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Following previous efforts at the Aberdeen Test Center, fur-
ther work has been undertaken on analysis and simulation of
test course terrain that military vehicles are required to ne-
gotiate during developmental and operational testing. The sur-
face roughness vertical displacement as a function of distance
travelled is treated similarly to acceleration time histories.
However, instead of the familiar power spectral density, a
Wave Number Spectrum (WNS) is computed in the spatial do-
main. Until now, any inverse Fourier transform conversion of
WNS into the terrain data has been carried out within the lim-
its of the Gaussian random model whereas actual surface
roughness is often a non-Gaussian process. It is shown in this
article that when a synthetic spatial history with a given
course WNS is generated by Gaussian procedures, the simu-
lation obtained can lose severity compared to real terrain data.
A number of test courses have been analysed and additional
characteristics such as probability density function, kurtosis,
skewness and crest factor have been considered. Various non-
Gaussian features in many course profiles were discovered.
To simulate terrain data with the correct skewness and kur-
tosis, the Hermite polynomial method of nonlinear transfor-
mation was used and the non-Gaussian probability density of
synthetic terrain data has been achieved both in the central
section and at the tails.

The Aberdeen Test Center (ATC) provides and maintains
several test courses representing the Army’s ground vehicle
transportation environment. The courses are monitored to en-
sure ‘constant’ roughness and the existence of certain specific
features for each. To do this, the terrain profiles of the ATC test
courses are measured regularly using a profilometer based on
a special purpose trailer. The profilometer makes a series of
displacement and angular measurements that lead to compu-
tation of surface roughness as a function of distance traveled
over the test course.

Measurements are made at constant increments (normally 3
in.) over the length of the test course. These uniformly sampled,
digitized values are analogous to the digitization of accelera-
tion signals in the time domain. Thus, many of the standard
analysis techniques that are common in the time domain be-
come applicable in the spatial domain. For example, if a char-
acteristic similar to the Power Spectral Density (PSD) in the
time domain would be introduced in the spatial domain and
calculated for the course profile measured, then synthetic ter-
rain data could be digitally generated by a procedure analogous
to the inverse Fourier transform in the time domain.

The course profile data obtained are of use in computer dy-
namic models1 and multi-actuator servo-hydraulic rigs for test-
ing entire vehicles.2 If initial recordings themselves are taken,
their length is restricted and not comparable with the neces-
sary duration of durability tests. Hence, in such a situation,
there is no other technique except repetition of the same test
profile. From this point of view, the inverse Fourier transform
procedure in the spatial domain has an advantage because an
unrestricted number of different spatial history samples can be
obtained and joined into a test signal of any length without
repetition in the data. Thus, a realistic variability of test con-
ditions is provided throughout simulation that is lacking in the
cycle replication of the same course profile record.

The Wave Number Spectrum
The most common approach to processing time history data

is to transform the signal to the frequency domain using the
direct Fourier transform (normally in the form of FFT). That is
how a PSD function describing distribution of the signal en-
ergy along the frequency axis is obtained. The same process can
be established3 for the spatial data (like those shown in Fig-
ures 1, 3, 5 and 7) where the equal distance measurement in-
tervals are equivalent to equal time increment intervals. The
resultant spectrum introduced for spatial history data is called
a Wave Number Spectrum (WNS) and examples are presented
in Figures 2a, 4a, 6a and 8a.

The horizontal axis of WNS plots is the wave number and is
equivalent to frequency in the time domain PSD. For the ATC
terrain profile measurements made at intervals of Dx = 0.25 ft,
the wave number has units of cycles per foot (or 1/ft). The
course roughness (i.e., the displacement measured by the
profilometer) is expressed in inches. Thus, the variance of the
terrain profile signal (i.e., the area under the WNS curve) has
units of in.2. Likewise, the area under the PSD curve of an ac-
celeration signal has units of (m/s2)2.

If the area under the WNS curve is in in.2 and the horizontal
axis has units of 1/ft then the vertical axis of the wave number
spectrum will be in in.2/(1/ft), i.e., displacement squared di-
vided by the analysis bandwidth (cycles per foot). A wave
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number spectrum obtained for a given course profile can be
converted into a displacement PSD at the tire/road interface
for a particular vehicle speed and, then, to an acceleration PSD
at the tire/road interface.3 Hence, different speeds produce dif-
ferent frequency domain spectra from the same wave number
spectrum. The resultant spectrum is a “point follower” repre-
sentation of the tire/road interface and does not include tire
or vehicle dynamics.

Simulating Terrain Profiles by Fourier Transform
Four ATC test courses have been analyzed and are referred

to below as Courses A, B, C and D. The spatial histories of the
left and right tracks for each of the courses are presented in
Figures 1, 3, 5 and 7. The corresponding left and right track
profiles look similar and their WNSs appear to be close to each
other. The solid line on Figures 2a, 4a, 6a and 8a depicts the
WNS of the left track for each of the courses.

The WNS spectra obtained were subjected to an inverse Fou-
rier transform procedure and synthetic spatial histories were

calculated. The latter are shown in Figures 2b, 4b, 6b and 8b,
and appear to differ dramatically from the initial course pro-
file records depicted in Figures 1, 3, 5 and 7. It is obvious that
the synthetic spatial histories generated have lost their sever-
ity compared to the real terrain data. Table 1 contains values
of the highest positive/negative peaks in the course terrain pro-
files and the synthetic spatial histories for all four courses. It
can be seen from the ratios between the corresponding highest
peaks that the simulation by common direct/inverse Fourier
transform in the spatial domain provides several times less
severe roughness than that of the real terrain. Similar or higher
differences will remain in corresponding velocity and accel-
eration records at the tire/road interface.

The objective of this article is to study and improve the above
unsatisfactory comparison. First, the closeness in terms of the
WNS was re-examined as the synthetic spatial histories gener-
ated were subjected to direct Fourier transformation to convert
them back to the wave number domain. The resulting WNSs
of the synthetic signals, shown by dotted lines in Figures 2a,
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Table 1. Comparison of highest positive/negative peaks in the course profiles and the Fourier-simulated synthetic spatial histories.

Figure 1. Terrain profile spatial histories measured on Course A (left
and right tracks).

Figure 2. Results of the Fourier transform simulation for Course A. Left
– WNS of real terrain profile (solid curve) and WNS of synthetic ter-
rain signal (dotted curve). Right – spatial history of synthetic terrain
signal generated from WNS.
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Figure 4. Results of the Fourier transform simulation for Course B. Left
– WNS of real terrain profile (solid curve) and WNS of synthetic ter-
rain signal (dotted curve). Right – spatial history of synthetic terrain
signal generated from WNS.

Figure 3. Terrain profile spatial histories measured on Course B (left
and right tracks).

–5
–3

–1

1

3

5

0 2000 4000 6000 8000
Distance Travelled, ft

V
er

tic
al

 D
is

p.
, 

in
.

–5

–3

–1

1

3

5

0 2000 4000 6000 8000
Distance Travelled, ft

V
er

tic
al

 D
is

p.
, i

n.

0

10

20

30

40

50

0 0.02 0.04 0.06 0.08 0.10 0.12
Wave Number, 1/ft

W
N

S
, i

n.
2 /

(1
/ft

)

–5

–3

–1

1

3

5

0 2000 4000 6000 8000
Distance Travelled, ft

V
er

tic
al

 D
is

p.
, i

n.

Figure 5. Terrain profile spatial histories measured on Course C (left
and right tracks).

Figure 6. Results of the Fourier transform simulation for Course C. Left
– WNS of real terrain profile (solid curve) and WNS of synthetic ter-
rain signal (dotted curve). Right – spatial history of synthetic terrain
signal generated from WNS.
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Figure 8. Results of the Fourier transform simulation for Course D. Left
– WNS of real terrain profile (solid curve) and WNS of synthetic ter-
rain signal (dotted curve). Right – spatial history of synthetic terrain
signal generated from WNS.

Figure 7. Terrain profile spatial histories measured on Course D (left
and right tracks).
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4a, 6a and 8a, are sufficiently close to the initial WNSs of the
experimental road data. Hence, the above difference in peak
behavior is not attributed to the WNS approach. Other charac-
teristics of random processes should be implemented in addi-
tion to WNS to describe the difference between the experimen-
tal and synthetic spatial histories.

Probability Density Function Analysis
It is known from the time data analysis that the PSD is a

sufficient description of stationary random signals only if the
process under consideration is Gaussian. If it is not, then the
Probability Density Function (PDF) must be computed and its
deviations from the Gaussian model

must be studied. The principal characters describing non-
Gaussian PDF features are skewness and kurtosis

governed by central moments                                  of the
probability density function P(u).

The Gaussian distribution (Eq. 1) is specified by two param-
eters: mean value m and variance s2, where the latter coincides
with the second moment M2. However, there is no variability
in PDF moments higher than the second. The skewness and kur-
tosis related to the third and fourth moments are constants (l
= 0, g = 3) for the Gaussian PDF. Hence, any other l and g val-
ues obtained would be an indication of Gaussian model fail-
ure, i.e., a suggestion about limitations on the use of the Fou-

rier transform approach. Such a situation has been discussed
for time data records (acceleration), mainly for kurtosis devia-
tions from the Gaussian model4,5 and also for skewness devia-
tions.6,7 Both these types of non-Gaussian deviations have been
observed in various vehicles.

An increase in the kurtosis of vehicle vibration data indicates
the occurrence of unusually high peaks in the data set. The
Gaussian model covers peaks up to some four or five root-mean-
square (RMS) values. However, peaks higher than that have
been found to be typical in vibration records measured in
trucks, military trailers4,8 and automobiles.5 It is clear that an
excessive peak in vibration is a consequence of some extreme
irregularity at some point of the road or terrain.

Obviously, when peaks become radically different than those
expected for the averaged RMS level, the course severity in-
creases. This is commonly described by the crest factor

that is a ratio between the magnitude of the largest peak and
the RMS value s. However, the kurtosis is affected by all ex-
cessive peaks, not just the largest, as is the crest factor (Eq. 3).
Therefore, the kurtosis value is a more robust characteristic
than the crest factor.

When working with kurtosis, special attention must be de-
voted to elimination of so-called ‘wild’ points. This is a typi-
cal problem when the data set becomes contaminated with one
or more erroneously outlying points induced by the data ac-
quisition system. It was reported4 that the presence of wild
points changes the kurtosis to values comparable with those
inherent of real field data. Since the kurtosis value is used as
a description of vibration severity related to non-Gaussian
peaks in the time history, it is necessary to distinguish a real
kurtosis increase from that caused by erroneous wild points
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Figure 11. Experimental PDF of terrain profile for Course A (solid line)
and Gaussian model (dotted line). a – central section for the left track
(l = –0.2, g = 7.0), b – tails for the left track, c – central section for the
right track, (l = –0.2, g = 6.2), d – tails for the right track.

Figure 9. Experimental PDF of terrain profile for Course C (solid line)
and Gaussian model (dotted line). a – central section for the left track
(l = –1.0, g = 8.0), b – tails for the left track, c – central section for the
right track (l = –1.3, g = 9.7), d – tails for the right track.

Figure 10. Experimental PDF of terrain profile for Course B (solid line)
and Gaussian model (dotted line). a – central section for the left track
(l = 1.0, g = 9.0), b – tails for the left track, c – central section for the
right track (l = 1.0, g = 9.8), d – tails for the right track.

Figure 12. Experimental PDF of terrain profile for Course D (solid line)
and Gaussian model (dotted line). a – central section for the left track
(l = 1.2, g = 6.2), b – tails for the left track, c – central section for the
right track (l = 1.2, g = 6.2), d – tails for the right track.
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and to correct them by data editing before subsequent analy-
sis of non-Gaussian behavior.

Rougher road conditions and greater than expected number
of excessive peaks mean that the probability of a certain peak
occurrence (i.e., PDF) increases compared to the probability of
the same peak in a Gaussian process. Following the aforemen-
tioned results for vibration data, it is also desirable to quan-
tify this effect in terrain profile data to numerically define limi-
tations on the use of the wave number spectrum.

As the above relates to high peaks, the PDF increase takes
place at the tails of the probability distribution. Thus, careful
investigation of the PDF tail behavior becomes essential. The
higher the peak, the less frequently it occurs. Hence, longer
data records are necessary to have a representative statistical
sample and to calculate the experimental PDF tails properly.
Whether the distribution tails are non-Gaussian cannot be vi-
sually determined on PDF graphs with regular linear scales. To
analyze this effect, one needs to present the PDF on a logarith-
mic scale (see Figures 9-12), which magnifies differences of
theoretical and experimental probabilities for high amplitude
values. Note that the left and right tails will be different if the
PDF is asymmetric.

PDFs of the Course Terrain Data
The course data analysis algorithm concentrated on deter-

mination of the instantaneous-value PDFs (or as they are some-
times called “amplitude PDFs”) and calculation of skewness
and kurtosis values (Eq. 2). The moment characteristics were
found by time averaging

as for an ergodic random process. The number of points in the
course profile spatial records y(x) was 30,000-40,000.

Since the step character of a histogram (a PDF estimation
from data) makes comparison with the Gaussian curve difficult,
the experimental PDFs are plotted in the form of a curve con-
necting vertices of the histogram bins (Figures 9-12 and 14).
The PDFs are often presented in non-dimensional form, where
the horizontal axis represents a ratio between instantaneous
values and the RMS value. Such a presentation is used in this
section (Figures 9-12) to simplify comparison with the
Gaussian model.

As the importance of PDF tail behavior for the course pro-
files has been outlined in the previous section, each PDF is
shown in two graphs. One of them depicts the PDF central sec-
tion on the regular linear scale for the vertical axis, and the
other shows the distribution tails on a logarithmic scale (the
horizontal axis of the PDF arguments is always linear).

All spatial histories of the course profiles presented in Fig-
ures 1, 3, 5 and 7 have been subjected to the PDF and skew-
ness/kurtosis analysis. The experimental PDFs computed (solid
lines in Figures 9-12) were compared with the Gaussian dis-
tribution (Eq. 1) shown by the dotted line. The skewness l and
kurtosis g values obtained are given in the captions. It appears
that terrains of the four test courses under consideration are
non-Gaussian random processes. This is evident from the PDF
graphs and from the skewness and kurtosis values which were
far from Gaussian (l = 0, g = 3). As could be expected, the de-
gree and nature of non-Gaussian behavior is always similar for
left and right tracks of the same course.

Course C has negative skewness of l = –1.15, which is an evi-
dence of very strong non-Gaussianity, and is much larger than
typical skewness values for acceleration data. The left PDF tail,
up to –8s values, is much longer than the right tail, which does
not exceed 5s (see Figures 9b and 9d). This is the reason for
the large skewness value as there is no sign of asymmetry in
the central section of the PDF shown in Figures 9a and 9c.
Physically, the above means that trenches on the surface of this
course are sharper than bumps. The aforementioned –8s and
5s tail lengths refer to crest factor values which, in the case of
asymmetrically distributed data, should be treated separately
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Figure 13. Comparison of terrain profile from Course C and simulated
non-Gaussian terrain signals. a – spatial history measured on the test
course, b – spatial history #1 by non-Gaussian simulation, c – spatial
history #2 by non-Gaussian simulation, d – WNS of real terrain profile
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Characteristic
Course C Profile (Left Track)
Non-Gaussian Simulation
Fourier Simulation

Skewness
–1.0
–1.1 
–0.07

Kurtosis
8.0 
8.05 
2.9

Crest factor
Positive

4.7
4.5
3.15

Negative
–7.3 
–8.2 
–3.5

Table 2. PDF characteristics and crest factors for the measured
Course C profile and synthetic spatial histories generated.

for positive and negative peaks, i.e. c+ = 5 and c– = 8.
For Course B, the situation is the opposite; skewness is also

large, about l = 1.0, but positive. The central PDF section is
almost symmetrical as for Course C. However, the PDF limits
of Course B in Figures 10b and 10d are about the same at the
left and at the right (approximately 6s), contrary to what was
the case for Course C. The difference for the PDF tails of Course
B is not their length, but their height. The PDF values at the
right tail (i.e., probability of bump occurrence) are 10 times
larger on average (see Figures 10b and 10d) than at the left tail
(i.e., probability of trench occurrence). The above means that
for this course the bumps and trenches are of similar sharpness,
but the bumps are encountered more frequently than the
trenches.

Course A does not have a notable skewness (l = –0.2) but it
is also non-Gaussian as is reflected in the kurtosis of g = 6.6
(on average). This value is smaller than those for Courses B and
C (g = 8.8 and g = 9.4, respectively) but it is still significantly
larger than the Gaussian value of g = 3.0. The PDF tails (see
Figures 11b and 11d) are both extended to 8s, i.e., crest factor
is c+ ª c– = 8, compared to c = 3.5-4.0 for the Gaussian data of
a similar record length.

The PDF of Course D is qualitatively different from all oth-
ers as it is bimodal. The second additional PDF peak occurs
for positive arguments in the region of 3.0-3.5s (see Figures 12b
and 12d). This is caused by frequent bumps on the road which
are approximately of the same height and clearly visible in the
graphs of the terrain profile (Figure 7). These peaks in the spa-
tial histories are not erroneous outliers as each of the bumps
consists of several data points – not a single point as a typical
outlier would. Obviously, the additional PDF increase on just
one of two sides of the main PDF peak introduces essential
skewness, that is l = 1.2 for this course. There are no long tails
(see Figures 12b and 12d) and all data are located within an
interval of [–4s, +4s] corresponding to the Gaussian crest fac-
tor. Nevertheless, the kurtosis value is non-Gaussian (g = 6.2
on average). This increase of kurtosis is because of the contri-
bution of higher probability of those amplitude terrain values
that are at the additional PDF peak.

Non-Gaussian Simulation of the Test Course Terrain
Results of the PDF analysis presented in the above section

clarify non-Gaussian behavior of the course terrain data and
allow an approach to the problem of simulation for experimen-
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Figure 14. PDF of terrain profile on Course C (solid line) and PDFs of
simulated terrain signals (dotted). a – Fourier simulation (central PDF
section), b – Fourier simulation (PDF tails), c – non-Gaussian simula-
tion (central PDF section), d – non-Gaussian simulation (PDF tails).
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tal testing or numerical modeling. A number of non-Gaussian
simulation methods have been developed5,6,9,10 for electro-dy-
namic shaker testing, i.e., for digital generation of non-Gaussian
time histories. All these methods can be applied in the spatial
domain by using the WNS instead of the PSD.

Most of the previous work is based on nonlinear transforma-
tion of a Gaussian random process with the given PSD, and that
will be implemented first for the terrain data. The objective is
to achieve the prescribed values of skewness l and kurtosis g
simultaneously with the given WNS. To operate with non-
Gaussian moment characteristics like l and g, the Hermite poly-
nomial model of a nonlinear transform function suggested by
Winterstein11

is particularly useful.
In Eq. 5, an argument z of the nonlinear transformation func-

tion F(z) is supposed to be some Gaussian random process z(x)
with unit variance. This process z(x) is transformed by func-
tion F(z) into the simulated non-Gaussian spatial history of the
course terrain y(x) considered in Eq. 4. The intermediate vari-
able is a result of standardization and centralizing of the spa-
tial history y(x) with respect to its mean m and RMS s values.
Coefficients a and b can be chosen such that the non-Gaussian
random process y(x) obtained has the specified skewness l*
and kurtosis g* values. Analytical relations between a, b and
l*, g* were given in11

and the scaling factor h has been also found

from the condition that the standardized intermediate non-
Gaussian random process must have unit variance.11

The above nonlinear transformation procedure has been
implemented to numerically simulate test Course C, whose
spatial history is shown in Figure 5 at the left and whose PDF
is presented in Figures 9a and 9b. For the Course C left track
with skewness l* = –1.0 and kurtosis g* = 8.0, Eqs. 6 and 7 give
following values of the coefficients for the nonlinear transform
(Eq. 5)

To serve as an input for the Hermite polynomial transforma-
tion, the Gaussian random process z(x) can be naturally taken
from spatial histories generated by the regular inverse Fourier
transform for the given WNS of the test course under consid-
eration. One such spatial history is shown in Fig 6b with its
WNS close to the WNS of the measured terrain profile (see

Figure 6a). After this Gaussian synthetic spatial history was
subjected to the nonlinear transform (Eq. 5) with coefficients
(Eq. 8), the non-Gaussian spatial history obtained (Figure 13b)
appears to be similar to the measured data (Figure 13a), which
was not the case with the common Fourier simulation (see Fig-
ures 5 and 6b).

To compare Gaussian and non-Gaussian simulation in terms
of PDF, the latter has been calculated for the Fourier-generated
(Figure 6b) and Hermite-polynomial-generated (Figure 13b)
spatial histories. The result is shown in Figure 14 with the hori-
zontal axis representing real surface roughness in inches (no
standardization to the non-dimensional argument y/s). Both for
the central PDF section (Figures 14a and 14c) and the tails (Fig-
ures 14b and 14d), the non-Gaussian approach improves simu-
lation dramatically and allows a precise fit of the experimen-
tal PDF, which was impossible with the regular Fourier
simulation. For example, at the left tail for probabilities of
0.0006 in.–1, the non-Gaussian method matches the value of 5
in. observed for the given PDF of the measured data (left edge
of solid and dotted curves in Figure 14d), whereas the Fourier
simulation provides the smaller value of less than 3 in. (see dot-
ted curve in Figure 14b).

The difference between the precision of Gaussian and non-
Gaussian approaches is also essential in the results presented
in Table 2 where the skewness, kurtosis and crest factor char-
acteristics of simulation data are compared with those of the
prescribed terrain profile. As discussed in the PDF Analysis
section, the skewness and kurtosis values of the Gaussian Fou-
rier-generated data are close to l = 0 and g = 3 (see last row in
Table 2), whereas the skewness and kurtosis of the measured
terrain profile are very much different. They, however, have
been achieved by the non-Gaussian simulation (see the second
row in Table 2). The outcome of the non-Gaussian approach in
terms of crest factor results is given in the last two columns of
Table 2. The positive c+ and negative c– crest factor values are
distinct in non-Gaussian data exactly like in the real terrain
profile. For the Fourier-generated data, the positive and nega-
tive crest factors were about the same and much less than in
the real data (see Table 2).

In the above context, the crucial point is that the synthetic
non-Gaussian spatial history generated is not unique as another
one can be obtained from the next Fourier-generated spatial
history sample taken as an input for the nonlinear transforma-
tion (Eq. 5). It was mentioned in the introduction that an im-
portant advantage of the Fourier simulation is that a test sig-
nal of any length can be generated without repetitions in the
data (such repetitions are inevitable if the measured spatial
history is simply cycled during the test). Now the same realis-
tic variability of test conditions can be achieved with more
precise non-Gaussian simulation. This can be carried out as
follows.

An unrestricted number of different Gaussian spatial history
samples, all with the same WNS, are available as a result of
Fourier simulation. Each of these Gaussian spatial histories is
then subjected to the nonlinear transform (Eq. 5), producing
its specific non-Gaussian output with all characteristics (not
only WNS) close to those of the terrain data prescribed. Hence
any necessary number of different non-Gaussian spatial history
samples can be obtained. Two of them are shown in Figures 13b
and 13c, both similar to the prescribed terrain data in Figure
13a, but different from each other. The same will be the case
for other non-Gaussian samples.

It should be mentioned that a nonlinear transform of a ran-
dom process, like that given by Eq. 5, not only changes the PDF
(that was our objective) but also affects the frequency spectrum,
or WNS in the spatial case (an undesired effect). As a result,
the precision of WNS modelling after non-Gaussian simulation
may worsen compared to that of Fourier simulation. However,
for the Course C terrain under consideration, WNS of the non-
Gaussian simulation data shown by the dotted curve in Figure
13d appeared to be as close to the WNS of the measured ter-
rain as the WNS of Fourier-generated data were in Figure 6a.
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If it were not the case, an iteration procedure of input spec-
trum correction could be implemented.5,10
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