
modes in the considered frequency band. The interpretation
of the stabilization diagram yields a set of poles 4; and corre-
sponding participation factors </,">. Since the mode shapes {v }
and the lower and upper residuals are the only unknowns, they
are readily obtained by solving Eq. 5 in a linear least-squares
sense. This second step is commonly called Least Squares Fre-
quency Domain (LSFD) method.?? The same mode-shape esti-
mation method is normally also used in conjunction with the
time-domain LSCE method.

Comparing LMS PolyMAX with Other Estimators
LMS PolyMAX versus LSCE. As may be clear from the pre-

vious section, the LMS PolyMAX method proceeds along simi-

lar lines as the polyreference LSCE time-domain method:

e Establishment of a set of linear equations for the maximum
required modal order, from which the matrix polynomial
coefficients [, ] can be computed in a least-squares sense.

e Construction of a stabilization diagram by solving the eigen-
value problem (Eq. 3) for increasing model orders. The in-
formation regarding eigenfrequencies, damping ratios and
modal participation factors is contained in this diagram.

¢ Based on the user-interpretation of the stabilization diagram,
computation of the mode shapes and the lower and upper
residuals by solving (Eq. 5) in a least-squares sense.

The difference between LSCE and LMS PolyMAX lies in the
first step. LSCE uses impulse responses to find the polynomial
coefficients, whereas LMS PolyMAX requires frequency re-
sponse functions.

However, this seemingly small difference has major conse-
quences for the modal parameter estimation process. It turns
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Figure 6. Stabilization diagrams obtained by applying different param-
eter estimation methods to the flight flutter test data: (A) LSCE; (B) the
new LMS PolyMAX method.

out that the new LMS PolyMAX estimator yields extremely
clear stabilization diagrams making it very simple to select the
‘physical’ poles. In the LSCE method, the non-physical (and
sometimes even the physical) poles tend to ‘wander’ in the
stabilization diagram, especially at large modal orders. The
LMS PolyMAX method has the interesting property that the
nonphysical poles are estimated with a negative damping ra-
tio so that they can be excluded before plotting them. Such a
clear diagram does not mean that some of the poles are miss-
ing. On the contrary, more poles can be found with the LMS
PolyMAX method, as evidenced by the examples in this article.
Other validation studies also revealed that the LMS PolyMAX
method has no problems in correctly estimating modes having
a low damping ratio. It is sometimes stated that time-domain
methods are preferred in case of low damping, and frequency-
domain methods in case of high damping. The LMS PolyMAX
method excels in both cases.

LMS PolyMAX versus Other Frequency-Domain Methods.
Many frequency-domain parameter estimation methods typi-
cally involve the inversion of a matrix containing powers of
the frequency-axis of the data. Therefore, one quickly runs into
numerical conditioning problems and severe constraints to
both the frequency range and the modal order range of the
analysis. In the past, it has been proposed to use an orthogo-
nal polynomial basis for the frequency-domain model to solve
numerical problems. However this significantly increases the
computation time and memory requirements.

The LMS PolyMAX method does not suffer from numerical
problems as it is formulated in the z-domain (i.e., a frequency-
domain model that is derived from a discrete-time model),
whereas the existing frequency-domain methods use a Laplace-
domain formulation (i.e., a frequency-domain model that is
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Figure 7. Comparison of the measured FRFs (green) with FRFs synthe-
sized from the identified modal model (red). (A) Sensor at the wing tip;
(B) Sensor at the back of the aircraft.

derived from a continuous-time model). In LMS PolyMAX, the
frequency axis that extends between f, and f,_, is shifted and
mapped into a half unit circle in the complex plane (Eq. 2):

1
z(fend - fO)

Similar to other frequency-domain methods, the LMS
PolyMAX method involves the inversion of a matrix contain-
ing powers of the frequency-axis of the data. The main advan-
tage of LMS PolyMAX is that taking powers of the z-variable
does not increase the range of the values, as it boils down to a
rotation in the complex plane: z" = e /*" Ag a result, the LMS
PolyMAX method can deal with a large frequency range and
very large model orders, speeding up the modal parameter es-
timation process considerably, as in many cases the complete
frequency-band of interest can be processed at once.

There was some common belief that the numerical condition-
ing of frequency-domain methods is worse than time domain
methods and that broadband analyses are preferably performed
in the time-domain.?2 When using the LMS PolyMAX approach,
these statements are no longer true.

Computational Efficiency. The advantages discussed here
have no penalaties in terms of computational time — LMS
PolyMAX is as fast as LSCE. LSCE became the industry-stan-
dard because of its high speed even for a very large number of
measured outputs. A lot of research was spent to achieve this
computational efficiency. On current PC platforms, calculation
and display of the stabilization diagram for a typical full car
body model (like the trimmed car body example discussed
here) is in the order of seconds.

z=e % w=21(f-f,), At (6)

Conclusions
With the new LMS PolyMAX method, a breakthrough in
Experimental Modal Analysis has been achieved. Whereas the
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method equals or even outperforms the current standard LSCE
technique on common test structures, it brings a solution for
problems — like trimmed body and flutter data — where current
EMA technology has shown its limits.

By substantially simplifying the analysis process, LMS
PolyMAX will be enjoyed by many new users in the field. For
advanced applications, its powerful clear stabilization and the
quality of the modal parameter estimation are real break-
throughs, widely expanding the application range and drasti-
cally reducing the number of iterations needed.

LMS PolyMAX is not yet-another-parameter-estimation-tech-
nique, but a global solution for Experimental Modal Analysis.
The new function is part of the LMS Test.Lab Structures solu-
tion for modal testing and analysis. LMS Test.Lab Structures
is an integrated suite of applications covering the range of
structural dynamic engineering completely. Dedicated appli-
cations serve impact hammer measurements, single shaker test-
ing and advanced multiple-input, multiple-output (MIMO)
analyses. These starting points measure the motion/force trans-
fer or FRFs required for modal analysis. A dedicated modal
analysis module automatically accesses these measurements to
compute the modal parameters: mode shape vector, resonant
frequency, damping factor and modal mass. All applications
are tightly integrated so that data streams smoothly from ac-
quisition, through analysis, to display and reporting.

References

1. Van der Auweraer H., C. Liefooghe, K. Wcykaert and J. Debille,
“Comparative Study of Excitation and Parameter Estimation Tech-
niques on a Fully Equipped Car,” Proceedings of IMAC 11, the In-
ternational Modal Analysis Conference, 627-633, Kissimmee, FL,
USA, 1-4 February 1993.

2. Heylen W., S. Lammens and P. Sas, “Modal Analysis Theory and
Testing,” Department of Mechanical Engineering, Katholieke
Universiteit Leuven, Leuven, Belgium, 1995.

3. LMS International, The LMS Theory and Background Book, Leuven,
Belgium, 2000.

4. Lembregts F., J. Leuridan, L. Zhang and H. Kanda, “Multiple Input
Modal Analysis of Frequency Response Functions Based Direct
Parameter Identification,” Proceedings of IMAC 4, the International
Modal Analysis Conference, 589-598, Los Angeles, CA, USA, 1986.

5. Lembregts F., R. Snoeys and J. Leuridan, “Application and Evalua-
tion of Multiple Input Modal Parameter Estimation,” International
Journal of Analytical and Experimental Modal Analysis, 2(1), 19-
31, 1987.

6. Brown D. L., R. J. Allemang, R. Zimmerman and M. Mergeay,“Par-
ameter Estimation Techniques for Modal Analysis,” Society of Au-
tomotive Engineers, Paper No. 790221, 1979.

7. Guillaume P., P. Verboven and S. Vanlanduit, “Frequency-Domain
Maximum Likelihood Identification of Modal Parameters with Con-
fidence Intervals,” Proceedings of ISMA 23, the International Con-
ference on Noise and Vibration Engineering, Leuven, Belgium, 16-
18 September 1998.

8. Guillaume P., R. Pintelton and J. Schoukens, “Parametric Identifi-
cation of Multivariable Systems in the Frequency Domain — a Sur-
vey,” Proceedings of ISMA 21, the International Conference on
Noise and Vibration Engineering, 1069-1082, Leuven, Belgium, 18-
20 September 1996.

9. Van der Auweraer H., P. Guillaume, P. Verboven and S. Vanlanduit,
“Application of a Fast-Stabilizing Frequency Domain Parameter
Estimation Method,” ASME Journal of Dynamic Systems, Measure-
ment, and Control, 123(4), 651-658, 2001.

10. Verboven, P., “Frequency Domain System Identification for Modal
Analysis,” Ph.D. Thesis, Vrije Universiteit Brussel, Belgium, 2002.

11. Pintelton R. and J. Schoukens, System Identification — a Frequency
Domain Approach, IEEE Press, New York, 2001.

12. Guillaume P., P. Verboven, S. Vanlandiut, H. Van der Auwaerer and
B. Peeters, “A Poly-Reference Implementation of the Least-Squares
Complex Frequency-Domain Estimator,” Proceedings of IMAC 21,
the International Modal Analysis Conference, Kissimmee, FL, USA,
February 2003.

13. Peeters B., P. Guillaume, H. Van der Auwaerer, B. Cauberghe, P.
Verboven and J. Leuridan, “Automotive and Aerospace Applications
of the LMS PolyMAX Modal Parameter Estimation Method,” Pro-
ceedings of IMAC 22, Dearborn, MI, USA, January 2004. SV

The authors may be contacted at: bart.peeters@lms.be.

SOUND AND VIBRATION/JANUARY 2004



