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The discrete Fourier Transform (DFT) can be developed
from the Fourier series, which results in the most useful form
for machinery diagnostics. This form presents the transform
of an even number of data values as the amplitude and phase
of a set of (N/2 + 1) sine waves or N complex exponentials. This
point of view presents the inverse DFT (IDFT) conceptually
as the addition of correctly phased discrete complex
exponentials. The inverse Fast Fourier Transform (IFFT) is
needed to perform the ‘add’ because of the economies it em-
ploys. The complex exponentials defined by the DFT can be
viewed as continuous, but when evaluated at times corre-
sponding to the original data samples and added together, they
exactly duplicate the original data sequence. The sum of the
complex exponentials form a continuous band limited curve
exactly passing through the data points. This article explains
this point of view and applies it to transient detection, filter-
ing, resampling and bin centering.

The Fourier Transform (FT) has a myriad of uses. Some of
them are central to machinery diagnostics. Hidden periodicities
are the key – those repeated or cyclic parts of a machinery vi-
bration signal. Their characteristics can be a clue for diagnos-
ing machine condition. “What is cyclic?” It is a fabulous sales
angle. Good pitch charlatans have been snowing us with it for-
ever: “. . . I’ve gone back and investigated the price of oober
goobers over the last couple of centuries and have noticed a
cyclic pattern, repeated maybe 12 or 13 times. It is a wonder-
ful opportunity to get rich if you can discern this complicated
pattern, which I know all about. Now is the perfect time to in-
vest, and if you’ll give me all your money, I’ll make you rich.”

How to Look at the DFT
Anyway, back to our Fast Fourier Transform (FFT), DFT re-

ally. The algorithm to calculate it does not matter as long as
you perform Eqs. 1 and 2. I taught myself the DFT starting from
the complex exponential form of the Fourier series as Newland1

suggests. Equally space digitize the signal and straight line nu-
merically plan the integration to get each coefficient, and you
end up with:

Out of thin air pluck this similarly indexed synthesis equa-
tion

and try it out. Insert the value of the Xk from Eq. 1 into Eq. 2,
carefully keeping track of the indices, and by using the alge-
bra formula for the sum of a geometric series,2 you find that
they have to work exactly. Eq. 1 transforms a list of x’s into a
list of complex X’s, and Eq. 2 exactly transforms the complex
X’s back to the original x’s. Amazing! But notice, the 1/N is in
the position that results from the complex Fourier series deri-
vation, not where it is usually placed.

To use Eqs. 1 and 2 for vibration analysis there are some
ground rules. The data list is sampled at sampling rate fs. The
xn of Eq. 1 are samples from a signal that was accurately
sampled and band limited to fs/2; this means its Fourier Trans-
form is zero for all frequencies greater than half the sampling
rate. There is an even number of N samples in the list. The time
interval between the samples is:

In Eqs. 1 and 2, the complex exponential is really:

A sine wave can be written as cos 2pft, where f is the frequency
and t is time. In the 2Bkn/N of Eq. 3b, if we multiply it by hfs
(which equals 1, by Eq. 3a), we group the terms of the cosine
and the exponential as in Eq. 3c:

Comparing this with cos 2pft, in digitized terms, nh is the dis-
crete time, and kfs/N is the frequency.

Think of the DFT as an exact transformation of a digitized
vibration signal. It transforms the data into discrete (or
sampled) complex exponentials (or equivalently, sinusoids).
The transform is the list of their amplitudes as a function of
frequency. Eq. 1 transforms the signal into N sine waves; each
Xk is the amplitude and phase of a complex sine wave. Figure
1 attempts to show one of the k discrete complex sinusoids in
3D. Xk is its complex amplitude, shown as a vector from the
origin to the beginning point of the discrete spiral. The little
circles on the spiral represent the values of the discrete sinu-
soid for the sequence of n values. The smooth spiral on which
the data lie is part of the underlying curve, the curve with time
taken to be continuous or with nh replaced by t in Eq. 3c. Each
Xk is the complex amplitude of one of the discrete spirals. By
Eq. 2, their summation yields the original signal. The transform
is the list of complex X’s. Since it is an exact transformation,
we are able to exactly inverse transform the DFT back to the
original data. The transform is a set of amplitudes and phases
of complex sine waves whose summation forms a continuous
curve. When the curve is evaluated at the signal sampling in-
stants, it exactly reproduces the signal.

The continuous curve, which is the sum of N sine waves, is
the continuous periodic band limited curve from which the
original x’s were sampled. The inverse transform evaluates all
these sine waves at the signal sample instants and adds them.
I will use the word reconstruction for the inverse transform op-
eration, the IFFT.

The DFT is most economically computed using the FFT. I
believe MATLAB’s® algorithm is able to deliver efficient results
for all N values, not just powers of 2. The FFT will compute N
Fourier coefficients from a sequence of N numbers. The Xs can
be numbered from 0 to N–1. If N is even, X0 is the DC or aver-
age value; it is real and contains one value. XN/2 also contains
one real value; it is special. It is the content at the Nyquist fre-
quency or half the sampling rate. It turns out to be the sum of
the sequence with alternate signs reversed. In between these
two are N/2–1 unique complex values, each containing two
values. The X values from XN/2+1 to XN–1 are not unique, but
are complex conjugates of the values from XN/2–1 down to X1.
The values symmetrical about XN/2 are complex conjugate
pairs. Thus for the N values of the sequence, we get N unique
values from the transform.

Relation of DFT X’s to Harmonic Content or Spectrum
If you find time to look up Fourier Series theory from any

old book (25 years or so), you will find that they use a’s and
b’s for the analysis of a segment of a signal, assumed periodic.
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(However, the analysis will work almost no matter what you
assume; it will make a periodic function of that segment.) Then
they reconstruct the signal in terms of these a’s and b’s as fol-
lows. If x(t) is periodic with period T, it can be exactly synthe-
sized from its Fourier series coefficients, ak, bk:

The Fourier series coefficients are given by:

The ak and bk are the harmonic content. The kth harmonic is
given by:

Its frequency is k/T. We can also write the kth harmonic in terms
of amplitude and phase:

Here, Ak is the amplitude and fk is the phase. The phase is the
angle in radians to the first positive peak. The amplitude and
phase are given by:

and

Ak is the content or the amplitude of the kth harmonic or tone;
fk is its phase. This is the quantity shown on signal analyzers
and data collectors as the spectrum. More manipulating leads
us to the following. The Xk’s from k = 1 . . . (N–1)/2 that we get
from the DFT are related to the content as:

More Samples by Adding Zeros to the Transform
It may be helpful to note that the signal is reconstructed (in-

verse transformed) by adding up values of complex sine waves.
The IFFT very efficiently adds up the samples at the desired,
equally spaced time instants to return the original sampled
signal.

However, we can add high frequency zeros to the transform
because the signal was band limited. This forces the IFFT to
compute equally spaced samples of our band limited function
at a higher sampling rate; the number of values in the trans-
form sets the number of signal values the IFFT computes. This
is not interpolating, as I have heard commented; it actually
calculates more values of the true band limited function de-
fined by the original data. The values are exact and contained
in the continuous sum of the complex sine waves curve; there
is an infinite number of values available. I will not deal with
fewer samples, because doing so involves fewer frequency com-
ponents. You would have to discard the higher frequency sine
waves, which would in effect be decimating.

I am going to plot some spectra using the magnitude of the
X’s, |Xk|, as opposed to plotting the content, Ak, as defined
in Eqs. 5b, 5c and 5d. Content is what we use in signal analyz-
ers and data collectors. The X’s (which the FFT computes) have
values for k values or frequencies either side of Nyquist. The
magnitudes must be symmetrical about the Nyquist frequency
as explained above. We need to look at the X’s for reconstruc-
tion.

To take a closer look, consider an arbitrary 64 value signal
in MATLAB. The top half of Figure 2 is a plot of 64 values of a
random sequence with the mean removed. The bottom half of
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Figure 2. The upper curve is a string of 64 random values selected by
the MATLAB command ‘rand’ with the mean removed.  The bottom half
of the figure is the magnitude of its FFT as returned by MATLAB.3

Figure 1. This represents one of the discrete complex sinusoids in 3-D.
The straight line vector from the origin represents, Xk. The little circles
on the spiral beginning at the tip of the straight line are the values for
the sequence of n values.

Figure 3. The lower half of the figure shows the modified transform
magnitude with 255 zeros and a half Nyquist value added in the cen-
ter.  The upper half is the inverse transform of this zero padded trans-
form.  It shows a more detailed view of the underlying continuous curve
defined by the original samples.
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Figure 2 shows the magnitude of its FFT, (as MATLAB returns
it, without putting the 1/N where I like it). Notice the symme-
try about the Nyquist value at index 33. You can exactly cal-
culate the harmonic content without using the X values from
X(N/2+1) to XN–1, but the IFFT of Equation 2 requires all of the
X values.

Now let us add some zeros to force a more detailed plot of
this band limited function (band limited because of taking its
FFT). I did this in MATLAB and plotted the results in Figure 3.
Notice the similarities and differences between Figure 2a and
Figure 3a. My thinking on adding zeros is as follows. We want
to add only high frequency zeros. We want to add an even num-
ber of values to make it cheaper to compute, and because I have
not thought out the theory for an odd number of values.
Nyquist, the (N+1)th value and highest frequency value, is real.
Half of its value should be placed symmetrically on either side
of the new zero Nyquist value as the highest frequency non zero
values (add a complex zero to each half Nyquist). Then place
an odd number of complex zeros in the center of the transform
to attain the desired number of values in the reconstruction.
For the plot, I added 255 complex zeros between the two new
half-original Nyquist values prior to performing the IFFT. The
transform had 64 values, and I added 255 zeros and one com-
plex half Nyquist so now it has 5 times as many values. We will
get 5 times as many samples back after performing the IFFT. I
had to multiply the answer by 5 for the following reason.
MATLAB’s FFT equations are given in Equations 7a and 7b

The original Xk were calculated with Norig values. But now
when we IDFT the zero padded transform (Eq. 7b) with Nlong
values, the algorithm will divide each time history value by
Nlong when it should only have been divided by Norig. Thus we
have to multiply the values of our interpolated time history by
the factor Nlong/Norig. In our case, Nlong is 320 and Norig is 64;
320/64 = 5; hence we multiply by 5. Figure 3a, the resulting
IFFT, is a much more detailed plot of the true band limited
function defined by the original set of data, Figure 2a. Adding
zeros is a sensible practical procedure.

Partial or Bandwise Reconstruction
Eq. 2 can be considered a reconstruction of the original data

by adding up its harmonic components. Since the reconstruc-
tion is built from sine waves, the details of any transients have
to be assembled from a build up and cancellation of the sepa-

rate harmonics. If one knew which sine waves built a particu-
lar transient, one could reconstruct or add only selected har-
monics to accentuate the transient and inspect its details. In-
tuition as to how the reconstruction assembles transient effects
in the time domain can be developed by experimenting with a
partial reconstruction where major portions of the transform
are zeroed out.

I did two tests of band-wise reconstruction with octave
groups of bin values and arbitrary bin groupings. Figure 4
shows a 5-band reconstruction of some air handler pillow block
acceleration data. Figure 5 shows the same data reconstructed
in octave bands. Once this is programmed, it is a trivial matter
to change the bands. By noticing the differences between Fig-
ure 4 and Figure 5, one can see that experimenting with differ-
ent groups of bands will bring out otherwise unnoticed signal
characteristics. The segment contained 1024 samples; no win-
dow was used because I planned a reconstruction. The bottom
reconstruction on each figure is a low pass filtering of the data.
The uppermost band, just below the original signal, is a high
pass filtering of the data. Each of the remaining band-wise re-
constructions is a band pass filtering of the signal. All of these
filterings are done with brick wall filters.

Reconstruction Eliminating Smallest Harmonics
Reconstruction by eliminating bands with amplitude mag-

nitudes in excess of or less than a level, such as 5 or 10 per-
cent, is another procedure that might have value. I believe this
is done in wavelet ‘compression’ to transmit an image with less
data. To illustrate reconstructing by selecting only the stron-
gest or weakest Fourier coefficients, I analyzed a simulated
string of impact signals. I simulated some repetitious impacts
with 7 percent damped exponentially decaying sine waves. The
ring-down frequency in this case was 2394 Hz, the time inter-
val between impacts was 102/51,200 = 0.002 sec; the recipro-
cal of this value is the harmonic spacing of the peaks or 51,200/
102 = 501.9608 Hz. Figure 6b shows 3000 samples of the 8192
sample segment analyzed. I analyzed the signal with a boxcar
window and noticed that the spectrum contains a sequence of
harmonics spaced at the impact frequency with a significant
DC component. In this case, 35 of them are over 10 percent of
the peak signal and they occur as harmonics of the pulse fre-
quency. Figure 6c shows the reconstructed signal from the
harmonics over 10 percent, and Figure 6a shows the reconstruc-
tion from the remainder of the smaller harmonics. The most
striking observation to me is that the components that fell in
the lower 10 percent take care of the end effects. Maybe they
help handle the beginning and end discontinuity. It would be
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Figure 4. This shows a band wise partial reconstruction of a signal with
an arbitrary band pass arrangement.  Each signal segment contains
content from only the frequencies indicated. Values of the transform
outside the frequencies indicated were made zero prior to inverse trans-
forming or reconstruction. Notice that the sums of components within
the bands show various transient details.

Figure 5. This also shows a partial reconstruction with the bands hav-
ing an octave relationship. Again transient details can be seen. Notice
that the sixth reconstruction from the bottom is a high pass filtering of
the data, the bottom reconstruction is a low pass filtering and the re-
constructions in between are band pass filterings of the data. Each of
these filterings are brick wall filtering with no roll off.
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interesting to resample the signal so that it was exactly peri-
odic in the time window; I have not found time to do that.

Incidentally looking at the spectrum of the signal, the peak
harmonic occurs closest to the ring-down frequency of the
decaying exponential. To think about the compression ideas, I
analyzed 8192 samples – 8157 of them were under 10 percent,
35 were over. Even though the harmonics are complex conju-
gates, we get an odd number, which is due to the DC compo-
nent. Thus, if I wanted to send you the signal shown in Figure
5c, I could do so with 35 complex numbers along with where
they are to be placed in a list of 8192 complex zeros. You could
IFFT that spectrum and obtain Figure 5c.

Manipulating and Resampling to Bin Center a Tone
Resampling could be important to try to see the ‘true’ spec-

trum. Leakage, picket fence and the discreteness of the spec-
trum will creep in and contaminate or obscure my reading of
the amplitude, frequency and phase of the tone I need for di-
agnosis. If I do an FFT of my data with a Hanning window, I
can apply a frequency correction factor (see the Appendix) and
calculate a good estimate of the true frequency. By resampling
I can make that tone bin-centered and then re-FFT to see if the
estimate is correct. After bin centering I can apply any window
to reduce the leakage. Another reason for resampling might be
to do after-the-fact time synchronous averaging. This would
require a situation where I could assume the shaft speed re-
mains constant over that interval.

Prior to digging into this material, I had used two methods
for resampling, which I will describe here. To resample, one
needs values of the data at a list of time instants that are dif-
ferent from the time instants at which the data were originally
sampled. By analyzing digitized data at all, we have to believe
it is band limited and has no frequency components greater
than half of the sampling rate. MATLAB has two functions that
are helpful in resampling – interp.m and decimate.m. MATLAB
promises to have programmed these correctly in accordance
with the authoritative IEEE bible,4 and I have to trust them.
That being the case, one resampling procedure I have used is
to interpolate my signal by a huge factor of 100 and just select
the nearest neighbor as the value for each new selected sam-
pling instant. Another method I have used is to again interpo-
late, by at least 20, so as to feel confident that a straight line
between any two interpolated points is a good approximation
of the signal. Then I interpolate the values of the signal with a
straight line for each of the desired instants. In each case, af-
ter the resampling, I decimate down to a reasonable sampling

rate.
As I said, I now want to propose two additional methods

based on a better understanding. But first let me drive home
the point and help you make the leap I suggested in the para-
graph after Eq. 3c. From my reading of, and belief in, the sam-
pling theorem,5 I am absolutely convinced of Shannon’s state-
ment: “There is one and only one function whose spectrum is
limited to a band W, and which passes through given values at
sampling points separated by 1/2W seconds apart.” Here he
means W = Fs/2 (thus 1/2W is 1/Fs.). The signal must be prop-
erly band-limited and accurately digitized. I suggest you con-
vince yourself that Shannon’s statement is true. Think with me
now, (and this was hard for me), only one curve can pass
through our samples and be band limited. No one will ever
think of another one. Look again at Eq. 2; it is the sum of N dis-
cretely evaluated continuous complex sine waves. The sum of
the N complex continuous curves is a continuous curve going
through the sample points. The sum of the N complex sine
waves defined in Eq. 2 but with continuous time inserted as
follows is the answer. Using the idea from Eq. 3c in Eq. 2 we
have (Eq. 8):

This is a continuous curve implied by Eq. 2, and it is certainly
band limited; it is the one and only curve.

The exact value of the curve at any instant is available. Thus
samples at any desired instant or sampling rate greater than the
existing sampling rate are available. The fact that the signal is
reconstructed (inverse transformed) by adding up values of the
N complex sine waves is a good way to look at the situation.
That’s a lot of sine wave evaluations. The IFFT is a very effi-
cient way to add up the samples at the desired equally spaced
time instants as in the original sampled signal. However, we
can add zeros to the transform, which is in effect forcing the
IFFT to compute equally spaced samples of the band limited
function, Eq. 8, at a higher sampling rate. The number of val-
ues in the transform sets the number of signal values in the IFFT
reconstruction.

 I tested this idea in two ways, and it seems to work fine. I
performed a six average, 25% overlapped, Hanning windowed,
4096 point FFT of my air handler data file, AH10C1. An ex-
panded portion of the spectrum in the 0-50 Hz region is shown
in Figure 7. This is expanded so much that you can see cor-
ners in the spectrum drawing at the individual bin values. The
data were sampled at 5120/sec. The frequency spacing in a DFT
is 1/T; in the case:

Figure 6. Reconstruction based on harmonic or transform magnitude.
The middle signal is a simulated sequence of decaying exponentials.
The lower figure illustrates reconstruction or inverse transformation
using only Fourier components that are greater than 10% of the maxi-
mum Fourier transform magnitude. The top figure portion shows re-
construction using Fourier components with magnitudes less than 10%
of the maximum Fourier transform magnitude.

Figure 7. An expanded portion of the spectrum of air handler vibra-
tion data. FFT size: 4096; fs = 5120/sec; Df = 1.25 Hz; Hanning window;
6 averages. The complete spectrum has values all the way to 2560 Hz
in 2049 values. Here the first 41 values are plotted to show how a typi-
cal spectrum appears when the tones are not bin centered.
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Notice that the 2¥ peak at 45 Hz is kind of lop-sided or cut
off at an angle. This indicates that the true spectrum has a peak
between 43.75 and 45 Hz and is closer to 45. In a situation like
this, if you wish to assume that a cluster of lines in your
Hanning windowed spectrum is from a single tone, you can use
the Hanning window equations in the Appendix to calculate
the peak spectrum value and its frequency. The highest line
near 2 times the running speed (due to misalignment) is in bin
37, with a value of 0.03041698192750, at a frequency of 45; the
next highest is in bin 36, with a value of 0.02578547949924,
at a frequency of 43.75. I used Eqs. A3 and A5 to estimate the
true frequency, ftrue, to be 44.52951399872051 Hz. Eq. A4 was
then used to estimate the peak spectrum value, ytrue to be
0.03335510723959. Bin 37 means the 37th frequency value; the
first is zero or DC. So the frequency of the 37th bin is (37–1)Df
= 45.

Now let’s use the inverse transforming ideas to confirm these
values from the equations. I’ll describe two ideas, both of which
make ft very close to bin centered. The term bin centered re-
fers to a tone or single frequency component in a segment of
the signal we are analyzing. The tone will be bin centered if it

has an integer or whole number of periods or cycles in the seg-
ment you are FFT’ing. If you think that out, the number of
periods of a tone of frequency f, in a signal of length N sampled
with a sampling rate of fs is given by

Notice also by using Eq. 9 in Eq. 10

Let’s use Eq. 10 to check the number of periods of the tone
at f true in our spectrum. Substituting values for f true =
44.52951399872051, N = 4096, and fs = 5120 into Eq. 10 gives
Np = 35.62361119897641. That’s not very close to a whole
number. Examining Eq. 10, we have two options to make Np a
whole number: adjust N or adjust fs. Both work.

First let’s adjust N, and this is certainly not resampling. It is
taking advantage of MATLAB’s ability to calculate a DFT of any
length sequence. Solve Eq. 10 with ftrue = 44.52951399872051,
and fs = 5120, to find N for Np = 35, we get

N35 = 4.024297233631363e+003 ª 4024.
Similarly, if we solve to find N for Np = 36 we find

N36 = 4.139277154592259e+003 ª 4140.
N = 4024 looks like the best bet, since it’s an even number, and
only 1/3 of a sample off. If we try that, we get the spectrum
portion shown in Figure 8. And this is an instructive mistake.
By using the 2¥ tone to adjust the number of samples, I put the
1x tone right in the middle of the space between the 17th and
18th frequency; if 2¥ is bin centered, one would certainly want
1¥ bin centered as well.

To correct the problem and put the 2¥ tone in the 37th bin
or 36th frequency, or close to it, I’ll change the FFT length to
4140. This makes the number of periods from Eq. 10 with ftrue
= 44.52951399872051, fs = 5120, N36 = 4140, we get Np =
36.0063. This is still quite good. (I have experimented a little
that even as much as 10% off, you get a pretty good value for
the peak amplitude.) Figure 9 gives the resulting spectrum.

And as you can see both 1¥ and 2¥ appear as they should.
Thus I can say that adjusting the length of the FFT is an excel-
lent procedure for bin centering a tone.

The second procedure to get Eq. 10 to give us a whole num-
ber of periods in the segment we are FFT’ing is to modify the
sampling rate, fs. This is resampling. To increase the sample
rate, I took the whole string of data, 10,138 values, FFT’d it,
added an even number of values to that transform, and inverse
transformed it. The new sample rate was to be the new num-
ber of values divided by the original duration of the signal. The

Figure 9. Here the error of Figure 8, has been corrected by changing the
FFT length to 4140 which bin centers both the 1¥ and 2¥ tones such
that the correct values appear in the spectrum.

Figure 10. This is a second example of bin centering, this time by
resampling. The resampling was accomplished by adding zeros to the
transform to increase the sampling rate from 5120/sec to 5364.5/sec,
which by Eq (10) bin centers the tone. Notice the symmetry of the spec-
trum shape  around the bin centered peaks at 22.26, and 44.53 Hz.

Figure 8. Result of bin centering by changing the FFT length to 4024.
This first attempt shows a poor choice of FFT length. The magnitude
of the peak just under 45 Hz for the signal 2¥, misalignment compo-
nent shows the true value of the tone. However, because this was the
35th frequency, the 1¥ component at half this frequency lies between
the 17th and 18th frequencies, and is badly in error.

(9)

(10)

(10a)

D f
T N f

Hz
s

= = = =1 1 5120
4096

1 25
/

.

N
Nf
fp
s

=

N
f
fp =

D



23SOUND AND VIBRATION/AUGUST 2005

FFT of a real signal with an even number of values N will have
N values, and the IFFT of a transform with N values also has N
values. Adding zeros was explained previously.

Specifically, I wanted 34 periods in Eq. 10 when f = ftrue =
44.52951399872051, and N = 4096. The new sample rate comes
out to be, fsnew=4096*ft/34 = 5364.5. The original signal in
AH10C1 contained 10,139 values. I skipped the last value to
work with an even number. The duration of this signal is the
number of values divided by the sample rate. Since the
resampled signal and the original signal must have the same
duration, we can say

or Nnew = 1.0622e+004 = 10622. We must add 484 values
[(10622 - 10138), 483 zeros and a half Nyquist] to the transform.
This is done with the MATLAB script, resamp1.m

%resamp1.m is Rresamp for S&V inverse transform article
% Let datalength be the desired data length
datalength=10622;%*****Insert your value
%*****place datashort (data to be resampled) in workspace

with an even number of values
datashort=datashort(:);
%make a column
DATASHORT=fft(datashort);
N=length(datashort);
nyq=DATASHORT(N/2+1);
%DC value is DATASHORT(1), Nyquist is DATASHORT (N/

2+1)
%We zeropad DATASHORT to datalength, by replacing Nyquist

with half Nyquists as last nonzero values and adding
(datalength–N–1) complex zeros in center

addzeros=zeros(datalength–N–1,1);
czeros=complex(addzeros);
halfnyq=nyq/2;
%Don’t need to complex nyq; it is already complex
DATALONG=[DATASHORT(1:N/2); halfnyq; czeros; halfnyq;

DATASHORT(N/2+2:N)];
datalong=real(ifft(DATALONG));
%must multiply by factor datalength/N
datalong=datalong*datalength/N;
%Now datalong is our resampled data.

The computation went fast. When I FFT’d the resulting
resampled signal, the tones at 22.26 and 44.53 Hz were bin
centered, and that spectrum is shown in Figure 10. The proce-
dure looks good. Thus I can also say that increasing the sam-
pling rate appropriately by adding zeros to the transform is an
excellent way of bin centering a tone. I believe this is a good
idea and encourage you to try it when you want something
resampled.

Conclusions
I have tried to explain the inverse Fourier transform as a

Fourier series “kind of add ‘em up” and suggested that when
thinking about FFT’s to think of the N in the position of Eq. 1,
but continue to compute with MATLAB and its formulation. I’ve
tried to convince you that a band limited underlying curve
exists for any set of sampled data and defined it. I showed that
a coarsely sampled curve defined a specific smooth curve go-
ing through the values. I presented three different uses for in-
verse Fourier Transforming vibration signals. Band-wise recon-
struction, which includes low pass, high pass, and band pass
filtering, was the first. Next I demonstrated reconstruction by
eliminating smaller or larger harmonics. Finally, I discussed
bin centering and used inverse transforms to show how a tone
can be made bin centered in real data. These ideas came from
looking at the DFT as in Eq. 1 and Eq. 2 with the 1/N in Eq. 1,
where it most logically belongs for vibration analysis. The tech-
niques were implemented in MATLAB3, and the MATLAB m-files
that draw these figures are available by contacting the author.
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Appendix – Frequency/Amplitude Correction Factor

Frarey has worked this out by accurate testing with a
Hanning window. He recommends against its use for the box
car window, and I agree.A1 Brüel and Kjær in their Technical
ReviewA2 present an analytical equation in dB for the correc-
tions without proof. Ming and KangA3 give a difficult analysis
with which I agree.A2 I was able to work this out, but the way
I explain it takes too many pages. BurgessA4 theoretically at-
tacks the problem, but his paper is more difficult. However, I
will present what I believe to be a correct interpretation of the
results from A2 and A3 that is at least something to use. You
apply this correction to the two highest lines in a cluster of a
few high lines in a spectrum where you believe there is a single
tone or harmonic.

Let us define:
T = duration of the signal in seconds.
Df = line spacing (1/T).
Dfc = frequency offset in Hz from highest line taken in the

direction of the next highest line.
yt = true peak amplitude.
yh = amplitude of highest line.
ynh= amplitude of the next highest line.

For the rectangular, boxcar, or no window, Frarey recom-
mends not using thisA1 (Eqs. A1 and A2):

Basically, the Hanning window causes 4 lines to appear in a
Hanning windowed DFT of a tone. The zero padded DFT of the
Hanning window has a main lobe four Df’s or bins wide. 4 lines
always end up in the main lobe and are scaled or have relative
heights matching the main lobe shape. The geometry leads to
the following equations. For the Hanning window (Eqs. A3 and
A4):

Finally, to tidy things up let’s add that if:
ft = true frequency and fh = frequency of the highest line, then

(Eq. A5):
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