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In the last thirty years there have been many developments
in the use of vibration measurement and analysis for moni-
toring the condition of rotating machinery while in operation.
These have been in all three areas of interest, namely fault
detection, diagnosis and prognosis. Of these areas, diagnosis
and prognosis still require an expert to determine what analy-
ses to perform and to interpret the results. Currently much
effort is being put into automating fault diagnosis and prog-
nosis. Major economic benefits come from being able to pre-
dict with reasonable certainty how much longer a machine can
safely operate (often a matter of several months from when
incipient faults are first detected). This article discusses the
different requirements for detecting and diagnosing faults, out-
lining a robust procedure for the former, and then goes on to
discuss a large number of signal processing techniques that
have been proposed for diagnosing both the type and severity
of the faults once detected. Change in the severity can of course
be used for prognostic purposes. Most procedures are illus-
trated using actual signals from case histories. Part 1 of this
article appeared in the March 2004 issue of S&V.

AR Models. AR or ‘autoregressive’ models are more efficient
where there are sharp spectral peaks, and thus the required
transfer function has poles. This is the case with IIR (infinite
impulse response) filters where outputs are generated recur-
sively from the previous outputs and the current input.

The relationship between input and output signals can be
expressed as:

which after Z-transformation gives:

from which comes the transfer function:

which has no zeros and is an all-pole model.
There are a number of techniques that result in such an AR

model, one of which is the “maximum entropy” method. In
this, the coefficients are found by maximizing the entropy (dis-
order) of the signal, while ensuring that the autocorrelation
function is determined by the signal within the window. This
really means that the signal outside the window will be most
similar to the signal within the window because of the elimi-
nation of any biasing effect. Other AR techniques include “lin-
ear prediction” and statistical ‘autoregression’ from which AR
modeling takes its name.

Figure 11 shows the results of applying maximum entropy
analysis to a very short record of envelope signal from a bear-
ing with an inner race fault.12 The record length comprised
only 1.29 revolutions of the shaft speed which determined the
spacing of modulation sidebands in the envelope spectrum.
The maximum entropy spectrum of Figure 10d appears to give
very good resolution of the sidebands, but Figure 10c shows
that Fourier analysis can give almost as much information pro-

vided a sufficient degree of spectrum interpolation is used. The
spectrum interpolation was achieved by padding the data
record with zeros to seven times its original length. Note that
the maximum entropy spectrum had to be represented on a
logarithmic amplitude scale because of the much wider range
of amplitude values than for the Fourier analysis cases.

AR modeling has recently been applied to the detection of
local faults on gears.13 A model is developed for the signal from
an undamaged section of a gear using linear prediction, and
when a damaged section of the gear enters the mesh, the ac-
tual value of the signal departs dramatically from the linearly
predicted value and the ‘error’ gives a measure of the local
change. Fault indication using AR modeling gives better results
than the ‘residual’ method used earlier.13 The latter is based
on removing the normal gearmesh signal obtained by synchro-
nous averaging.

AR and MA models can be combined to give so-called ARMA
models with both poles and zeros, but these are used more for
system modeling than spectrum analysis.

Separation of Periodic and Random Signals. Machine sig-
nals are often very complex with mixtures of periodic and ran-
dom signals, and mixtures of signals with different periodic-
ity. It can be advantageous to separate the different components
from each other.

Synchronous Averaging. The most widely used technique for
separating different signals is time synchronous averaging,
which is useful to extract that part of a signal having the same
period as a trigger signal (e.g. a once-per-rev tacho signal from
a shaft in a rotating machine). In practice it is done by averag-
ing together a series of signal segments each corresponding to
one period of the synchronizing signal. Thus:

This can be modelled as the convolution of y(t) with a train of
N delta functions displaced by integer multiples of the peri-
odic time T, which corresponds in the frequency domain to a
multiplication by the Fourier transform of this signal. This is
given by the expression:14

The filter characteristic corresponding to this expression is
shown in Figure 12 for the case where N = 8, a comb filter se-
lecting the harmonics of the periodic frequency. The greater the
value of N the more selective the filter, and the greater the re-
jection of nonharmonic components. The noise bandwidth of
the filter is 1/N , meaning that the improvement in signal/noise
ratio is 10 log10N dB for additive random noise. For masking
by discrete frequency signals, it should be noted that the char-
acteristic has zeros that move with the number of averages, so
it is often possible to choose a number of averages that com-
pletely eliminates a particular masking frequency. The above
characteristic is for an infinitely long time signal y(t). For the
practical situation of a finite length of signal with finite sam-
pling frequency, it is possible to calculate an optimum num-
ber of averages to completely remove a discrete masking sig-
nal, in particular when the frequency is related by a rational
fraction to the synchronous frequency.14 This is always the case
for different shafts in gearboxes.

For good results the synchronizing signals should corre-
spond exactly with samples of the signal to be averaged. One
sample spacing corresponds to 360° of phase of the sampling
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frequency, and thus to 144° of phase at 40%, a typical maxi-
mum signal frequency. Moreover, even a 0.1% speed fluctua-
tion would cause a jitter of the same order of the last sample
in a (typical) 1k record with respect to the first, and thus an
even greater loss of information at the end of the record after
averaging.

Sampling the signal using a sampling frequency derived from
the synchronizing (tacho) signal as described below solves both
of these problems and is always to be recommended. Figure 13
shows the results of using synchronous averaging on speed
corrected data from a gearbox in a variable speed mining shovel
(see Figure 14). The order tracked data was arranged to have
an integer number of samples per period of the low speed gear,
which allowed determination of the harmonics of this gear
speed by synchronous averaging. The spectrum of this signal
is shown in Figure 14a. After a periodic repetition of this sig-
nal was subtracted from the overall tracked signal, the data
were resampled to have an integer number of samples per pe-
riod of the high speed gear, after which its harmonics could be

determined in the same way (Figure 13b). Finally, after sub-
traction of this periodic signal from the data, the remaining
signal was dominated by the effects of an inner race bearing
fault (Figure 13c).

Order Tracking. In analyzing rotating machine vibrations,
an x-axis based on harmonics or ‘orders’ of shaft speed is of-
ten desirable. This can avoid smearing due to speed fluctua-
tions or show how the strength of the various harmonics
changes over a greater speed range, such as when they pass
through various resonances. For example, if a constant ampli-
tude signal that is synchronous with the rotation of a shaft is
sampled a fixed number of times per revolution, the digital
samples are indistinguishable from those of a sinusoid and thus
give a line spectrum. On the other hand, if normal temporal
sampling is used, the spectrum spreads over a range corre-
sponding to the variation in shaft speed. Thus, for order analy-
sis it is necessary to generate a sampling signal from a tacho
signal synchronous with shaft speed. It is sometimes possible
to use a shaft encoder mounted on the shaft in question to pro-
vide a sampling signal, but more often the latter has to be gen-
erated electronically. Formerly, this was done using a phase-
locked loop to track the tacho signal and then generate a
specified number of sampling pulses per period of the tracked
frequency. However, an analog phase-locked loop has a finite
response time and cannot necessarily keep up with the random

Figure 11. Envelope spectra of a very short length of signal (1.29 peri-
ods of shaft rotation). A – Envelope signal, B – Direct FFT spectrum, C
– Interpolated FFT spectrum, D – Maximum entropy spectrum.

Figure 12. Filter characteristic for 8 averages.14

Figure 14. Use of tracking to avoid smearing of shaft speed related
components.

Figure 13. Application of synchronous averaging to a mixture of gear
and bearing signals. A – spectrum from low speed gear, B – spectrum
from high speed gear, C – spectrum of residual signal (bearing fault).
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speed fluctuations that occur with an internal combustion en-
gine from cycle to cycle. The best method is to digitally
resample each record based on the corresponding period of the
tacho signal. This can be done in a number of ways, based on
digital interpolation.15

Quite apart from errors introduced by the interpolation,
when resampling at a lower frequency (for example as a ma-
chine speed reduces), it is necessary to ensure that the signal
is adequately lowpass filtered to prevent aliasing. Digital fil-
tering can be useful here as the cutoff frequency varies directly
with the sampling frequency, but the initial analog lowpass fil-
tration must be such that aliasing components do not enter the
measurement range. Digital oversampling can solve this prob-
lem, as the sampling frequency can be reduced by a large fac-
tor before overlap occurs.

Figure 14 illustrates the use of tracking to avoid smearing in
the spectrum of the vibration signal from a gearbox. The dis-
crete frequency components in the spectrum after tracking
come mainly from gear-related components that were removed
using synchronous averaging as shown in Figure 13.

Adaptive Noise Cancellation. Adaptive noise cancellation
(ANC) is a method for separating two signal components (in a
primary signal) where there is access to another (reference)
signal containing only one of the two components. The refer-
ence signal does not have to be identical to the related compo-
nent in the primary signal, just coherent with it so that they
are related by a linear transfer function.16 Figure 15 illustrates
the basic principle applied to a situation where the primary
signal contains both gear and bearing (fault) components. These
could be measurements on a faulty bearing where the reference
signal contains only a gear signal, for example measured on a
more remote bearing. The adaptive filter adjusts its coefficients
so as to minimize the power of the error signal, the difference
between the primary and filtered reference inputs. When the
two components are statistically independent, this separates
them and the error signal becomes the bearing signal.

Another development of this, self adaptive noise cancella-
tion (SANC), uses the difference in statistical properties of the

two components (as discussed in the section on bearing faults)
to separate them. The deterministic gear signal has a much
longer correlation length than the stochastic bearing signal,
hence the reference signal can be a delayed version of the pri-
mary mixture, so that only the deterministic gear signals are
coherent.8

In separating gear and bearing signals, most often the signals
are stationary (order tracking may have to be used to ensure
this), and therefore there is no need to continually adapt the
filter. In such situations a new method called DRS (discrete/
random separation) has recently been proposed that achieves
virtually the same result much more efficiently.17 First a trans-
fer function is found between the current signal and a delayed
version, which results in a comb filter corresponding to the
discrete frequency components (coherent even with a delay).
The amplitude of this transfer function is then used as a (zero
phase shift) filter to transmit the deterministic part and reject
the random part. Both the filter generation and the subsequent
filtering are done using FFT techniques, making the whole
procedure much more efficient than the SANC approach. The
difference compared with synchronous averaging is that the
discrete frequency components are not required to have har-
monic relationships.

Figure 16 shows an application involving separation of a dis-
crete frequency gear signal from an inner race bearing fault
signal, which despite its periodic appearance is actually ran-
dom. After separation, envelope analysis gives a clear diagno-
sis of the bearing fault.

Demodulation. Modulation occurs when an otherwise sinu-
soidal signal, a so-called carrier signal, has its amplitude or
frequency made to vary with time. The first case is amplitude
modulation and the second can be considered frequency or
phase modulation. Phase modulation is the deviation in phase
(angular displacement) from the linearly increasing phase of
the carrier, while frequency modulation is the difference in
instantaneous frequency (angular velocity) from the constant
carrier frequency. Thus, frequency modulation is the deriva-
tive of phase modulation. A direct mechanical example of
phase/frequency modulation is shaft torsional vibration. When
expressed in terms of shaft angle, it is a phase modulation.
When expressed in terms of shaft speed, it is a frequency modu-

Figure 15. ANC applied to separation of bearing and gear signals.

Primary Input

Reference Input

Gear I
+

Bearing I

Gear II

Bearing I+

–

S

Adaptive
Filter Gear I

Figure 16. Separation of (additive) gear and bearing signals using DRS.
A – combined signal, B – deterministic part (gear signal), C – stochas-
tic part (bearing signal).

Figure 17. Block shift procedure for selecting frequency band for de-
modulation. A – original spectrum of one-sided bandpass section, B –
Frequency shift by fk (center of passband), C – frequency shift by amount
corresponding to lower passband limit (half size transform – not rec-
ommended), D – frequency shift by amount corresponding to lower pass-
band limit (full size transform).
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lation. There is no modulation term for the angular accelera-
tion obtained by further differentiation. A mechanical example
of amplitude modulation is the variation in vibration ampli-
tude at the meshing frequency in a gearbox. The increase in
tooth deflection with load gives an increasing departure from
ideal involute profiles, and often tooth load varies periodically
with the rotation of the gears.

Thus, a generally modulated signal can be represented by:

where Am(t) represents the amplitude modulation function and
fm(t) represents the phase modulation function in radians. The
corresponding frequency modulating function (in Hz) is

Equation 16 is the real part of the rotating vector:

whose modulus is the amplitude modulating function and
whose phase is the phase modulating function plus the linear
carrier component. Thus, if it is desired to demodulate a real
signal such as Equation 16, it is desirable to find the corre-
sponding imaginary part so as to form the complex Equation
17. Provided the fluctuating part of Equation 17,

has a half bandwidth less than the carrier frequency fc, the
spectrum of Equation 17 will be one-sided, and Equation 17
will be an analytic function. In this case the required imagi-
nary part is the Hilbert transform of the real part. As the spec-
tra of the two parts are convolved, the total bandwidth is less
than the sum of the individual bandwidths. The bandwidth of
the amplitude part is directly that of Am(t). Though exp(jfm(t))
is theoretically infinite, if the maximum phase deviation is less
than 1 radian, the effective bandwidth (within the dynamic
range) is less than twice that of fm(t).

Note that a zoom processor (Figure 8) can be used directly
both to extract that part of the spectrum to be demodulated and
to remove the carrier component by zooming at the carrier fre-
quency. Generally, the zoom process results in a considerable
reduction in the sampling rate to be more compatible with the
bandwidth of the modulating functions. The modulus of the

complex output from the zoom processor is the amplitude
modulating function, while the argument is the phase modu-
lating function. This may have to be unwrapped to a continu-
ous phase function (i.e., eliminating jumps over 2p), but in
general this is not a problem for well-behaved functions. De-
modulating a larger bandwidth decreases the time step, and
thus phase jump, between samples and may facilitate unwrap-
ping.

As illustrated in Figure 17, the same thing can be achieved
using FFT transforms, although the first one will have to be
large to accommodate the high carrier frequency while being
long enough to contain sufficient periods of the lower modu-
lating frequencies. Where phase demodulation is required, the
center of the demodulation band will have to be shifted to zero
frequency (and negative frequency components shifted to the
other end of the frequency record). However, for amplitude
demodulation the result is unaffected by the frequency shift.
Further, it is more convenient to shift the left hand end of the
band to zero frequency and pad the negative frequency side
with zeros thus maintaining an analytic signal. In either case
there should be at least as many contiguous zeros in the spec-
trum as components since the modulus is the square root of the
amplitude squared and the latter corresponds to the convolu-
tion of the spectrum with its complex conjugate reversed end-
for-end. The zeros prevent extraneous wrap-around errors.

Envelope Analysis. Figure 6 shows that for diagnostics of
bearing signals, it is advantageous to frequency analyze the en-
velope of the bearing signal because of the smearing of the raw
spectrum. The envelope signal has traditionally been obtained
by rectification and lowpass filtration, but demodulation of the
analytic signal (of Figure 17a) has an advantage – the bandpass
filters used to extract the demodulation band are much sharper
than typical analog bandpass filters and can better isolate the
bearing signal from large adjacent masking components. More-
over, it is generally better to analyze the squared envelope
rather than the envelope, as this improves the signal to noise
ratio of the result.8

Figure 18 shows a typical example from a paper mill bear-
ing with an outer race fault. The shaft speed is less than 2 Hz,
and BPFO only 15.4 Hz. But, the demodulated band was in the
range of 5.2-5.6 kHz where the largest spectral change occurred.
The spectrum of the squared envelope in Figure 18b is much
clearer than the normal envelope spectrum in Figure 18a.

Figure 19 shows the procedure for obtaining the envelope (or
envelope squared) spectrum for a typical bearing fault. The
band B is typically placed where the largest (dB) spectral
change has occurred as a result of the bearing fault, since this
is where the signal to noise ratio is the highest. After shifting
this band to zero frequency and padding with zeros, the new
sampling frequency is just 2B. B should thus be chosen to con-
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Figure 18. Advantage of analyzing the squared envelope (B) compared
with the envelope (A). Note the enhancement of the harmonic series at
15.5 Hz (BPFO).

Figure 19. Procedure for envelope analysis using Hilbert Transform
technique.
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tain a sufficiently wide range of frequency for diagnostic pur-
poses, typically 4-5 harmonics of the highest fault frequency
(usually BPFI). If the analytic signal represented by the one-
sided spectrum of Figure 19c is denoted by f(t), its squared en-
velope can be obtained as f(t) · f*(t), meaning that the corre-
sponding spectrum is given by                      , where F(f) is the
Fourier transform of f(t). To obtain the envelope, it is neces-
sary to take the square root, which introduces distortion.8

Phase and Frequency Demodulation. Phase and frequency
demodulation is illustrated by the example of detecting mis-
fire in an internal combustion (IC) engine by the pattern of an-
gular velocity in the torsional vibration of a spark ignition en-
gine. This is obtained by frequency demodulation of a shaft
encoder signal, but the latter can be the pulses from a proxim-
ity probe detecting the passage of teeth on the ring gear.

Figure 20 shows the spectrum of such a signal. In principle,
any harmonic of the tooth-pass frequency can be demodulated,
as the speed variation gives rise to a fluctuation in the time
intervals between pulses, which gives rise to a phase modula-
tion proportional to the order of the harmonic demodulated,
but otherwise of the same shape. To calibrate the result in terms
of shaft angle, it is necessary to divide the measured phase sig-
nal by the shaft order demodulated. In this case the first
toothpass harmonic was demodulated since it had the best sig-
nal to noise ratio.

Figure 21 shows the resulting phase signal where the slope
means that the correct carrier frequency has not been chosen.
If required, the slope can be removed by a ‘detrend’ operation.

To obtain the angular velocity it is necessary to differentiate
the phase (angular displacement). This is best achieved by mul-
tiplying by jw in the frequency domain since a bandpass fil-
tration can be performed at the same time. Figure 22 shows the
result of doing this with the phase signal of Figure 21.

In the angular velocity diagram of Figure 22, it is obvious that
there is a misfire on cylinder 6 (actually caused by detaching
the spark plug lead), as there is a rapid drop in speed where it
should fire, which is gradually built up by the firing of the re-
maining cylinders. In a number of student projects, different
faults were introduced and it became clear that a misfire could
always be detected; although the reason for the misfire could
not. Typical reasons for misfire that gave similar results were:
1. Failure of spark.
2. Faulty injection to one cylinder.
3. Simulated burnt valve by using an oversize pushrod. In this

case the misfire was noticeably different because not only
was the combustion pressure missing, but also the compres-
sion pressure.

4. A leaky valve simulated by using a loose spark plug. In this
case there was a partial misfire that could in fact be quanti-

Figure 20. Spectrum of ring gear tooth passage signal showing four har-
monics and their sidebands.
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fied by the smaller jump in angular velocity for firing on cyl-
inder 6 compared with the other cylinders.
The transmission error (TE) signal for a gear pair (as defined

in gear faults section) can be obtained by demodulating the sig-
nals from a shaft encoder attached to each gear.18 The TE sig-
nal can itself then be demodulated (with the toothmesh fre-
quency as carrier)  to highlight local faults.  A similar
demodulation carried out on acceleration signals was able to
reveal a tooth root crack in a helicopter gearbox long before it
became apparent using other techniques.19

Cyclostationary Signal Analysis
Next, the subject of cyclo-stationarity is examined in more

detail, because of its relative novelty and its importance in
separating different components in machine vibration signals.

Cyclostationary signals are defined as those whose second
order statistics, such as their autocorrelation function, vary
periodically. Strictly speaking, this defines second order
cyclostationarity, as periodic signals can be considered as first
order cyclostationary. Thus the bivariate autocorrelation func-
tion Rx(t,t), defined by:

has the property that:

where T is the periodic time.
Note that this definition is similar to that commonly used

for stationary signals, except that (by definition) the statistics
of the latter do not vary with time, and so it is expressed as a
function of time shift t only. Furthermore, it is common to dis-
place only one of the signals by t rather than make the displace-
ment symmetrical about time t. However when the function var-
ies with t it is better to use the symmetrical displacement to
better assign the value to time t.

The autocorrelation function itself can be hard to interpret
and so it is often further processed. A Fourier transform of the
two-dimensional diagram in the t direction gives a result called
the “instantaneous power spectrum,” which is related to the
Wigner-Ville distribution (WVD), a series of spectra varying
with time.20 The WVD is typically applied to a single time
record and thus does not include the “expected value” or av-
eraging operation in Equation 19. For cyclostationary signals,
the instantaneous spectra vary periodically with time, so it is
beneficial to perform a further Fourier transform (actually a
Fourier series) with respect to time t in order to quantify this
periodicity. The result is known as the “spectral correlation,”
and is used in some results given below. The formula is thus:

Figure 21. Unwrapped phase from demodulating the first harmonic of
Figure 20.
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where f represents normal frequency, and a represents so-called
“cyclic frequency.”

The integral of the spectral correlation over all f in fact gives
the same result as the Fourier analysis of the expected value
of the squared signal, and so is very closely related to enve-
lope analysis.21 If x(t) is an analytic signal,8 the result is the
spectrum of the “squared envelope,” which as shown above
gives better results for bearing diagnostics than the simple en-
velope obtained by amplitude demodulation.

Machine signals that repeat cyclically but are not directly
phase-locked to shaft speeds are often cyclostationary. An ex-
ample already mentioned is the signals associated with com-
bustion in an IC engine. These can be decomposed into a peri-
odic component (the expected value) and a second order
cyclostationary component that is like amplitude modulated
noise, so that its squared envelope is periodic. Rolling element
bearing signals were modelled as cyclostationary21 because of
the random slip associated with the approximate periodicity.
The signals are only approximately cyclostationary (termed
pseudo-cyclostationary), but can usefully be treated as
cyclostationary as a first approximation.6 This is because the
ballpass frequencies are not well defined because of the slip,
as opposed to engine signals, which are constrained to the
engine cycle frequency.

Figure 2321 shows the spectral correlation for an inner race
fault in a ball bearing, demonstrating that the harmonics of
BPFI and sidebands spaced at shaft speed are distributed with
f but discrete with respect to a. The integral of this over all f
gives the same result as the spectrum of the squared envelope.

From this it would appear that the spectral correlation does
not give any benefit over (squared) envelope analysis, but there
is one situation where it does, illustrated in Figure 24. This is
the case of an inner race fault in a helicopter gearbox that was
detected so late that the spalling had extended about 1/3 of the
way around the race and had become smoothed. This meant
that high frequency pulses at BPFI were no longer generated,
but envelope analysis revealed strong modulation at shaft
speed. This is presumedly due to the varying support of the
gear as the fault passed through the load zone, but how to dis-
tinguish this from a gear fault? The answer lies in the fact that
a gear fault would give a deterministic modulation of the gear
mesh signal, which gives discrete points in the spectral corre-
lation in both the f and a directions. The rough inner race fault,
on the other hand, gives a second order cyclostationary modu-
lation since the rollers are in a different position on the spalled
surface for each revolution of the gear. The effect in the spec-
tral correlation is distributed with f, just as in Figure 23. The
second order cyclostationary part would be combined with a
first order part (the mean value of the modulating signal) but
the effects from this can be removed, along with gear effects,

Figure 22. Angular velocity signal obtained as the derivative of the
phase of Figure 21 (numbers along top denote cylinder firing cycle).

by using discrete/random separation before calculating the
spectral correlation. The latter can be evaluated for a specified
value of cyclic frequency where a result is expected, such as
the shaft speed W for an inner race fault. This eliminates sta-
tionary random noise, which only appears at zero cyclic fre-
quency (it is constant with time). Thus, the only explanation
for the considerable increase as a result of the fault in Figure
24 is a cyclostationary signal with cyclic frequency equal to
the shaft speed, in other words a bearing inner race fault.

Prognosis
This is the least developed area in machine condition moni-

toring, but probably the one currently receiving the most at-
tention.

For faults that develop gradually, it can be sufficient to sim-
ply carry out trend analysis of parameters that characterize the
fault severity, such as the amount of change from a baseline
value (e.g., exceedance spectra as in Figure 1). One system was
proposed with this as its basis.22 Note that since equal changes
in severity are given by equal changes on a logarithmic scale,
the trend plots should be of logarithmic values (e.g., dBs) as a
linear trend of dB values represents a uniform change. Some-
times the fault severity feeds back on the rate of deterioration
(e.g., with gear wear) in which case it may be better to fit an
exponential curve to the data to make the best estimates of re-
maining life.

The best estimates of remaining life will be obtained from

Figure 23. A – spectral correlation for a localized inner race fault (ac-
tual span of frequency f [2800; 3300] Hz), B – spectrum of squared
evelope. Shaft speed = 9.5 Hz, BPFI = 120 Hz.
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models of the failure mechanism and much effort is currently
being put into developing such models. This is probably most
advanced in the application to rotor dynamics and it is ex-
pected that such models will soon be able to differentiate be-
tween unbalance, misalignment and rotor cracks, as well as
being able to make valid prognoses of future developments.
Such simulation models will also be very valuable to train
neural networks to recognize a wide range of faults, as in gen-
eral it would not be economically viable to experience such
failures in sufficient numbers.

Conclusion
A large number of techniques are now available to use vi-

bration analysis to detect and diagnose incipient faults in op-
erating machines. Current developments will help in automat-
ing both the diagnosis and prognosis of such faults.
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