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In the last thirty years there have been many developments
in the use of vibration measurement and analysis for moni-
toring the condition of rotating machinery while in operation.
These have been in all three areas of interest, namely fault
detection, diagnosis and prognosis. Of these areas, diagnosis
and prognosis still require an expert to determine what analy-
ses to perform and to interpret the results. Currently much
effort is being put into automating fault diagnosis and prog-
nosis. Major economic benefits come from being able to pre-
dict with reasonable certainty how much longer a machine can
safely operate (often a matter of several months from when
incipient faults are first detected). This article discusses the
different requirements for detecting and diagnosing faults, out-
lining a robust procedure for the former, and then goes on to
discuss a large number of signal processing techniques that
have been proposed for diagnosing both the type and severity
of the faults once detected. Change in the severity can of course
be used for prognostic purposes. Most procedures are illus-
trated using actual signals from case histories. Part 2 of this
article will appear in the May 2004 issue of S&V.

The vibrations measured externally on operating machines
contain much information about their condition, as machines
in normal condition have a characteristic “vibration signature,”
while most faults change this signature in a well-defined way.
Thus, vibration analysis is a way of getting information from
the inside of operating machines without having to shut them
down. Another way of getting information from operating
machines is by analysis of the lubricant, and “oil analysis” is
useful in machine condition monitoring. This article is con-
cerned only with vibration analysis techniques.

Machine vibrations are measured in two fundamentally dif-
ferent ways — relative displacement of a shaft in its bearings
using so-called “proximity probes,” and absolute motion of the
casing (usually at the bearings) using absolute motion trans-
ducers. Proximity probes must be designed into the machines
and are typically used on high speed turbomachines with fluid
film bearings. They are used for permanent monitoring of rela-
tively simple parameters such as peak-to-peak relative dis-
placement and shaft orbits (in the bearing) and are primarily
used to protect valuable and critical machines by shutting them
down in the event of excessive vibration. Only in a limited
number of situations can long term predictions be made. This
is because incipient faults often show up first at high frequen-
cies, to which the relative displacement measurements are not
sensitive. Proximity probes have a frequency range up to 10
kHz, but because of the natural reduction of displacement am-
plitudes with frequency and the dynamic range limitation of
proximity probes to 30-40 dB, the limitation is really of har-
monic order (to about 10-12 harmonics). The dynamic range
limitation is determined mainly by electrical and mechanical
runout, i.e. the signal measured in the absence of vibration. The
higher dynamic range limit corresponds to the use of “runout
subtraction,” where the runout measured at low speed can be
subtracted from other measurements at high speed. This tech-
nique is somewhat dubious over long periods of time where
the originally measured runout may have changed.

Since all vibrations represent an alternation between poten-
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tial energy (in the form of strain energy) and kinetic energy,
vibration velocity is the parameter most closely related to
stress, and is the parameter used to evaluate severity in most
vibration criteria. For the same reason, a velocity spectrum is
usually ‘flattest’ over a wide frequency range, requiring the
minimum dynamic range to represent all important compo-
nents. By comparison, vibration displacement tends to over-
emphasize low frequencies (as for relative displacement) while
vibration acceleration tends to over-emphasize high frequen-
cies. The latter can sometimes be useful for faults, such as in
rolling element bearings, which show up first at high frequen-
cies, but may disguise changes at low frequencies. However,
the best and most common transducer for measuring absolute
casing vibration is the piezoelectric accelerometer which pro-
duces a signal proportional to acceleration. Its dynamic range
is so large (160 dB) that it can be combined with electronic
integration to give a velocity signal with more than 60 dB dy-
namic range over three decades in frequency. This cannot be
achieved by typical velocity transducers with an upper fre-
quency limit of 1-2 kHz.

For these reasons, the rest of this article mostly assumes mea-
surements made with accelerometers, sometimes integrated to
velocity. The meaning of “rotating machines” has been taken
to include reciprocating machines such as diesel engines. Be-
cause of their importance and ubiquity, the measurement of
torsional vibration of the crankshaft is included as a supple-
mentary technique.

Fault Detection

As mentioned above, the use of accelerometers, possibly with
integration to velocity, allows the measurement of signals with
a frequency range of more than three decades, e.g., 5 Hz-5 kHz
or 20 Hz-20 kHz, with very good dynamic range. Such a range
can be necessary to detect the full range of possible faults. With
fluid film bearings these can extend down to 40% of shaft speed
(e.g. oil whirl) up to at least the 400" harmonic of shaft speed
(e.g. harmonics of gearmesh and bladepass frequencies). Roll-
ing element bearings often have fault indications at frequen-
cies on the order of 1000 or more times the shaft speed. Crite-
ria exist for vibration severity, such as the ISO Standard 2372
(developed from the German recommendation VDI-2056), and
the so-called “General Machinery Criterion Chart,”? widely
used in the USA, developed from the earlier Rathbone and
Yates charts. As mentioned above, these all represent equal
velocity criteria, for a wide range of machine sizes and speeds,
and can be expressed in terms of RMS levels covering the fre-
quency range 10-1000 Hz. The reason for the upper frequency
limitation is not for any good technical reason, other than the
fact that much of the data on which it was based were obtained
using velocity probes with that frequency range.

The ISO 2372 standard has different criteria depending on
the size of the machine, and whether they are flexibly or rig-
idly mounted. Thus, there must be differences from the “Gen-
eral Machinery Criterion Chart,” which does not differentiate.
Both criteria are in agreement that equal changes in severity
are represented by equal changes on a log amplitude scale, and
that a change of 20 dB (vibration velocity ratio of 10:1 or 1:10)
is serious. The number of grades between ‘good’ and ‘faulty’
differ slightly, but it can be inferred that a significant change
is represented by a change of 6-8 dB (vibration velocity ratio
of 2-2.5). There is no doubt that typical vibration levels will
tend to vary with the size and type of machine, but in one
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study? it was found that even for machines of the same class

(ethylene compressors in a petrochemical plant), the mechani-

cal impedance of the bearings varied over a very wide range.

That means the same measured vibration level would represent

very different internal forces, in particular at different frequen-

cies. Thus, rather than using absolute criteria, a strong argu-
ment can be made for detecting faults based on the change from
the normal levels at each measurement point, with 6 dB and

20 dB representing significant and serious changes, respec-

tively.

The use of velocity means that there is a better chance that
changes at any frequency will affect the overall RMS levels. But
it is still evident that monitoring of frequency spectra, rather
than overall levels, will have a better chance of detecting
changes at whatever frequency they should occur. There are
very good reasons why the spectra used for comparison should
be of the constant percentage bandwidth (CPB) type, rather than
FFT constant bandwidth spectra:
® A 1/18-octave (4% bandwidth, log frequency) spectrum can

cover three decades in frequency with 180 spectrum values,

whereas a single (linear frequency) FFT spectrum only cov-
ers 1to 1.5 decades, meaning that several have to be used to
guard against all possibilities.

e Even minor speed changes, such as those given by slight load
variations with an induction motor, make it very difficult to
compare FFT spectra, whereas on a log frequency scale, a
small speed change (on the order of the bandwidth) can be
compensated by a lateral shift of the spectrum. Smaller
changes will be included within the bandwidth.

e To aid the comparison of digitized CPB spectra, a mask can
easily be made by smearing a reference spectrum to account
for the large changes in sample values along the flanks of dis-
crete frequency components due to small speed changes less
than the bandwidth.

Figure 1 shows the application of this technique to signals
from an auxiliary gearbox on a gas turbine-driven oil pump.?
It shows the comparison of a spectrum with a mask formed from
the original reference spectrum, and the resulting spectrum of
exceedances. This comparison is for the situation four months
after the first detection of the fault. Two remarks are worthy of
mention at this point:

e The maximum change of 20 dB is quite serious, but stabilized
at this level, the machine was allowed to run for a further
five months before being repaired at a convenient time.

e Despite the significant change of a number of frequency com-
ponents, the overall RMS value of the signal would not have
changed, because of the masking effect of strong adjacent
components. The fault was in a bearing, but the spectrum was
dominated locally by strong gear-related components.

This fault detection procedure has proven itself to be very
robust on a wide range of different cases over more than twenty
years.

Fault Diagnosis

Once a significant change indicating a potential fault has
been detected, it is usually necessary to perform other signal
processing techniques to make a diagnosis of the fault(s), which
depend greatly on the type of fault expected. Not much diag-
nostic information can be extracted from the CPB spectrum, in
particular because it is on a logarithmic frequency axis, and
this disguises things such as harmonic patterns that are very
valuable diagnostically. However, the frequency range where
the change occurred is valuable information and guides the
selection of the appropriate linear frequency range for FFT
spectra to be used diagnostically.

The type of analysis to be applied depends on the type of
fault, and so it is interesting to investigate how various faults
manifest themselves in the vibration signal.

Shaft Speed Faults. A number of faults manifest themselves
at a frequency corresponding to the speed of the shaft. Among
these are unbalance, misalignment and cracked shaft, which
are difficult to distinguish from each other. This is one area
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Figure 1. (Upper) Comparison of new spectrum with mask, velocity dB
re 10°% m/s. (Lower) dB difference spectrum.

where proximity probes can be useful, as their ability to deter-
mine the mean position of the shaft in the bearing as well as
the shape of the orbit can help differentiate between unbalance
and misalignment. In general, misalignment tends to produce
a stronger second harmonic of shaft speed and more axial
motion. Even though the unbalance force is purely at shaft
speed, the nonlinearity of components in the system (such as
fluid film bearings) can distort the response motion, leading
to higher harmonics, while moment unbalance gives rocking
motions with axial components. For constant unbalance dis-
tribution and alignment, cracks in shafts give changes at the
first and second harmonics of shaft speed, though these may
be more evident as a change in phase angle (relative to the
phase of a once-per-rev tacho signal) rather than in amplitude.
For ‘breathing’ cracks, opening and closing each revolution, the
third and other odd harmonics are also excited. Sophisticated
rotor dynamic models are now being made of the most critical
machines and these provide the best possibilities for distin-
guishing between unbalance, misalignment and shaft cracks,
at least with the machine running at speed and load. Cracks
can be detected during rundowns, not so much by a change in
critical speed, as by an increased response when harmonics of
shaft speed pass through the critical speed(s).

Other faults show up at sub-synchronous frequencies, such
as “oil whirl,” usually at 40-48% of shaft speed, caused by a
resonant wave in the fluid film bearing. This can sometimes
be confused with “hysteresis whirl,” due to hysteretic friction
between components on the rotor. The friction forces are such
that a self-excited whirl is generated when passing through the
shaft critical speed and remains at this frequency as the shaft
speed increases. Since many machines run at about twice their
first critical speed, this can sometimes be confused (and per-
haps even merged) with oil whirl. When oil whirl combines
with resonant shaft response it is sometimes called “oil whip.”
Exact subharmonics (e.g. 1/2, 1/3) can result from “parametric
excitation,” variations in stiffness due to looseness, ‘rubs’ etc.,
and can be distinguished by their exact subharmonic nature.

Electrical Machine Faults. Electrical machines such as AC
motors and generators produce vibrations due to electrical as
well as mechanical forces.* Stator faults tend to give increases
at twice mains frequency, as this is the rate at which the poles
of the rotating magnetic field are passing a fixed point (the
anomaly) on the stator. For two-pole synchronous machines,
this is the same as twice shaft speed, making it difficult to dis-
tinguish between a stator fault and misalignment. However, the
electrical forces are strongly dependent on the load and vary-
ing the load may allow the two effects to be separated. Switch-
ing off the power and tracking the second harmonic as it runs
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Figure 2. Upper - baseband spectrum. Lower — use of FFT zoom spec-
trum in marked area of baseband spectrum to separate the harmonics
of shaft speed from those of mains frequency.
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Figure 3. Example of a rotor fault on an induction motor, showing
modulation sidebands around the shaft speed component. The main
cursor (shaft) frequency is 29.75 Hz and the sideband cursor spacing
is 0.25 Hz.

down in speed allows complete separation.

For induction motors? the situation is easier in that the shaft
speed is less than synchronous and FFT zoom analysis allows
separation of the harmonics of shaft speed from those of mains
frequency. Figure 2 shows an example, where from the upper
baseband spectrum, it appears that the second harmonic of
shaft speed is elevated. However, the lower zoom analysis cen-
tered on this frequency shows that it is the second harmonic
of mains frequency that dominates and the second harmonic
of shaft speed is five times lower.

Figure 3 shows an example of a fault on the rotor of a four-
pole induction motor (in the USA where the mains frequency
is 60 Hz). The main effect is at the shaft speed (corresponding
to the rate of rotation of the fault), but it can be distinguished
from mechanical unbalance by virtue of the strong modulation
sidebands. The sideband cursor shows that these are spaced
at 1.0 Hz, which is the number of poles times the slip frequency
of 0.25 Hz (synchronous speed 30 Hz minus shaft speed 29.75
Hz). This is the frequency at which the poles of the rotating
field pass a given point (the anomaly) on the rotor.*

Gear Faults. Gears represent a typical component where the
wide frequency range of accelerometers is needed. The basic
vibration generating mechanism in gears is the “transmission
error” (TE), which can be understood as the relative torsional
vibration of the two gears, corrected for the gear ratio. The TE
can be expressed as a linear relative displacement along the line
of action, which is the same for both gears but represents an
angular displacement inversely proportional to the number of
teeth on each gear.

The TE results from a combination of geometric errors of the
tooth profiles and deflections due to tooth loading. Thus, even
a gear with perfect involute profiles will have some TE under
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Figure 4. Comparison of an original gear signal (upper) with a synchro-
nous average (middle) and their difference (lower) for a simulated tooth
root crack at roughly 250°.

load. It is thus important to make comparisons of gear vibra-

tion spectra under the same load to obtain information about

changes in condition.

Gear vibration signals are dominated by two main types of
phenomena:®
e Effects that are the same for each meshing tooth pair, such

as the tooth deflection under load and the uniformly distrib-
uted part of initial machining errors and/or wear. These
manifest themselves at the toothmeshing frequency and its
harmonics. Since there is a pure rolling action at the pitch
circle and sliding on either side, tooth wear tends to occur
in two patches on each tooth. Wear is thus often first seen as
an increase in the second harmonic of the toothmeshing fre-
quency.

e Variations between the teeth, which can be localized or dis-
tributed more uniformly around the gears. These manifest
themselves at other harmonics of the gear rotational speeds,
for the gear on which they are located. Localized faults such
as cracks and spalls tend to give a wide range of harmonics
and sidebands throughout the spectrum, whereas more
slowly changing faults such as those due to eccentricity and
distortion during heat treatment, tend to give stronger har-
monics grouped around zero frequency and as sidebands
around the harmonics of toothmesh frequency.

Since even with faults the same geometric shapes always
mesh in the same way, the signals produced by gears are basi-
cally deterministic, at least as long as the teeth remain in con-
tact.

This is illustrated in Figure 45 for a gear with a simulated
tooth root crack meshing with a normal gear. The signal for one
rotation is seen to be very similar to the synchronous average
over several rotations, leaving a residual signal that is close to
zero. In this case both gears had the same number of teeth,
making the fundamental meshing period the same as one rota-
tion of each gear, but in general this period (after which all gears
again have the same orientation) would be much longer. The
signal corresponding to each gear can however be extracted by
averaging synchronously with the rotation of the gear con-
cerned.

For light load or very large geometric errors the teeth can lose
contact and introduce some randomness or chaotic nature to
the signals. For condition monitoring it is better for the load-
ing to be sufficient to maintain tooth contact, to ensure that
changes in the vibration signals are due to changes in condi-
tion.

Bearing Faults. This discussion is limited largely to rolling
element bearings, since with fluid film bearings in principle
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Figure 5. Typical signals and envelope signals from local faults in roll-
ing element bearings. BPFO = ballpass frequency, outer race; BPFI =
ballpass frequency, inner race; BSF = ball spin frequency; FTF = fun-
damental train frequency (cage frequency).

there should not be any metal-to-metal contact and consequent
wear. There have been very few studies of detecting the wear
of fluid film bearings from their vibration signals, but the op-
erational faults that could give rise to such wear can be moni-
tored by the techniques described in “Shaft Speed Faults.” This
is also one area where the use of oil analysis can aid vibration
analysis, as bearing metals are quite distinctive in their chemi-
cal composition.

Rolling element bearings do eventually wear out, and it is
very valuable to detect their deterioration at an early stage.
Figure 5 shows typical acceleration signals produced by local-
ized faults in the various components of a rolling element bear-
ing, along with the corresponding envelope signals produced
by amplitude demodulation. It will be shown that analysis of
the envelope signals gives more diagnostic information than
analysis of the raw signals.

The diagram illustrates that as the rolling elements strike a
local fault on the outer or inner race, a shock is introduced that
excites high frequency resonances of the whole structure be-
tween the bearing and the response transducer. The same hap-
pens when a fault on a rolling element strikes either the inner
or outer race. The series of broadband bursts excited by the
shocks is further modulated in amplitude by two factors:”

e The strength of the bursts depends on the load borne by the
rolling element(s), and this can be modulated by the rate at
which the fault is passing through the load zone.

e Where the fault is moving, the transfer function of the trans-
mission path varies with respect to the fixed positions of re-
sponse transducers.

For the common case of uni-directional load (e.g., completely
dominating over unbalance load) outer race faults will tend to
occur in the load zone and the bursts will not be modulated as
illustrated in Figure 5. On the other hand, inner race faults pass
through the load zone at shaft frequency and rolling elements
pass through the load zone at the fundamental train frequency
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Figure 6. Bearing fault pulses with and without frequency fluctuation;
(A, B, C) no frequency fluctuation; (D, E, F) 0.75% random frequency
fluctuation.

or FTF (i.e., cage frequency). Note that the ballspin frequency
(BSF) is the frequency with which the fault strikes the same
race (inner or outer), so that in general there are two shocks
per basic period. If these shocks (or at least their envelopes)
were identical, the odd harmonics would vanish and the fun-
damental frequency would be twice BSF.

The formulae for the various frequencies shown in Figure 5
are as follows:

BPFO=n7f’{1—%cos¢} (1)
BPFI = n—f’{l + icomp} (2)
2 D
FTF=%{1—%COS¢} (3)
BSF = b 1- (icos¢)2 (4)
" a2d D

where f, is the shaft speed, n is the number of rolling elements
and ¢ is the angle of the load from the radial plane.

These are, however, the kinematic frequencies assuming no
slip. In reality there must virtually always be some slip for the
following reason. The angle ¢ varies with the position of each
rolling element in the bearing as the ratio of local radial to axial
load changes. Thus each rolling element has a different effec-
tive rolling diameter and is trying to roll at a different speed.
The cage ensures that the mean speed of all rolling elements
is the same by causing some random slip. This is typically on
the order of 1-2%.

This random slip, while small, does give a fundamental
change in the character of the signal and is the reason why
envelope analysis extracts diagnostic information not available
from frequency analyses of the raw signal. It also allows bear-
ing signals to be separated from gear signals® with which they
are often mixed, as discussed below.

Figure 6 illustrates the effect of the small random frequency
fluctuations on the spectrum and envelope spectrum,? as typi-
fied by an outer race fault. Figure 6a shows a series of high fre-
quency bursts at a rate corresponding to the ballpass frequency
with no random fluctuation. It is assumed that just one reso-
nance frequency (e.g., the lowest) is excited, and so the har-
monics of the repetition frequency in Figure 6b represent
samples of the spectrum of one of the pulses (expressed in
terms of acceleration). The values of the low harmonics are
obviously very small, and only become significant in the vi-
cinity of the resonance frequency, where their spacing indicates
the repetition frequency. The envelope spectrum in Figure 6c,
the frequency analysis of the envelope signal obtained by am-
plitude demodulation of the signal in Figure 6a, has strong low
harmonics, as it corresponds to a series of pulses as in Figure
5. The small random fluctuation in the spacing of the bursts
in Figure 6d can hardly be seen by the eye. Still, it gives a
smearing of the higher harmonics in Figure 6e, so that no di-
agnostic information can be extracted from the raw spectrum.
However, the envelope spectrum of Figure 6f clearly indicates
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Figure 7. Matrix representation of the DFT.

the average burst frequency, even if the higher harmonics are
a little smeared.

Signals such as the one shown in Figure 6d-f, which are not
periodic but have a hidden periodicity that can be extracted
by demodulation, are known as cyclostationary.® Because they
are often generated in rotating machines along with determin-
istic discrete frequency signals, they are treated below in a
special section.

Reciprocating Machine Faults. Reciprocating machines,
such as diesel engines and reciprocating compressors, also pro-
duce vibrations with both periodic and cyclostationary com-
ponents. The latter can be associated with combustion, which
occurs every basic cycle, but not identically each time. Signals
from reciprocating machines have a different character from
those of simple rotating machines, as they consist of a series
of impulsive events (combustion, piston slap, valves opening
and closing, etc.), and so the most effective analysis techniques
must take into account variations in both frequency and time
(or crank angle). This is merely an attempt to match what ex-
perienced mechanics do with their ears in distinguishing be-
tween bearing knock, combustion knock, piston slap, etc.

Combustion-related faults could be recognized by viewing
the cylinder pressure signal throughout the cycle, but this re-
quires having a pressure transducer in every cylinder, some-
thing that is not very practical even though test engines are
sometimes instrumented this way in the laboratory. Efforts are
currently being made to reconstruct cylinder pressure signals
from external measurements that react directly to the cylinder
pressure, such as accelerations of the block or head, or torsional
vibrations of the crankshaft.

A simple indication of (complete or partial) misfire is given
by viewing the crankshaft torsional vibration directly, as uni-
form firing on all cylinders gives uniform torque pulses, and
corresponding uniform angular velocity fluctuations for the
combustion on each cylinder. This is illustrated below.

Signal Processing Techniques

Once faults have been detected, it is necessary to apply a
range of signal processing techniques to the vibration signals
to try to determine the reasons for the spectral change. In the
following, a number of classical and newer techniques are re-
viewed.

FFT Analysis. As illustrated in Figures 2 and 3, an FFT (fast
Fourier transform) spectrum is a powerful diagnostic method,
in particular when combined with zoom analysis as in Figure
2b, and a harmonic/sideband cursor as in Figure 3. The FFT is
a fast algorithm for calculating the DFT (discrete Fourier trans-
form), of a block of g(n) N samples of data, giving a spectrum
G(k) of N frequency lines, using the formula:

N-1
G(k)=1/N z g(n)exp(-j2zkn/N) (5)
n=0

Equation 5 actually assumes that g(n) is one period of a pe-
riodic signal, so that the spectrum is that of the corresponding
Fourier series. The sample index number n represents time nAt,
where At is the sample spacing, the reciprocal of the sampling
frequency f,. Similarly, the frequency index k represents fre-
quency kAf, where Afis the line spacing, the reciprocal of the
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Figure 8. Schematic diagram of FFT zoom process.

record length T (= NAt). Because the time signal is sampled,
the spectrum G(k) is also periodic, with a period equal to the
sampling frequency f,. In the normal situation where the sig-
nal g(n) is real, the negative frequency components are the com-
plex conjugates of the positive frequency components, and
there are thus only N/2 independent (but complex) spectrum
values. Because of the periodicity of the spectrum, the second
half (from f,/2 to f,) actually represents the negative frequency
components (from —f,/2 to zero). This also explains why all fre-
quencies in the original signal outside this range (—f,/2 to f,/2)
must be removed by a lowpass filter before digitization, as they
would otherwise mix with the true components within this
range (causing ‘aliasing’).

Figure 7 is a matrix representation of Equation 5 for N = 8.
The square matrix shows the orientation of the complex expo-
nential components (unit vectors) for the various values of k
(frequency index) and n (time index). Note the orientation of
the real and imaginary axes (R and I). The first row represents
zero frequency, and the first column zero time.

All the vectors in the first row equal unity, so the zero fre-
quency spectrum value is simply the sum of the time samples
divided by N (= 8), giving the average value as expected. The
vectors in the second row rotate —1/N' of a revolution per time
sample, corresponding to a single rotation over the record
length, and thus give the first harmonic of the periodic signal.
The next row rotates twice as fast, giving the second harmonic
and so on. The fifth row represents half the sampling frequency,
and all rows after this are more easily understood as rotations
in the opposite direction, giving the negative frequency com-
ponents. The last row, for example, gives minus the fundamen-
tal frequency. The periodicity of the spectrum can be under-
stood by realizing that the first row equally well represents the
sampling frequency (one revolution per time sample) as zero
frequency.

Zoom FFT. The normal frequency range of an FFT spectrum
is from zero to half the sampling frequency, but as shown in
Figure 2, it can be an advantage to “zoom in” on a narrower
frequency range. This was once done by two techniques known
as “non-destructive zoom” and “real-time zoom,'° where the
first was basically a way of obtaining the FFT transform of a
long record by combining the results of smaller transforms.
This was useful when FFT analyzers typically had a fixed trans-
form size. Now with less restriction, the same result can be
achieved by performing a large transform directly. The zoom
factor (compared with an original transform) is simply the ra-
tio of transform sizes, and as with non-destructive zoom the
longer record must be accommodated in the memory.

With real-time zoom, virtually any zoom factor can be
achieved without storing the original record, as long as it can
be processed in real-time by a zoom processor. This normally
requires special hardware in a dedicated analyzer. The prin-
ciple is shown in Figure 8, where the input signal is frequency
shifted, lowpass filtered and decimated to a lower sampling
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frequency in real-time. It is only the decimated signal that is
stored and FFT transformed, vastly reducing the storage re-
quirement. To zoom in another frequency band would require
the original signal to be stored separately (e.g. on a DAT re-
corder).

Multiplication of the original signal by exp(-j2xf,t) subtracts
frequency f; from every frequency in it and thus shifts the zoom
center frequency f; to zero. The lowpass filtering permits
resampling to a lower frequency without aliasing.

The lowpass filtering and resampling are usually done in
octave (2:1) steps, as this can be repeated as many times as
desired in real-time to obtain zoom by a factor equal to any
power of two. This procedure is explained in a following sec-
tion on digital filtering.

A zoom processor such as that in Figure 8 can also be used
for demodulation as explained in a following section.

Practical FFT Analysis. The DFT actually produces the Fou-
rier series spectrum of a periodic repetition of the record trans-
formed. This must be taken into account when it is used on an-
other type of signal. When the record does not correspond to
an integer number of periods of all frequencies in the original
signal, the periodic repetition will give a distortion because of
the sudden step where the two ends are joined into a loop. The
effects of this can be mitigated by applying a “time window”
to the signal before transformation, to force the value and slope
to zero at the joint and avoid a discontinuity. Since what is
analyzed is then an amplitude modulated version of the origi-
nal signal, spectral peaks are surrounded by sidebands, but
these are usually less disturbing than the effects of no special
window. The most commonly used window is the Hanning
window, one period of a sine-squared function, and if it is
scaled so as to read the same value at the center of a discrete
frequency peak, the sidebands give extra power by a factor of
1.5. This must be compensated when integrating over a fre-
quency band or calculating the PSD (power spectral density)
of a broadband signal. The sidebands introduced by a window
function give rise to so-called ‘leakage’ (of power away from
the central frequency), and this is minimized by windows such
as Hanning. Where a frequency component falls between two
analysis lines (the G(k) of Equation 5), it will be divided be-
tween them, and neither will show the true peak value. This
is known as the “picket fence effect” and is for example a maxi-
mum of 1.4 dB for a Hanning window, and as much as 3.9 dB
for a rectangular window (which results when no special
weighting is used). The so-called “flat-top window” has been
designed to eliminate this picket fence effect, and is thus most
useful for signals dominated by discrete frequency components
and in particular calibration signals. On the other hand its
bandwidth factor is 3.7 (in comparison with the 1.5 mentioned
above for the Hanning window) so that the discrete frequency
components do not protrude as much from any noise in the
spectrum.

As with Fourier series, the results of the DFT are scaled in
the same units as the original signal (as follows from Equation
5), but this is only relevant for the discrete frequency compo-
nents. Note that the positive frequency components must be
scaled up by a factor of V2 to give RMS values (including the
negative frequency part) or 2 to give sinusoidal amplitudes. If
the original signal is other than a (quasi-)periodic signal, the
output of the DFT must be modified to give correctly scaled
results.

If the signal were stationary random, for example, its spec-
trum should be scaled as a PSD in U%/Hz to give consistent
results, where U represents the units of the original signal. The
‘power’ in a discrete frequency line from the DFT equals the
square of its magnitude (to be multiplied by 2 to get the total
mean square value at that frequency including the negative
frequency component). This must be divided by the bandwidth
in Hz to get an estimate of the PSD of one record of a random
signal. Since the line spacing Af always equals 1/T for the DFT,
where Tis the record length transformed (in seconds), the con-
version to PSD can be achieved by a multiplication by T (as
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Figure 9. Effect of repeatedly halving the sampling frequency.
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Figure 10. Conversion from FFT spectra to a CPB spectrum.

CPB Spectrum

well as being divided by the bandwidth factor for the particu-
lar window as mentioned above).

If the signal transformed is a transient (usually with no
weighting), its spectrum should be scaled as an ESD (energy
spectral density) in U?s/Hz. Not only must the amplitude
squared value be divided by Af to give a spectral density, but
also the power of the periodically repeated signal must be mul-
tiplied by T to give the energy in one period (i.e. the original
signal). Altogether, this means a multiplication by T?.

For stationary random signals, a single estimate of the spec-
trum is not sufficient, and an average over several estimates is
necessary. The SD (standard deviation) of the error in a spec-
tral estimate of a stationary random signal is given by the for-
mula:

1
24BT

Since with the DFT, the bandwidth B is equal to the reciprocal
of the time record length T, the product BT is unity for each
transform, and Equation 6 can be replaced by:

E=

(6)

1
e= (7)
where n is the number of independent averages. For rectangu-
lar weighting, independent records mean nonoverlapping time
records, but for windows such as Hanning, the windows can
be overlapped by up to 50% and still give almost independent
estimates.

Digital Filters. As has just been seen, the FFT provides a very
efficient way of obtaining frequency spectra on a linear fre-
quency scale with constant bandwidth, and this is most often
advantageous for diagnostic purposes. However, for generating
spectra with constant percentage bandwidth (i.e., 1/Nth-octave)
on a logarithmic frequency scale, as in Figure 1, digital filters
give considerable advantage, in particular recursive IIR (infi-
nite impulse response) filters.

Digital filters are similar to analog filters in that the output
signal is convolved with the impulse response of the filter, and
they operate directly in the time domain on continuous (though
sampled) signals (as opposed to the blockwise treatment of the
FFT process). The coefficients that define the filter properties
give a characteristic that is defined in relation to the sampling
frequency. Thus, 18 sets of filter coefficients will define the
1/18™ octave filters in one octave, but halving the sampling fre-
quency will produce the equivalent filters one octave lower.
Before halving the sampling frequency, the signal must be
lowpass filtered by a filter that removes the upper octave of fre-
quency information, but this can also be done by a digital fil-
ter with the same coefficients for every octave.



Figure 9 illustrates that when the sampling frequency is re-
peatedly halved for each octave, the total number of samples
to be treated per unittime =M (1 +1/2+1/4+1/8+...)=2
M samples/sec so that if the digital filter processor is capable
of operating twice as fast as necessary for the highest octave,
any number of lower octaves can be processed in real-time. This
feature was mentioned in conjunction with the zoom proces-
sor of Figure 8.

If the digital filtering cannot be done in real-time, a very large
data sample will have to be stored in advance. As an example,
to produce the 1/18™ octave filters of Figure 1 over three de-
cades in frequency (frequency range 1000:1), each estimate of
a spectrum value would have to encompass at least the impulse
response time of the filter, approximately 30 periods of the cen-
ter frequency for a 1/18th octave filter. For the lowest filter in
the lowest octave there would have to be six samples per pe-
riod, and since the sampling frequency would have to be deci-
mated by a factor of 500 from the highest to the lowest decade,
this corresponds to almost 100,000 samples in the original
record. To achieve a result with only 10 averages would thus
require on the order of 10% samples in the original record.

CPB spectra can also be obtained by conversion from FFT
spectra, as illustrated Figure 10, where each decade is con-
verted separately. The bandwidth of the individual lines in the
original FFT spectra (including the effect of any window) must
be less than the percentage bandwidth being converted at the
lowest frequency in the FFT band. The conversion is achieved
by calculating the lower and upper cutoff frequencies of each
constant percentage band, and then integrating up the power
in the FFT lines (and parts of lines) between the limits. The
method indicated in Figure 10 gives a large change in filter
characteristic at the junction between decades, but this is not
likely to be such a problem with machine vibration analyses
as with acoustic spectra.

To reduce the latter problem, some FFT analyzers do the
conversion on an octave rather than a decade basis.

Parametric Spectrum Analysis. With Fourier analysis, the
spectral resolution is of the order of 1/T, and thus the better
the time localization the poorer the frequency localization, and
vice versa. This is one expression of Heisenberg’s uncertainty
principle, and is because no assumption is made about the
behavior of the time function outside the window (effectively
it is set to zero, which is extremely improbable).

With parametric spectral analysis,'! better spectral resolu-
tion can be obtained for short records, basically because it as-
sumes that the behavior of the function outside the window is
most similar to its behavior inside the window. This is valid
for sinusoidal or near sinusoidal signals. With parametric
analysis, the signal is modelled as the output of a physical
system described by a limited number of parameters when
excited by a unit white noise input. Thus the frequency re-
sponse of the system represents the signal spectrum. Generally,
the improvement in spectral resolution is accompanied by a
deterioration in amplitude accuracy.

MA Models. Perhaps the easiest case to understand is where
the system is modelled as an FIR (finite impulse response) fil-
ter, in which case the output is the (digital) convolution of the
input signal with the finite length impulse response of the fil-
ter, as expressed by the equation:

M
Vi= 2 bixig (@)
k=0

where x; represents the input signal, y; represents the output
signal, and b, represents the convolution weights or samples
of the impulse response. Equation 8 is a convolution equation
or “moving average,” giving rise to the term MA model. Ap-
plying a Z-transform to Equation 8, which is the equivalent of
a Laplace transform for discrete time signals, the convolution
becomes the product:
Y(2)= Y bz *X(2) = B(2)X(2) (9)
k=0
from which comes the transfer function:

20

M M
B(z)= Y bz * =[] (1-77"%) (10)
k=0 k=1

which has no poles and is thus an “all-zero” model.

This type of model is obviously most efficient when the ef-
fective length of the impulse response is short, meaning that it
is highly damped and thus without sharp spectral peaks.

To Be Continued. This concludes Part 1 of this article. Part
2 will appear in the May 2004 issue.
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