
10 SOUND AND VIBRATION/MAY 2005

The goal of this article is to present a practical understand-
ing of terminology and behavior based in visualizing how a
shaft vibrates, and examining issues that affect vibration. It
is hoped that this presentation will help the nonspecialist bet-
ter understand what is going on in the machinery, and that the
specialist may gain a different view and/or some new ex-
amples.

For the engineer unfamiliar with some of the unique char-
acteristics of rotating machinery vibration, the terminology and
behavior of a machine can appear to be overwhelming. Like
most specialty areas, there are a number of excellent texts, but
it can be difficult to quickly pull out the practical insight
needed. At the other end of the spectrum, there is also a large
number of troubleshooting resources that focus on identifica-
tion of problems and characteristics, but only offer limited
insight. Discussion of a recent combined experimental and
analytical effort raised the possibility of an article that would
attempt to provide a deeper insight into some of the basic char-
acteristics of rotating machinery vibration from a less math-
ematical perspective.

Thus, we have set out to discuss several issues that are ba-
sic to an understanding of rotating machinery vibration:

What are “critical speeds”?
How do critical speeds relate to resonances and natural fre-
quencies?
How do natural frequencies change as the shaft rotational
speed changes?
How are shaft rotational natural frequencies different from
more familiar natural frequencies and modes in structures?
What effects do bearing characteristics have?

Vibration Intuition
As a part of exploring the world as children, everyone is fa-

miliar with the idea that banging on a structure will make it
bounce back and vibrate. Some items vibrate more easily than
others (a metal rod versus a wooden stick, for example). We also
have intuition that it is easier to get things to vibrate or move
back and forth at certain frequenies. For example, we tend to
learn that a swing with long ropes moves back and forth more
slowly than a swing with short ropes. ‘Pumping’ the swing at
a rate that matches the rate at which it wants to naturally move
back and forth will get you swinging much higher than rates
that are faster or slower than the swing’s natural frequency.

Many of us have also had some experience with stringed in-
struments. From this experience, we develop some idea that
heavy objects (thick strings) tend to vibrate at a lower frequency
than light objects (thin strings). We learn that increasing stiff-
ness (tightening the string) raises the frequency of its vibration.
Finally, we also learn that decreasing a major dimension
(shorter string) results in higher frequency vibration.

A Brief Review of Structural Vibration
As engineers, we learn that vibration characteristics are de-

termined by a structure’s mass and stiffness values, with damp-
ing (ability to dissipate vibrational energy) playing an integral
role by controlling amplitudes. This education generally starts
with the simplest possible system – a rigid mass attached to a
spring as shown in Figure 1.

With this simple system, we quantify our intuition about

vibrational frequency (heavier objects result in lower fre-
quency, stiffer springs yield higher frequency). After some
work, we reach the conclusion that the free vibration frequency
is controlled by the square root of the ratio of stiffness to mass.

Experimentally, we could (in principle) build a single degree
of freedom system consisting of a rigid block sitting on a spring.
Were we to push the block down and release it, we would find
that the displacement versus time is a sinusoidal function at a
single frequency, which is equal to the natural frequency as pre-
dicted by Equation 1 and shown in Figure 2.

We could then add a viscous damper parallel with the spring,
and provide a sinusoidal force as shown in Figure 3. By care-
fully applying a constant amplitude sinusoidal force that
slowly increases in frequency and recording the amplitude of
the motion, we could then generate the classic normalized fre-
quency responses of a spring-mass-damper system. By repeat-
ing the test with a variety of dampers, the classic frequency
response shown in Figure 4 can be developed. Assuming we
knew the mass, stiffness and damping of our system, this re-
sponse is also predicted quite well by the standard frequency
domain solution to the differential equation of motion for this
system shown in Equation 2.

There are several noteworthy points about these frequency
responses. The first is that at low excitation frequencies, the
response amplitude is roughly constant and greater than zero.
The amplitude is governed by the ratio of the applied force to
the spring stiffness. The second is that the response increases
to a peak, then rapidly decreases in the low and medium damp-
ing cases.

This peak frequency is approximately the damped natural
frequency, (more technically correct, it is the peak response
frequency, which moves down in frequency from the damped
natural frequency as damping increases). The system is said to
be “in resonance” when the excitation frequency matches the
damped natural frequency. Very large amplitudes are possible
when the excitation frequency is close to this frequency. The
amplitude is controlled by the magnitude of the damping (more
damping reduces the amplitudes). The high damping case has
no real peak, and is said to be ‘overdamped.’ Finally, the am-
plitude continues to decrease for all higher frequencies. These
characteristics will be contrasted with the response of a rotat-
ing system to unbalance excitation in a later section.

Moving from the simple single mass system to multimass
systems, the basics do not change. Natural frequencies are still
primarily related to mass and stiffness, with some changes due
to damping. Excitation frequency equal to a damped natural
frequency is a resonance. Excitation near a resonance can re-
sult in large amplitude responses. Response amplitudes are
controlled by damping. With enough damping, the response
peak can be completely eliminated. The biggest change is that
there are now multiple natural frequencies and that each natu-
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ral frequency has a corresponding unique “mode-shape” with
different parts of the structure vibrating at different amplitudes
and differing phases relative to one another.

Real structures can be viewed as a series of finer and finer
lumped mass approximations that approach a continuous mass
distribution. The continuous structure has an infinite number
of natural frequencies, each with its own characteristic vibra-
tion shape (mode).

As an example, consider a simple beam structure supported
by pin joints at each end. This structure is simple enough that
a closed-form solution to the natural frequencies and mode
shapes is possible. Equation 3 presents the resulting equation
for natural frequencies, and the first three mode shapes are
shown in Figure 5.

In essence, this equation is still just the square root of the ra-
tio of stiffness to mass. The mode shapes shown in Figure 5
and throughout the article are the shape of the beam at the po-
sition of maximum displacement for a given (damped) natural
frequency. The dashed lines show the positions of the beam
during the vibration cycle. These intermediate positions are not

shown in the remainder of the figures.
All of this background and intuition carries over into the

rotating machinery world – with a few important differences,
especially once the rotor starts to spin.

A Simple Rotating Machine
The rotating machinery equivalent to the single spring-mass-

damper system is a lumped mass on a massless, elastic shaft.
This model, historically referred to as a ‘Jeffcott’ or ‘Laval’
model, is a single degree of freedom system that is generally
used to introduce rotor dynamic characteristics. For the pur-
poses of this article, a slightly more complex multi-degree of
freedom model corresponding to a physical rotor will be used.
This model, shown in cross-section in Figure 6, consists of a
rigid central disk, a shaft (with stiffness and mass) and two
rigidly mounted bearings. To make the examples more concrete,
dimensions shown were selected. Physically, this is somewhat
similar to a center-hung fan, pump or turbine.

Nonrotating Dynamics
Suppose that our simple machine is not spinning, that the

bearings have essentially no damping, and that the bearings
have equal radial stiffness in the vertical and horizontal direc-
tions (all typical characteristics of ball bearings). Let us also
suppose that there are three versions of this machine, one each
with soft, intermediate and stiff bearings.

Through either analysis or a modal test, we would find a set
of natural frequencies/modes. At each frequency, the motion
is planar (just like the pinned-pinned beam). This behavior is
what we would expect from a static structure. Figure 7 shows
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Figure 2. Free response of simple spring-mass system.

Figure 3. Simple spring-mass-damper system with forcing.

Figure 4. Frequency response of spring-mass-damper system to constant
amplitude force.

Figure 5. First three mode shapes of pinned-pinned beam.

Figure 6. Basic machine model cross section.
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the first three mode shapes and frequencies for the three bear-
ing stiffnesses. As with the beam, the thick line shows the shaft
centerline shape at the maximum displacement. As it vibrates,
it moves from this position to the same location on the oppo-
site side of the undisplaced centerline, and back.

Note that the ratio of bearing stiffness to shaft stiffness has a
significant impact on the mode-shapes. For the soft and inter-
mediate bearings, the shaft does not bend very much in the
lower two modes. Thus, these are generally referred to as “rigid
rotor” modes. As the bearing stiffness increases (or as shaft
stiffness decreases), the amount of shaft bending increases.

One interesting feature of the mode shapes is how the cen-
tral disk moves. In the first mode, the disk translates without
rocking. In the second mode, it rocks without translation. This
general characteristic repeats as the frequency increases. If we
moved the disk off-center, we would find that the motion is a
mix of translation and rocking. This characteristic will give rise
to some interesting behavior once the shaft starts rotating.

If we repeated the constant amplitude excitation frequency
sweep experiment, we would get very similar behavior as with
the spring-mass-damper system plot shown previously. There
would be a spring-controlled deflection at low frequencies, a
peak in amplitude, and a decay in amplitude with further in-
creases in frequency.

Rotating Dynamics – Cylindrical Modes
Since rotating machinery has to rotate to do useful work, let’s

consider what happens to the first mode of our rotor once it is
spinning. Again, we will have three different versions with in-
creasing bearing stiffness, and we will assume our support bear-
ings have equal stiffness in all radial directions. Let’s repeat
our analysis/modal test with the shaft spinning at 10 rpm, and
look at the frequency and mode shape of the lowest natural fre-
quency. Figure 8 below shows the frequencies and mode shapes
for the lowest mode of the three machines.

Note that the shape of the motion has changed. The frequen-
cies, though, are quite close to the nonrotating first mode. As
in the nonrotating case, the bearing stiffness to shaft stiffness
ratio has a strong impact on the mode-shape. Again, the case
with almost no shaft bending is referred to as a rigid mode.
These modes look very much like the nonrotation modes, but
they now involve circular motion rather than planar motion.
To visualize how the rotor is moving, first imagine swinging a
jumprope around. The rope traces the outline of a bulging cyl-
inder. Thus, this mode is sometimes referred to as a ‘cylindri-

cal’ mode. Viewed from the front, the rope appears to be bounc-
ing up and down. Thus, this mode is also sometimes called a
‘bounce’ or ‘translatory’ mode.

Unlike most jump-ropes, however, the rotor is also rotating.
The whirling motion of the rotor (the ‘jumprope’ motion) can
be in the same direction as the shaft’s rotation or in the oppo-
site direction. This gives rise to the labels “forward whirl” and
“backward whirl.” Figure 9 shows rotor cross sections over the
course of time for both synchronous forward and synchronous
backward whirl. Note that for forward whirl, a point on the
surface of the rotor moves in the same direction as the whirl.
Thus, for synchronous forward whirl (unbalance excitation, for
example), a point at the outside of the rotor remains to the out-
side of the whirl orbit. With backward whirl, on the other hand,
a point at the surface of the rotor moves in the opposite direc-
tion as the whirl to the inside of the whirl orbit during the
whirl.

To see how a wider range of shaft speeds changes the situa-
tion, we could perform the analysis/modal test with a range of
shaft speeds from nonspinning to high speed. We could then
follow the forward and backward frequencies associated with
the first mode. Figure 10 plots the forward (red line) and back-
ward (black dashed line) natural frequencies over a wide shaft
speed range. This plot is often referred to as a “Campbell Dia-
gram.” From this figure, we can see that the frequencies of this
cylindrical mode do not change very much over the speed
range. The backward whirl mode drops slightly, and the for-
ward whirl mode increases slightly (most noticeably in the high
stiffness case). The reason for this change will be explored in
the next section.

Rotating Dynamics – Conical Mode
Now that we have explored the cylindrical mode, let’s look

at the second set of modes. Figure 11 shows the next frequen-
cies and mode-shapes for the three machines. The frequencies
are close to the nonrotating modes where the disk was rocking
without translating. The modes look a lot like the nonrotating
modes, but again involve circular motion rather than planar
motion.

To visualize how the rotor is moving, imagine holding a rod

Figure 10. Effect of operating speed on 1st modes.
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Figure 8. Shaft rotating at 10 rpm, 1st mode shapes and frequencies in
rpm.
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stationary in the center, and moving it so that the ends trace
out two circles. The rod traces the outline of two bulging cones
pointed at the center of the rod. Thus, this mode is sometimes
referred to as a ‘conical’ mode. Viewed from the side, the rod
appears to be rocking up and down around the center, with the
left side being out-of-phase from that on the right. Thus, this
mode is also sometimes called a ‘rock’ mode or a ‘pitch’ mode.
As with the first mode and the nonrotating modes, the low
bearing stiffness mode is generally referred to as a rigid mode,
and a high bearing stiffness pulls in the rotor ends. As with the
cylindrical mode, the whirl can be in the same direction as the
rotor’s spin (“forward whirl”), or the opposite direction (“back-
ward whirl”).

To see the effects of changing shaft speeds, we could again
perform the analysis/modal test from nonspinning to a high
spin speed and follow the two frequencies associated with the
conical mode. Figure 12 plots the forward (red line) and back-
ward (black dashed line) natural frequencies over a wide speed
range. From this figure, we can see that the frequencies of the
conical modes do change over the speed range. The backward
mode drops in frequency, while the forward mode increases.

The explanation for this surprising behavior is a gyroscopic
effect that occurs whenever the mode shape has an angular
(conical/rocking) component. First consider forward whirl. As
shaft speed increases, the gyroscopic effects essentially act like
an increasingly stiff spring on the central disk for the rocking
motion. Increasing stiffness acts to increase the natural fre-
quency. For backward whirl, the effect is reversed. Increasing
rotor spin speed acts to reduce the effective stiffness, thus re-
ducing the natural frequency (as a side note, the gyroscopic
terms are generally written as a skew-symmetric matrix added
to the damping matrix – the net result, though, is a stiffening/
softening effect).

In the case of the cylindrical modes, very little effect of the
gyroscopic terms was noted, since the center disk was whirl-
ing without any conical motion. Without the conical motion,
the gyroscopic effects do not appear. Thus, for the soft bearing
case, which has a very cylindrical motion, no effect was ob-
served, while for the stiff bearing case, which has a bulging
cylinder (and thus conical type motion near the bearings), a
slight effect was noted.

Exploring Gyroscopic and Mass Effects
Now that we have seen how gyroscopic effects act to change

the rotating natural frequency whenever there is motion with
some conical component, let’s look at two sets of single disk
rotors. In each case, there will be a nominal rotor, a heavy disk
rotor, and a smaller diameter, longer disk rotor. The heavy disk
differs from the nominal in that a fictitious mass equal to the
disk mass is attached (i.e., mass increases, but mass moment
of inertia is unchanged) The smaller, longer disk is the same
weight, but smaller in diameter and greater in length. This
smaller disk has reduced the mass moment of inertia about the
spin axis (‘polar’ moment Ip) by a factor of 0.53, and reduces
the mass moment of inertia about the disk diameter (Id) by a
factor of 0.65.

For the first case, let’s use a symmetric, center disk rotor
again. Figure 13 shows the three models, and the three sets of
natural frequencies versus speed. Comparing the nominal
model to the two modified versions, note that:

The increased mass lowers the first mode frequencies (mass
is at a point of large whirling motion).
The increased mass leaves the second mode unchanged (in-
creased mass is at a point of little whirling motion).
The reduced mass moment of inertia version does not change
the first mode (disk center of gravity has very little conical
motion).
The reduced mass moment of inertia increases the frequency
of the second mode, and decreases the strength of the gyro-
scopic effect (disk center of gravity has substantial conical
motion).
For the second case, let’s move the disk to the end, and move

the bearing inboard to result in an overhung rotor with the same
mass and overall length. Figure 14 shows the three models and
the three sets of natural frequencies versus speed. Comparing
the nominal model to the two modified versions, the impor-
tant things to note are:

The increased mass lowers the first mode frequencies and
very slightly lowers the second mode frequencies.
The reduced mass moment of inertia version increases the

Figure 11. Shaft rotating at 10 rpm, 2nd mode shapes and frequen-
cies in rpm.

Figure 12. Effect of operating speed on 2nd natural frequencies.

Figure 13. Comparison of different disk properties, center disk configu-
ration.
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frequency of both the first and second modes, and decreases
the strength of the gyroscopic effect.
If we looked at the mode shapes and these plots, we would

again see that the reasons are the same as for the center disk
rotor. Changes in the mass at a point of large whirl orbit strongly
affect the natural frequency of that mode, but have little effect
if it is at a node. Changes to mass moment of inertia at a loca-
tion of large whirl orbit, on the other hand, have little effect.
Changes to mass moment of inertia at a node with large coni-
cal motions have a strong effect on the corresponding mode.

Although not entirely obvious from the plots presented,
changes in the ratio of polar mass moment of inertia to diame-
tral mass moment of inertia change the strength of the gyro-
scopic effect. Indeed, for a very thin disk (a large ratio), the
forward conical mode increases in speed so rapidly that the
frequency will always be greater than the running speed. In-
deed, there will be no conical critical speed as defined below.

Gyroscopic and Mass Effects – Summary So Far
Before moving on to critical speeds and unbalance response,

let’s summarize the last few sections related to natural frequen-
cies in rotating systems.

Machines with a nonrotating shaft behave much like famil-
iar structures. However, once the rotor is spinning, the modes
are no longer planar. With radially symmetric bearings, the
rotor center traces out a circle.
The rotor whirls either in the same direction as rotation, or
against rotation, resulting in both forward and backward
whirl modes.
The frequencies are affected by both the mass and diametral
mass moment of inertia.
The mass has the greatest effect at points of large circular mo-
tion (anti-nodes), while the mass moment of inertia has the
greatest effect at points of large rocking motion (nodes).
Changes in mass precisely at a node do not change the cor-
responding natural frequency, and changes in mass moment
of inertia at points of no conical motion (center of an axially
symmetric rotor, for example), do not change the correspond-
ing natural frequency.
The modes affected by the mass moment of inertia (the coni-

cal mode, for example), are strongly affected by changes in
speed. Assuming the bearing characteristics do not change,
the backward whirl mode will decrease in frequency with in-
creasing shaft speed, while the forward mode frequency will
increase. The extent to which this occurs is related to both
the mode shape and the ratio of the polar mass moment of
inertia to the diametral mass moment of inertia.
Thus, a machine with a big disk/fan blade will probably show

strong speed dependent effects in at least some modes. A fairly
symmetric machine will probably have some modes that are
relatively constant with shaft speed.

Critical Speeds
With some insight into rotating machinery modes, we can

move on to “critical speeds.” The American Petroleum Insti-
tute (API), in API publication 684 (First Edition, 1996), defines
critical speeds and resonances as follows:
Critical Speed – A shaft rotational speed that corresponds to

the peak of a noncritically damped (amplification factor >
2.5) rotor system resonance frequency. The frequency loca-
tion of the critical speed is defined as the frequency of the
peak vibration response as defined by a Bodé plot (for un-
balance excitation).

Resonance – The manner in which a rotor vibrates when the
frequency of a harmonic (periodic) forcing function coin-
cides with a natural frequency of the rotor system.
Thus, whenever the rotor speed passes through a speed

where a rotor with the appropriate unbalance distribution ex-
cites a corresponding damped natural frequency, and the out-
put of a properly placed sensor displays a distinct peak in re-
sponse versus speed, the machine has passed through a critical
speed. Critical speeds could also be referred to as “peak re-
sponse” speeds. As with the structural case, one can also con-
sider a speed (i.e., unbalance excitation frequency) that coin-
cides with a damped natural frequency (i.e., a resonance),
generally termed “damped critical speeds.” Numerically, these
are distinct from critical speeds as defined by the API specifi-
cation. For very light damping, they are fairly close. For in-
creasing levels of damping, they become noticeably different.

As a critical speed example, we will use the medium stiff-
ness, center disk model, and add an unbalance distribution that
excites the first three modes. We will also add a small amount
of damping at the bearings. Figure 15 shows the resulting ver-
tical displacement response due to the unbalance forces at the
left bearing as a function of speed. The damped natural fre-
quency versus speed plot (Campbell Diagram) is drawn below
for reference. Note that a line corresponding to 1¥ synchronous
speed has been added to the damped natural frequency plot for
reference.

As in the definition, critical speeds occur at the peak re-
sponse speed when a system natural frequency is excited by
the shaft unbalance. As with any resonance, very large ampli-

Figure 15. Comparison between natural frequencies and critical speeds.

Figure 16. Critical speeds with additional bearing damping.

Figure 17. Characteristics of unbalance excitation.
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Figure 18. Phase relationship of center of orbit versus center of mass
through critical speed.

Figure 19. Natural frequencies vs. speed, nominal model, 2¥ vertical
stiffness.

Figure 20. Non-circular (elliptical) modes with asymmetric bearing stiff-
ness.
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tudes are possible, and are controlled only by the system damp-
ing. For this rotor-bearing system, the bearing damping is not
as effective at controlling the amplitude through the first mode
as it is through the second and third modes. Since unbalance
does not excite the backward modes in this rotor-bearing sys-
tem, there are no critical speeds corresponding to the intersec-
tions shown in the Campbell diagram between the synchronous
(1¥) line and backward modes.

If we increase the bearing damping somewhat, we would get
the response shown in Figure 16. In this case, the additional
bearing damping completely eliminates the response peaks at
the second and third natural frequencies. Thus, these would
no longer be considered “critical speeds” by the API definition,
even though there is an intersection between operating speed
and the corresponding damped natural frequencies.

All of the critical speeds in this case are forward modes,
which is generally the case. Some more complex machines can
have mixed modes, with some portions of the rotor whirling
with rotation (forward), and some portions whirling against ro-
tation (backward). With these machines, it is quite possible that
a critical speed will be a mixed mode. It is also possible to have
the special case of a lightly damped (i.e., ball bearing) machine
that has a large difference between the vertical and horizontal
bearing mount stiffness. For this unusual case, it is possible –
though not very common – to have unbalance excitation of a
backward mode.

Generally, machinery is designed not to run close to a criti-
cal speed due to the high vibration amplitudes associated with
the resonance. As such, most machinery specifications require
a minimum separation between the normal operating speed
range and any critical speed.

Characteristics of Unbalance Excitation
A careful comparison of the previous set of unbalance re-

sponse plots in Figures 15 and 16 for the center disk machine,
and the frequency response plot for the spring-mass-damper
structure in Figure 4 reveals two significant differences. At low
frequencies, the structural plot shows a response equal to the
static response, whereas the unbalance response plot starts out
with no response. Likewise, at higher frequencies, the struc-
tural response decays, while the unbalance response tends to
a constant value at higher speeds.

These two differences are the result of the frequency depen-
dency of the constant amplitude sinusoidal force versus un-
balance excitation. The structural excitation was assumed to
be a constant force at all frequencies, while unbalance excita-
tion has a speed-squared characteristic as shown in Figure 17.
At zero rpm, there is no force from unbalance excitation, which
explains the first difference noted.

The second difference – that the unbalance response ampli-
tude goes to a constant value above the critical speed – has a

more interesting explanation. We can see what occurs by re-
ferring to Figure 18. This figure plots the relative angular rela-
tionship between the unbalance location and rotor response as
rotor speed passes through a critical speed. Below the critical
speed, the unbalance acts to pull the disk out into an orbit that
grows increasingly large with speed. At the critical speed, the
rotor response lags the unbalance by approximately 90°. How-
ever after passing through the critical speed, the phase between
the unbalance force and the response direction has changed by
180°. As a result, the disk now rotates around the mass center
of the disk/unbalance. Once the disk achieves this state, fur-
ther increases in speed do not change the amplitude until the
effects of the next mode are observed.

Some Complications
So far, our discussion has been relatively straight-forward.

Structural modes that are planar when the shaft is not rotating
become circular when the shaft starts rotating, and split into
forward and backward modes. The forward modes increase in
frequency with increasing speed, while the backward modes
decrease in frequency with increasing speed. How much the
mode changes depends on the distribution of mass and diame-
tral mass moment of inertia and the shape of the correspond-
ing mode shape. Unless the bearings have high damping, there
is a critical speed every time the rotor speed passes through
with a forward whirling damped natural frequency. In some
cases, the modes have mixed forwards and backwards motion.
Finally, there is a pathological case where backwards whirl can
be excited by unbalance forces. However, we work in the real
world, and in the real world there are always complications.

The first has already been foreshadowed. Many real ma-
chines do not have equal bearing/mount stiffness in all direc-
tions. For rolling element bearings, the support structure is
frequently asymmetric. For fluid-film bearings, both the sup-
port and the bearing can be asymmetric. So what happens?

There are basically three effects. In the first, there is addi-
tional frequency separation between the pairs of modes as
shown in Figure 19. In the second, the orbits traced out by
points on the rotor will no longer be circular and become el-
liptical (see Figure 20). Otherwise, the picture remains much
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Figure 24. Color map of startup showing rotor criticals as faint back-
ground lines.

Figure 25. Event time waterfall of coastdown data.

Figure 21. Event time waterfall of startup.

Figure 22. Spectral line at 1274 rpm first critical.

Figure 23. Spectral line at 2900 rpm second critical.

the same.
The second complication applies primarily to fluid-film

bearings. The stiffness and damping characteristics for these
bearings are a strong function of shaft speed. Fluid-film bear-
ings also have cross-coupling between the vertical and hori-
zontal axes. A force in the vertical axis will generate a displace-
ment in the horizontal axis, and vice-versa. Thus, it is possible
for these bearings to change the neat generalization that for-
ward whirl increases with speed and backward whirl decreases
with speed. Depending on the rotor and bearing characteris-
tics and how the latter change with speed, it is possible that a
forward mode might actually appear to decrease with speed,
and/or a backward mode increase with speed.

A third noteworthy complication is that rotating machinery
is rarely proportionally damped and the modes are generally
complex rather than real. The upshot of this technical detail
is that the phase angle between various points on the shaft is
frequently not 0° or 180°, as is generally seen in lightly damped
structural modes. The details of this circumstance are beyond
the scope of this article, but it is an important point to be aware
of for the more advanced reader.

Other complications might include nonlinear effects, shaft
bow, thermal bow, etc. For more details, the reader is encour-
aged to consult the various texts in the field, or take one of the
excellent short courses available from several organizations.

Case History – Introduction
While all of this critical speed and rotating natural frequency

‘stuff’ is nice, how might it apply to the real world? As an an-
swer to this question, we will present a case study based on
some of the data and results for the project that inspired this
article. Alfa Wassermann, Inc., a manufacturer of medical cen-
trifuges, desired to establish a baseline of rotor dynamic char-
acteristics for a long standing product line. The goal was to
develop an experimentally validated rotor dynamic model for
this machine. This project is of special interest to this current
article because over the speed range considered, this machine
behaves very much like the soft bearing (rigid rotor), center disk
machine we have been considering.

The technical approach for establishing the product’s
baseline was to develop an analytical rotor dynamics model
using Eigen Technologies’ DyRoBeS, qualify the model through
experimental modal analysis using Vibrant Technology’s

ME’scope, acquire operational vibration data in the form of
waterfall plots using Dactron’s RTPro Dynamic Signal Analy-
sis software, use the operational data to fine tune and validate
the rotor dynamics model, and evaluate various aspects of the
machine’s predicted performance.

Case History – Operating Data
Vibration was measured by existing proximity probes in-

stalled at each end of the rotor. The rotor was, however, com-
pletely sealed from access and a once-per-revolution pulse sig-
nal was not available. Without a pulse signal, waterfall data
could not be plotted with a traditional ‘rpm’ z-axis. Instead,
an “event time” waterfall was used to position spectral lines
versus time along the z-axis.

The first acquired spectral line is positioned at the rear of
the waterfall and has an event time label equal to the number
of seconds before the present. The most recent spectral line is
at the front of the plot and has an event time label of 0.0 sec-
onds. For example, the startup waterfall presented in Figure
21 has the zero speed spectrum located at the rear-most posi-
tion with an event time label of 1300 seconds. New spectral
lines were added every nine seconds. The line of 1¥ peaks
moves to the right and forward with increased rotor speed.
Fortunately, startup speed versus time was almost linear, mak-
ing the 1¥ line appear to be almost linear and therefore easy to
visually interpret.

This startup data shows that the rotor passes through its first
critical at 1274 rpm followed by a second critical at 2900 rpm.
Spectral lines associated with each of these criticals have been
extracted from the waterfall and are presented for information
in Figures 22 and 23. Modal analysis determined that the first
rotor natural frequency results in a ‘cylindrical’ critical speed
while the second natural frequency results in a ‘conical’ mode
as would be expected.

Replotting the waterfall of Figure 21 as a color map results
in Figure 24. Of primary interest in this figure is not the series
of peaks along the 1¥ line, but evidence of the rotor’s damped
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Figure 26. Spectral line at 2593 rpm second critical.

Figure 27. Tracking of conical modes.

Figure 28. Damped natural frequency vs. operating speed predictions.

natural frequencies being excited by ‘background’ vibration.
These are seen in the color map as faint lines in the background
vibration, unassociated with operational harmonics.

The first faint line seen in Figure 24 is at a constant frequency
of 1274 cpm. Rotor dynamic analysis and nonrotating modal
testing determined that the first mode would be ‘cylindrical,’
which as previously discussed will remain at a fairly constant
frequency regardless of running speed because it is not influ-
enced by gyroscopic effects. A cylindrical shape was confirmed
by end-to-end proximity data shown being in-phase.

Rotor analysis calculated the second mode to be a ‘conical’
shape, where motion at one end of the rotor is out-of-phase with
that at the other end. As previously described, this mode will
be influenced by gyroscopic effects that split the nonrotating
rocking mode into two modes, one whirling in the forward
direction and the other whirling in the reverse direction. As
previously described, the forward mode frequency increases
with increased shaft speed while the backward mode decreases
with increased shaft speed. This is shown by the faint lines in
Figure 24 that form an upside down ‘⁄’ where the apex occurs
at zero speed at the top of the plot. The apex occurs at the fre-
quency where experimental modal analysis finds the rocking
mode when the shaft is not spinning. The modes can be seen
to gain greater frequency separation as shaft speed increases.
The left leg of the ‘Ÿ’ is the backward component that decreases
in frequency with increased speed, while the right leg is the
forward component that stiffens and increases in frequency.

Figure 25 presents coast down data, again showing two
criticals. On coast down, higher speed data are at the back of
the waterfall with the greater time label and the spectral line
for zero speed is at the front with a label of 0.0 seconds. While
the first critical occurs at the same speed as during startup,
1274 rpm, the second critical interestingly is now observed at
2593 rpm rather than at 2900 rpm. Figure 26 shows the spec-
tral line with this frequency. If the practitioner had only viewed
peak frequencies from startup and coast down waterfalls, he
should be teaming with curiosity as to why the second critical
has different frequencies.

If we again plot Figure 24 and apply lines to help track the
forward and backward whirl conical modes as shown in Fig-
ure 27, we get a clue. It appears that forward whirl is excited
during startup at 2900 rpm, and the backward whirl is excited
at 2593 rpm during coast down. Figure 28 shows a plot of the
corresponding prediction of damped natural frequencies ver-
sus operating speed from the analysis. The predicted frequen-
cies for the second mode are slightly higher than measured
during the coast down, but show a separation of about 250 rpm,
which is within the frequency sample spacing of the experi-

mental data. The first mode prediction is in good agreement.
We can also postulate that the reason for the shift in peak

response speed between startup and coast down could be the
expected excitation of the forward critical speed during run-
up, and an unexpected excitation of the backward mode dur-
ing coast down. Given that the machine under consideration
should have fairly symmetric bearings, it does not fit the typi-
cal profile of a machine that would exhibit backward whirl due
to unbalance excitation; thus, the explanation would lie with
seals and several other potential nonlinearities. A second pos-
sible explanation would be a nonlinear stiffness effect related
to larger amplitudes on run-up than during coast down.

Conclusion
It was shown that cylindrical rotor modes are not influenced

by gyroscopic effects and remain at a fairly constant frequency
versus rotor speed. Conversely, conical rotor modes are indeed
influenced and caused to split into forward and backward whirl
components that respectively increase and decrease in fre-
quency with increased rotor speed.

The authors can be contacted at cpowell@structuraltechnology.com.


