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This article introduces the motivation and expected benefits
of linking FEA and testing. Typical applications are found in
the field of modal analysis where frameworks and efficient
procedures are now available for calibrating analytical mod-
els to better correspond with the results of experimental mod-
els. An overview of the tools is provided together with a sce-
nario for including uncertainty management as well as a
future outlook of the technology.

For many years there has been a wide gap between finite
element analysts and test engineers. Although engineering
managers at all levels have long ago recognized the benefits of
processes that combine the analytical and experimental ap-
proaches to product design and analysis, their implementation
in many cases was prohibited because of practical and cultural
reasons. Analysts and experimentalists use their own vocabu-
lary, work at different locations and often use different types
of hardware and incompatible software and file formats. A
number of technological and organizational changes in recent
years have made it possible to remove these obstacles:

Powerful and affordable workstations now offer sufficient
horsepower to run industrial finite element analysis as well
as all kinds of test systems.
Computers are connected by networks (LAN, WAN or the
Internet) so that data files can be easily moved from one sys-
tem to another.
Analysts and test engineers have access to more courses, lit-
erature and conferences that address the topic of linking FEA
and test.
New technical centers bring people with different back-
grounds together under one roof with easy access to test labs
and simulation tools.
In addition, there now exist several dedicated integration

frameworks that further help to remove any remaining barri-
ers. They are designed around a database that can contain ana-
lytical and test data imported using data translators with com-
mercial or in-house developed FEA and test systems.
Depending on the needs and goals, add-on analysis tools can
exploit these hybrid data resources in decision- and knowl-
edge-based synergistic processes from which the entire engi-
neering team can benefit (Figure 1). Some examples:

FEA results can be used to optimize the experimental setup
(pretest analysis, virtual testing).
Test results are used as reference data to validate, calibrate
or refine a finite element model using error localization, cor-
relation analysis and model updating tools.
Unknown or badly known physical properties (e.g., damp-
ing) can be identified and uncertainties in finite element
models better assessed.
Hybrid models that partially contain FE and test models can
be developed to build more complete models to include all
essential components that contribute to the overall response,
while maintaining a good balance between model size and
performance.
It is of utmost importance that the integration and analysis

software does not become an obstacle in itself. Unlike CAD or
FEA, these tools may not be used on a daily basis and there-
fore should be easy to learn, with a user interface that conforms
to standards, is simple and logical. It is essential that the user
interface, graphics, analysis and reporting tools can be custom-
ized and extended so that they can be integrated in any exist-
ing CAE environment.

By better exploiting the combined test and analysis data,
engineering staff and management will gain more confidence
in the simulations they increasingly need to rely on for design
optimization, acoustics, fatigue analysis and so on. They will

also gain expertise for future modeling, build up reusable
knowledge and more rapidly acquire essential skills like engi-
neering judgment.

More Testing Needed
In our competitive world, engineers face the challenge to

design increasingly complex products that need to satisfy more
acceptance criteria. They must be stronger, lighter, quieter, safer
and less expensive to build and maintain. To keep development
time and cost competitive, industry relies on computerized
simulation tools. Finite element analysis (FEA) is a powerful
technique to simulate and improve the behavior of a product
under various types of loadings. The FEA method has matured
over the past three decades to a point where design, meshing,
analysis and postprocessing are becoming highly integrated
and automated. This predictive approach relies on the quality
of the simulation model, the software to analyze it and the
engineering judgment of the analyst interpreting the results.

In order to keep up with quality requirements, simulation
models and procedures must be validated. Among the differ-
ent ways of doing so, testing is intuitively still the preferred
method. A trial-and-error design and analysis approach involv-
ing a series of prototypes is too time-consuming and expensive.
It is therefore necessary to reduce the number of iterations on
prototypes. This can be achieved by deriving more information
on prototype testing and by doing more upfront simulation.

Ultimately it is unlikely that we will be able to one day de-
sign-right first-time and altogether eliminate testing, given that
analysts become increasingly ambitious and will want to simu-
late the entire product lifecycle. It will be extremely difficult
to remain on top of the increasing complexity encountered
when modeling entire assembled products (versus compo-
nents), using new materials (composites versus metals) and
include the effects of manufacturing and environmental loads.

To successfully make the move to digital prototyping and
thereby reduce the number of physical prototypes, predictions
of performance should be provided with a measure of confi-
dence and validated against experimental data. This requires
quantifying the physical and numerical uncertainty. To reach
this goal, fundamental change is required that will lead to some
other form of simulation models that are capable of represent-
ing the underlying and relevant physics in a more realistic way.
While current FEA is based on nominal values for input pa-
rameters, these new models will be probabilistic by nature.
More testing is needed, not less, to provide the enormous
amounts of data that can be statistically postprocessed and be
converted into knowledge and insight.1

Uncertainty is Everywhere
Uncertainty in numerical simulation results manifests itself

in two main classes: physical uncertainty and numerical un-
certainty. There exist four main levels at which physical un-
certainty, or scatter, becomes visible, namely:

Boundary and initial conditions – impact velocity, impact
angle, mass of vehicle, characteristics of barriers, etc.
Material properties – yield stress, strain-rate parameters, den-
sity, local imperfections, etc.
Geometry – shape, thickness, manufacturing and assembly
tolerances, etc.
Loads – earthquakes, wind gusts, sea waves, blasts, shocks,
impacts, etc.
Uncertainty is further increased because many of these prop-

erties may vary substantially with temperature, frequency or
load level. Information on these forms of scatter can be obtained
by measurement. A sufficiently large number of samples needs
to be evaluated to distinguish the natural and intrinsic scatter
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from the (often high) scatter that may be attributed to a small
number of statistical samples.

Probability distribution functions and their associated prop-
erties can be obtained from statistical analysis of the test data.
For example, the elastic modulus of isotropic material can be
described using a normal (Gaussian) distribution that is char-
acterized by a mean value and standard deviation.

The following numerical uncertainties can be identified:
Conceptual modeling uncertainty – lack of data on the physi-
cal process involved, lack of system knowledge.
Mathematical modeling uncertainty – accuracy of the math-
ematical model validity.
Discretization error uncertainties – the choice of element
types, mesh density, level of geometrical detail.
Numerical solution uncertainty – rounding-off, convergence
tolerances, integration step.
Human mistakes – programming errors in the code or wrong
utilization of the software, mistakes in data or units.
These types of scatter may or may not exist regardless of the

physics involved. An example of the exhibit of numerical un-
certainty is the different results that may be obtained by two
finite element codes, using the same finite element model. In-
deed changing solver, computing platform or element formu-
lation can be possible causes of significant differences.

It is clear that uncertainty also exists in testing. Possible
causes of physical uncertainty are related to:

Test definition – fixture, mounting procedure, excitation
method, transducer location, sensor weight, dynamic load-
ing.
Instrumentation – calibration, distortions, cabling noise.
Data acquisition – digital signal processing, measurement
and filtering error.
Techniques like experimental modal analysis are also sub-

ject to numerical uncertainty in the mathematical models that
are used for modal parameter estimation.

Recognizing the existence of uncertainty and scatter is good
reason to spend more time on validating simulation models.
However, validation of a single model using a single test leads
to only a snapshot result. While this may be valuable for
roughly calibrating the input parameters, it should be under-
stood that information on the broader picture is not taken into
account unless scatter of the input parameters and reference
test data are taken into account. Depending on the purpose of
the simulation and the amount and type of reference test data
that are available, different situations can be encountered:

Selection of parameters based on a hierarchy defined by un-
certainty and sensitivity level (joints, materials, etc.). This

can require different types of activities like equivalent geo-
metrical parameter updating, material identification, mesh
refinement or load identification.
The mesh itself determines the updating parameters. Some
examples are: stick models for wing flutter analysis (Figure
2), component models that need to be reduced and included
in an assembly (synthesis) or just for computational effi-
ciency, refined models to be used for both dynamics and
static analysis (stress, optimization), models to be used for
acoustic analysis, etc.
Scatter of output responses, obtained from repeated testing
of the same structure or testing many samples, can be used
to identify or adjust estimates of random properties of input
parameters leading to a validated and updated stochastic
simulation model.
From the previous paragraphs it should be clear that devel-

oping the proper model validation and updating strategy is
often a complex issue and should be looked at as a process that
must be adapted to specific needs. This requires access to a
library of tools in a flexible, programmable environment.

Deterministic Model Updating
Most correlation and updating techniques for structural dy-

namics applications are based on the functional relationship
between the measured responses and the structural parameters
that can be expressed in terms of a Taylor series expansion lim-
ited to the linear term.2 This relationship can be written as:

or

Where
{Re} = Vector containing the reference system responses (ex-

perimental data)
{Ra} = Vector containing the predicted system responses for

a given state {Po} of the parameter values
{Pu} = Vector containing the updated parameter values
[S] = Sensitivity matrix

The discrepancy in the initial model predictions and the test
data is resolved by minimizing a weighted error E, given by:

and subject to constraints

The matrices [CR] and [CP] respectively express the confi-
dence of the user in the reference system responses and initial
parameter estimates. In case the confidence matrices are de-
rived from statistical postprocessing of multiple tests, they can
be obtained from the covariance matrices.

Deriving Equation 3 and minimizing E with respect to the
parameter values leads to an updated value for the parameter
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Figure 1. General procedure for linking test and analysis in modal
analysis.

Figure 2. Stick model of a regional aircraft used to correlate wing bend-
ing modes with vibration test data. Beam elements are used to model
the fuselage and wings (blue). Sensor locations are marked in red. The
green lines are non-structural plot elements that are used to connect
the sensor data to the finite element nodes.
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values that reduce the distance between the simulation and test
results, but at the same time keeping the distance between the
original and updated model minimal (in terms of parameter
changes).

The similarity of model updating defined by Equations 3 and
4 with a general design optimization problem is striking. How-
ever, whereas the “objective function” in design optimization
usually expresses the quality of the design in terms of cost,
weight, reliability, etc., model updating is concerned about
improving the finite element model to better predict the ob-
served behavior while at the same time limiting the changes
to the model. This translates to different choices of targets, vari-
ables and constraints. In design optimization, an optimum is
acceptable if the parameter constraints are satisfied. In model
updating, the changes to the model should remain within the
range of expected variance of the input parameters. This is not
only guaranteed by satisfying the proper parameter constraints
but also by updating the most suitable parameters.

Another major issue is that the system of equations (Equa-
tion 1) is usually undetermined, i.e., the number of updating
parameters largely exceeds the number of responses. Possible
solutions are to reduce the number of updating parameters or
increase the number of responses. Some ways to reduce the
number of updating parameters are:

Using techniques like local correlation analysis, sensitivity
analysis and uncertainty analysis to reduce the model size
by number of critical combinations of input parameters.
Grouping elements and selecting global parameters for the
group instead of updating at local element level.
Defining many parameter relations (Equation 4) and thus re-
ducing the number of independent parameters. It is to be
noted that the [CP] matrix in Equation 3 also offers the po-
tential to express relations between parameters.
Using a bottom-up modeling and test methodology. In this
approach the different components that constitute an assem-
bly are first modeled, tested and updated separately. This is
followed by the repeated tests at different phases of the as-
sembly that allows focusing on modeling of joints.
Alternatively, the number of responses can be increased by:
Adding correlation targets. Computed correlation targets like
MAC, or mode shape orthogonality (Figures 3 and 4) can be
included in addition to responses that are directly measur-
able like mass, displacements, frequency response functions
or resonance frequencies.
Simultaneously updating the parameters that are common in
variants of the FE model.3 For example, solar panels for sat-
ellites can be tested during different stages of deployment
and for each stage there is a FE model. This provides a richer

set of test data to serve as references for updating element
properties that are common in all configurations. Such prop-
erties can be, for example, the joint stiffness or material prop-
erties. Other examples are a launcher tested with different
levels of fuel, or differently shaped test specimens made of
a composite material that needs to be identified.
Using full field measurement data (optical).
A major benefit of dedicated commercial model updating

software like FEMtools4-5 is that it offers a wide range of re-
sponse and parameter types to explore the behavior of the simu-
lation model and quickly try different strategies to improve cor-
relation with test. The following supporting and related tools
need to be readily at hand to increase efficiency:

Data translators – Two-directional translators are available
with the most popular FEA and test database formats
(NASTRAN, ANSYS, I-DEAS, ABAQUS, Universal File, etc.).
Solver integration – For reanalysis of a modified FE model,
virtually any solver can be used. Process integration com-
mands, translators and drivers are available to automate the
iterative updating cycle.
Database management – Imported models and results are
converted into a relational database of tables that can be ed-
ited, visualized or processed in any imaginable way. Typi-
cal operations are coordinate system transformations, mode
shape normalization and creation of a set of elements based
on topology, material or geometry.
Parameter and response selection – All physical element
properties (material, geometry), lumped properties (e.g.,
mass) and damping (modal, viscous, structural) can be se-
lected as local or global updating parameters. The software
manages the property cards and removes the hassle of manu-
ally creating new property cards as new element sets are
created. All structural responses that can be measured can
be selected as updating targets or correlation targets can be
specified for criteria like MAC.
Pretest analysis – When a baseline finite element model of a
structure is available, it can be used to simulate tests. Using
different observability or mode shape orthogonality criteria,
test engineers can locate optimal locations and directions to
measure and excite the structure. The FE model can be re-
duced to these locations and converted into a test model.6-7

Correlation analysis – This task includes mapping the test
model on the FE model, visual correlation, FRF correlation,
local and global shape correlation, and computation of the
quantitative level of correlation that can be used to monitor
convergence during iterative model updating.8 See Figures
5 and 6 for some examples of mode shape correlation.
Sensitivity analysis – Sensitivity coefficients quantify the

Figure 3. Test-analysis correlation and FE model updating for structural
analysis can involve static or dynamic response data to update mass
(M), stiffness (K), damping (C) or loads (F).

Figure 4. Modal assurance criterion (MAC) before updating the FE
model (left), using test resonance frequencies as targets (middle) and
using test resonance frequencies + MAC = 100 as targets (right).

Figure 5. FE and test mode shape overlay of a hard disk plate using
full model view (left) and the model reduced to the test sensor loca-
tions for enhanced interpretation (right).
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variation of a response value (e.g., resonance frequency or
mass) as a result of modifying a parameter value.
Parameter estimation – The model updating problem that is
defined by Equations 3 and 4 is in essence a constrained
multi-objective optimization problem that potentially in-
volves many parameters (up to the number of elements in the
FE model). Although different methods can be considered,
the Bayesian estimator, which is a weighted least squares
method, has proven to be very suitable in terms of speed and
the capacity to obtain a balanced and smooth convergence.
Structural dynamics modification – This tool is used to rap-
idly apply and analyze the effect of structural changes to the
dynamic response of structures without the need for re-mesh-
ing and reanalyses in a full FEA solver.9 In case no accept-
able parameter updates can be found, it may be required to
reinvestigate the geometrical level of detail that was used in
the modeling. For example, the effect of adding or removing
lumped mass or a stiffener beam can be quickly evaluated.
These tools are provided in a framework environment that

also provides the following facilities:
Graphics – It is imperative that data at all stages of the pro-
cess can be visualized using 2D and 3D graphics. Multiple
graphics windows can be opened for side-by-side compari-
son. Animations and special graphics like FEA modes re-
duced to test locations are helpful to gain understanding of
the structure (Figures 7 and 8).
User interface – All tools are accessible via customizable
menus and toolbars, or a command language for automated
procedures.
Scripting language – A built-in scripting language and API
function library provides access to all FEA and test data,
analysis tools and graphics for unlimited integration, auto-
mation and customization.

Probabilistic Model Validation and Updating
In the presence of scatter, the single deterministic response

represents only one point of a cloud of values and therefore
carries little information on likeliness and trends. Point clouds

on the other hand can be interpreted in terms of probability of
a response value lying below or above a prescribed level. At a
minimum, all responses are now defined as an interval with
information on the confidence an analyst can have that the true
response value will be within this interval. Additional statis-
tical information can be derived if necessary.

Obtaining point clouds requires repeated testing of the same
product (to reveal physical scatter) as well as testing a series
of similar products to identify product variability. From the
simulation side, the updating parameters can be randomized
(i.e., apply a statistical probability distribution) and, using a
probabilistic analysis tool like Monte Carlo Simulation, obtain
point clouds for every parameter-response combination. There
is a point for each state (also called sample) of the input vari-
able. On statistical grounds, the collection of all point clouds,
one for each input-output variable combination, constitutes a
new concept of model, often referred to as Meta-Model in the
literature. From these point clouds, statistical postprocessing
results like histograms, the mean and standard deviation of
output responses are obtained.

The correlation between simulated and experimentally ob-
tained point clouds should now be analyzed using statistical
measures. An example is the Mahalonobis distance:

where the vectors m1 and m2 represent the centers of gravity of
each meta model and COVp the pooled covariance matrix. Note
the similarity with Equation 3. Whereas a deterministic mea-
sure of correlation, like the average relative error on resonance
frequencies, provides only a snapshot measure that could be
good or bad depending on coincidence, the Mahalonobis dis-
tance is clearly a much safer measure because it is based on
position and shape of point clouds. Coincidence, good or bad
luck with parameter estimations or variable measurement con-
ditions can hardly influence this result.

The concept of meta models, both for numerical simulation
and testing, together with the Mahalonobis metric, enables
comparing responses in a statistically sound and rigorous man-
ner. Position, shape and size of point clouds should be com-
pared with the test meta-model being the reference. For ex-
ample, consider the scatter plots shown in Figure 9. Differences
in the principal axes of the two ellipses suggest either a major
shortcoming in the discretization of structure geometry, a
physical discrepancy between the two models or simply mod-
elling errors. It should be clear that relative translation and
overall size of point clouds are easier to correct than relative
rotations. The former merely indicate systematic or global er-
rors whereas the latter usually indicate (local) physical errors.
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Figure 6. Mode shape correlation of axisymmetrical structures requires
automated scaling and local rotation of double modes. The left figure
shows the original overlay of FE mode (blue) and test mode (ref). The
right figure shows the overlay after transforming the modes.

Figure 7. Modal correlation and sensitivity analysis of an engine block
using multi-window toolbox.

Figure 8. Identification of distributed pressure forces in a muffler cav-
ity from measurements of operational deflection shapes (ODS) at the
outside surfaces, elastic modes of the shell, and acoustic modes of the
cavity. Measurements done with a laser scanning device (red markers).
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Figure 9. Example of physically distant (left) and close (right) models
represented by means of point clouds.

Secondly, the level of scatter in the two models is clearly
different. Although this may be desirable in some cases, it is
in general preferable to obtain a simulation model that exhib-
its a level of scatter that is in balance with the scatter on the
test data.

A fundamental contribution of meta-model analysis towards
model updating is the possibility of pinpointing the dominat-
ing parameters of a system and to quantify the correlations
between the input and output variables. This is the equivalent
of sensitivity analysis in deterministic analysis. However, the
concept of sensitivities, or gradients, no longer exists in the
presence of scatter. So unless scatter is very low and can be
neglected, other procedures to identify the dominant param-
eters need to be applied. In a similar way, not all available re-
sponses may be of equal relevance. Indeed, statistical
postprocessing may reveal hidden relations and identify depen-
dent and independent responses. As a result, the analyst can
reduce the order of the system to include only the most domi-
nant parameters and independent responses. Using regression
analysis, relations between the dominant parameters and in-
dependent responses are established. This holds promise to
solve some of the remaining difficulties in deterministic model
updating like selection of updating parameters, definition of
targets (i.e., when is correlation satisfactory) and interpretation
of results. Without the additional insight that can be gained
from probabilistic analysis, these decisions have to be made
mainly based on engineering judgment.

The objective of probabilistic model updating is then to solve
the system of equations for unknown parameter properties that
change the center of gravity, the principal directions and the
density of point clouds resulting from probabilistic analysis to
match the corresponding test point clouds. In fact this comes
down to ‘updating’ the Probability Density Function (PDF) of
input parameters such that the PDF of the outputs correspond
with the PDF of the experimental reference responses. In its
simplest form, assuming a normal probability distribution, this
means that in addition to the nominal value (like in determin-
istic model updating), the standard deviation of model param-
eters should also be adjusted.

It should be noted that the ranking of input parameters based
on how much they influence the performance of the system
offers additional benefits in the subsequent design improve-
ment phase. Indeed, a designer or engineer does not need to
spend time with input parameters that have only minor influ-
ence. Instead, the functional performance of the design can be
modified most efficiently by working with the most dominant
parameters only. Reducing the scatter on these parameters (for
example by specifying more severe manufacturing tolerances)
is the most rewarding in terms of robustness of the design. On
the other hand, the engineer should relax tolerances on the
parameters that do not significantly influence the performance,
and in the process save money on manufacturing costs.

Summary and Future Outlook
Finite element analysis has become an essential tool to sup-

port virtual product development. To successfully make the
move to digital prototyping and thereby reduce the number of
physical prototypes, predictions of performance should be
provided with a measure of confidence and validated against
experimental data. Linking FEA and test is a complex process
that touches all aspects of the engineering design and analysis

cycle. The complexity and nature of this task requires dedi-
cated software tools. Implementing this process is not an op-
tion, it is a must. Owing the added focus of model validation
in standard codes of practice and quality assurance programs,
industry is accelerating the pace at which this technology is
adopted.

Some trends and recent developments may determine the fu-
ture outlook of FEA and test integration technology:

Frameworks dedicated to bridge the gap between FEA and
test will continue to mature. They will provide seamless in-
terfacing with more FEA and test systems and provide a
growing range of diagnostic tools, updating algorithms and
supporting wizards.
Expect to see tools like design of experiments, response sur-
faces methods, and higher-order sensitivity analysis becom-
ing part of model updating toolboxes to provide real-time pa-
rameter variational analysis for faster exploration of solution
space.
Statistical correlation and probabilistic model updating are
naturally related with robust design and reliability analysis
methods and an alignment of these technologies would be
to their mutual benefit.
Model updating will play an important role in applications
like structural health monitoring10 and material identifica-
tion.11 These applications will benefit from advancements
in testing equipment (full field 2D and 3D measurement,
wireless sensors) and data processing (output-only modal
analysis algorithms, photogrammetry, digital image correla-
tion). Easier measurement of displacement, velocity, accel-
eration, strain or temperature will enable model validation
and updating in every field of simulation, e.g., thermal,
acoustics, nonlinear static and dynamic analysis.
These extended capabilities, enabled by massive computing

capacity, will contribute to creating more reliable and more
usable simulation models, which is a prerequisite to realizing
the full potential of CAE in the next decades.
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