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Modal Correction Methods in Acoustic
Reliability Analysis of Vehicles
Leo W. Dunne, CDH AG, Ingolstadt, Germany

This article discusses some of the vibro-acoustic design
methods available that include the effects of model param-
eter uncertainty in the low-frequency response analysis pro-
cess. The emphasis is on uncertain model parameters that are
represented probabilistically. The so-called “modal correc-
tion method” is reviewed, where the effects of physical struc-
tural modifications are estimated by rapid resolution of the
modal equations of motion. The accuracy of the modal cor-
rection method in the context of uncertainty analysis is dis-
cussed as well. The application of CDH/VAO software for the
analysis of uncertain structures is discussed. These methods
include Monte Carlo analysis, first-order sensitivity (FOSM),
and first-order reliability analysis (FOR). An approach to sto-
chastic optimization and its application to a representative
vibro-acoustic design using several different methods is pre-
sented.

Vehicle vibro-acoustic prediction analysis is usually per-
formed using finite-element models in which the properties
are assumed to be known with certainty. Owing to variation
in the actual physical components of a real structure, many
model parameters are random and not deterministic variables.
For example, nominally identical vehicle body and engine
mounts can exhibit large variations from specification values
due to the effects of manufacturing tolerances and scatter in
polymer material properties. These effects result in significant
scatter in the acoustic and tactile response of nominally iden-
tical vehicles. Conventional deterministic analysis does not
provide information about the scatter of the responses. In the
presence of random variable model parameters, it is not pos-
sible to make reliable design decisions based entirely on de-
terministic analyses.

Figure 1 shows a typical histogram of engine idle-load
acoustic response obtained from nominally identical vehicles.
Deterministic analysis carried out using an accurate model
would predict the expected response to be around 50 deci-
bels. If customers were to complain about noise in the vehicle
at 54 decibels, the vehicle structural design may not be ac-
ceptable, since a considerable proportion of vehicles would
involve complaints from customers. Similarly, a nominally
optimum structural design may be unreliable because of scat-
ter manifest in the acoustic and tactile response of individual
vehicles. There is currently considerable interest in analysis
methods that provide information about the scatter in re-
sponses. This article discusses some of the methods available
in CDH/VAO, a commercially available vibro-acoustic analy-
sis program. A review of the theoretical basis of these meth-
ods is followed by applications to representative design prob-
lems.

Reliability Methods for Response Prediction
Methods for predicting the effects on structural response of

uncertainty in structural parameters belong to the theory of
structural reliability. The methods may be divided into two
categories; those that employ parametric models of structural
uncertainty and methods that employ nonparametric mod-
els.1-4 For methods that use parametric models, the equations
of motion are solved for some prescribed values of the uncer-
tain parameters. This process can be conducted only if a de-

scription of the uncertainty and an appropriate analysis proce-
dure is available. Parametric model uncertainty may be de-
scribed probabilistically by means of a probability density func-
tion. Where distributions are not known, possibilistic analysis
provides an alternative for reliability analysis.5-7 In structural
reliability, the term ‘failure’ is used to describe a condition
where the response exceeds some limiting condition. In the
context of vehicle NVH analysis, for example, the limit condi-
tion could be the maximum allowable acoustic response in deci-
bels at a driver ear position for some specified engine excita-
tion frequency. A probability density function is a model that
describes the probability that an uncertain variable will have a
particular value. Gaussian, lognormal, and uniform distributions
are commonly adopted. The probability of failure can be ex-
pressed8 in general terms as:

where p/(X) is the joint probability density function of the n
dimensional vector x of model parameters. The region of inte-
gration G(X) < 0 denotes the space of limit state violation. Ex-
cept for very special cases, the above integral cannot be per-
formed analytically. Some of the application methods are
described in the following section.

First-Order Sensitivity Method. The first-order sensitivity
method (FOSM) is based on a Taylor expansion for mean and
variance of a function z of random variables x. By considering
only the first-order terms, an approximation to the actual mean
and variance can be obtained as follows:

The expression for variance of the function is:

The mean and variance values for the design variables are avail-
able from input data; the derivatives can be calculated as in
design sensitivity. In frequency response analysis, the response
and derivatives are complex quantities. It has been established
that for modest deviations and many random variables, the first-
order approximation can give excellent results.

Stochastic Finite-Element Method. In the stochastic finite–
element method, the structural uncertainties are used to find the
uncertainties in the properties of each element in the finite-el-
ement model. The uncertainties in the assembled finite-element
system matrices are considered to be small, and a first-order
perturbation technique is used to estimate the mean and vari-

Based on Paper #2005-01-2341, “Evaluation of Model Uncertainty in
Acoustic Response Analysis of Vehicles,” presented at the SAE Noise
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Figure 1. Histogram of sound pressure at driver ear.
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ance of the response vector. A discussion of the theory of sto-
chastic finite elements is presented in References 9 and 10.

Monte Carlo Method. The Monte Carlo method evaluates the
function at a series of samples generated in accordance with
the probability density function of the individual uncertainty
parameters. Using the probability density distributions of the
basic variables, the sampling process and series of response
evaluations allows the numerical estimation of the failure prob-
ability. In this case, it follows directly from sample statistics
that the probability of failure is given by:

where the value I is unity when the inequality is satisfied. The
Monte Carlo method in its crude form is computationally ex-
pensive. By means of importance sampling and other related
techniques, improvements in efficiency can be obtained. For
recent developments on advanced Monte Carlo methods see
References 11-16.

First-Order Reliability Method. The works of numerous
authors17-22 form the foundation of FORM and SORM (second-
order reliability method). In the FORM approach, the variables
are transformed to uncorrelated Gaussian random variables and
then standardized so that the design represented by the mean
of the variables is located at the origin of an n-dimensional
hyperspace. The joint probability density function of the vari-
ables is described by a standardized multivariate Gaussian
distribution in the hyperspace. The first-order estimate of the
probability of failure is then given by:

where Φ is the cumulative normal distribution function and ψ
is the minimum distance from the origin of the hyperspace to
the limit state surface. If the limit state surface is a hyperplane,
the failure probability given by FORM is exact. Depending on
the curvature of the limit state surface, the FORM estimate will
be either a lower or upper bound. In SORM analysis, the prin-
cipal curvature information at the design point is used to pro-
vide an improved estimate of failure probability. The FORM
procedure requires the solution of a constrained minimization
problem to determine ψ.

Optimization and Robust Analysis In CDH/VAO
CDH/VAO is an interactive graphics program for performing

vehicle noise, vibration, and harshness (NVH) comfort analy-
sis. The modal equations of motion for an acoustic fluid-struc-
ture coupled system are developed23 as follows:

It is the primary task of the program to assemble and solve this
equation for a set of user-defined excitation frequencies and
physical loads and to transform the modal coordinates to physi-
cal structural responses and acoustic pressures. In Equation 6,
the matrices are obtained from a finite-element code. Using
NASTRAN, for example, the data required can be generated
very efficiently in a single run for both fluid and structure af-
ter DMAP (Direct Matrix Abstraction Program) modifications
to standard solution sequences.

For fast re-analysis of structural responses, the original sys-
tem eigenvectors are used to calculate a perturbation of the
modal equation of motion. The modified structural stiffness is:

Analog modifications to the modal mass and damping are per-
formed. Modifications to the modal fluid normal incidence and
bulk reacting absorption matrices are possible as a consequence
of damping modifications. The physical modifications lead to
a final perturbation in the modal equation of motion as follows:

VAO allows the user to define grouped design variables for
modification and optimization studies. Appropriate scaling of
a nominal perturbation reduces the variable to a parameter.
Numerical optimization enables the user to study the effects
of proposed design changes and to predict a set of modifica-
tions to provide optimum dynamic behavior of the structural
system. The modal correction approach is the key to a drastic
reduction in the computational effort for repeated dynamic
response analyses as required in numerical optimization cal-
culations or Monte Carlo analysis. In essence, it avoids the
necessity to recalculate the system eigenvectors at each real-
ization of the design variables. The modal correction method
is an approximation performed at the level of modal equations.
These equations are then solved ‘exactly.’ In effect, it is as-
sumed that the new solution can be expressed as a linear sum-
mation of the eigenvectors of the original structure. Therefore,
engineering accuracy is only achieved if the number of basis
eigenvectors is sufficient. For optimization and robust analy-
sis CDH/VAO includes Monte Carlo sampling, FORM (first-
order reliability analysis), FOSM (first-order sensitivity analy-
sis) and stochastic optimization. Gaussian and uniformly
distributed variables can be defined. For Monte Carlo analy-
sis, any distribution can be used by direct input of data sets of
realizations of variables.

Approach to Stochastic Optimization
Stochastic optimization is a branch of operational research

and is a subject of active development.24,25 It involves the
search for robust solutions to problems with random variables.
The approach to stochastic optimization in CDH/VAO is based
on a FOSM approximation to the variance of the response. Ex-
pected maximum frequency response amplitudes are expressed
in a statistical way by adding to the mean response some value
that represents, in a probabilistic sense, the likely maximum
deviation from the mean response.

In addition to the mean values of the model parameters, the
variance for each parameter (expressed as a standard deviation
or coefficient of variance) is itself considered to be an indepen-
dent design variable for the purposes of optimization. These
variables are termed “quality variables.”

The optimization problem can then be posed to minimize:

with:

Using Equations 2 and 3 and assuming Gaussian distribution
of response, at probability level p we have:

or

where

In CDH/VAO, the so-called “beta method” has been used to
formulate the optimization problem. Briefly, this is a min-max
strategy that minimizes a dummy variable ‘beta’ in the optimi-
zation process, and sets up constraint equations given by:

The values Rf, R0
f are the maximum and target responses, re-

spectively. S and C are problem-dependent shift and scale con-
stants. In CDH/VAO, the target response is entered interactively
after the frequency response plots from Equation 10 or 11 have
been displayed.

Where “quality variables” are defined, peak response can be
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reduced in optimization simply by setting the variance to its
lower bound. But in reality, model parameters with low vari-
ance are likely to result from an expensive manufacturing pro-
cess. If it is possible to assign a numerical cost penalty to the
coefficient of variance for a particular parameter, the minimi-
zation of an objective function that includes a cost penalty for
variance model parameters will lead to an optimum selection
of variables for both mean and coefficient of variance of model
parameters.

CDH/VAO stochastic optimization differs from conventional
optimization in that it includes:
• Parameter mean and parameter variance (standard deviation

or CoV) design variables.
• The definition of cost penalty constraint as function of mean

and variance design variables, responses, and constants.
The idea of including “quality variables” and “quality costs”

in a structural optimization may provide insight into new so-
lutions. For example, consider the simple cost relationship in
Equation 13, where it is assumed that nominal quality corre-
sponds to a coefficient of variance of 5%,

where Cprod and Cmass are production quality costs and mass
related costs respectively, and R is a cost-weighting factor vari-
able from 0 to 1.0. The results of stochastic analysis on simple
structures illustrate that where structure mass-related costs are
less important to the designer than manufacturing costs, the
cost-weighting factor approaches unity (in shipbuilding for
example). A high coefficient of variance in components can be
consistent with an optimum design. Alternatively, where the
costs associated with quality are less important to the designer
than achieving low mass costs with R approaching zero (such
as in aerospace design), then the optimum design is achieved
by a high-quality, low-variance, structure. It is likely that au-
tomobile structures would lie between these extremes.

Structural Dynamics Application
The methods available in CDH/VAO described in the preced-

ing section have been applied to illustrate an engineering prob-
lem that is typically encountered during the NVH development
of new vehicles. Figure 2 shows a stiffened, thin-walled steel
box structure. Although this structure is clearly not an auto-
mobile body (it has no windows), it exhibits many of the dy-
namic characteristics of a vehicle structure enclosing a passen-
ger compartment air cavity. The box structure comprises some
45 plate components connected by spot and seam welding.

In this example, it is assumed that the 45 plate thicknesses
are samples from a Gaussian distribution with a 5% coefficient
of variance. Therefore, the plate thicknesses are not known
exactly but are scattered about a nominal mean value. The box

is supported on four spring-dampers at the base. Excitation is
defined by applying a unit harmonic force in 1-Hz steps up to
100 Hz at one of the supports. Arbitrarily, tactile structural
response points have been selected on the box top. This as-
sumes that the designer wants to understand the scatter in the
frequency response function at the selected tactile response
points.

In preparation of the data, NASTRAN was used to generate
the finite-element air and structural matrices and to calculate
approximately 500 structural modes to 200 Hz and approxi-
mately 80 air modes to 600 Hz. The modal data from NASTRAN
was efficiently converted to VAO format by a utility.

Monte Carlo and FOSM Analysis. Figure 3 compares the
results of the Monte Carlo simulation with the FOSM output.
In Monte Carlo analysis, 500 samples were generated from an
uncorrelated multivariate normal distribution for the 45 input
parameters. The output of these analyses is shown in Figure
3. The results of FOSM analyses are also shown in Figure 3.
The FOSM calculation is essentially carried out per Equations
2 and 3. By default, mean ±2 sigma values are used to calcu-
late bounds on responses predicted by FOSM. These bounds
are shown by the dashed curves in Figure 3. Assuming a nor-
mal distribution of response amplitudes (almost certainly not
the case), we can expect that approximately five of every 100
Monte Carlo analyses lie outside the FOSM bounds. Figure 3
shows that the Monte Carlo results correspond very well to the
bounds resulting from the FOSM approach.

A variance contribution analysis may be generated to pro-
vide information about the contribution of each random param-
eter (the thickness of each plate) to the response. Figure 3
shows a selected tactile structural response. Similar results can
be obtained for acoustic pressures. Note that a standard fre-

Figure 3. Comparison Monte-Carlo and FOSM analyses.

Figure 2. Reverberant acoustic box structure.

Figure 4. Convergence of FORM algorithm.
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quency response analysis provides the design engineer with
nominal deterministic results only. The results presented in
Figure 3 illustrate that considerable scatter will be present in
the real world for nominally identical designs. Statistical analy-
sis of the results in Figure 3 provides the design engineer with
the probability that an actual design will in practice exceed
some response threshold. The design engineer must then de-
cide whether this probability is acceptable

Note that FOSM calculations can be performed very quickly
in CDH/VAO. The FOSM result forms the basis of the stochas-
tic optimization tool described subsequently.

Robust Analysis Using FORM. FORM analysis in CDH/VAO
is essentially an implementation of Equation 5. The limit state
is defined as a scalar function of response. In fact, the limit-
state function is a user-specified multiple of the objective func-
tion used for optimization. The objective in optimization is a
weighted function of tactile and acoustic responses over some
frequency range and structural mass. Therefore, FORM in CDH/
VAO may be used to study the reliability or robustness of an
‘optimum’ design. To illustrate the use of FORM, an objective
function was defined as the sum (after scaling) of an acoustic
and tactile response of interest in the peak region 50-55 Hz in
Figure 3.

The limit state was defined to correspond to a 10% increase
in the objective function. Figure 4 shows the progress of the
FORM algorithm to convergence. Using this limit-state, the
reliability R shown in the upper plot of Figure 4, was calcu-
lated to be 97%. The lower plot in Figure 4 illustrates the mini-
mum changes in design variables required to deteriorate the
selected response objective by 10%. In itself, this information
provides important information to the designer. By controlling
the quality (scatter in thickness) of a few critical variables, the
reliability of the design may be improved.

Example of Stochastic Optimization. To illustrate the sto-
chastic optimization capability, 20 plate thickness properties
were selected as design variables as shown in Table 1. Corre-
sponding to each of these mean variables, a coefficient of vari-
ance “quality variable” was defined. A quality cost function
similar to Equation 13 was used. Tactile and acoustic response
peaks were selected for reduction as shown in Figures 5 and
6. These illustrate the plots generated at the end of the optimi-
zation. The initial and final values of response with their up-
per- and lower-mean ±Z-sigma bounds are shown. Also shown
is the user defined ‘target’ line entered interactively during the
analysis. The upper bound of response has been reduced to or
below the target response. The cost function was reduced from
6300 cost units to 5810 during optimization.

The values of mean variables and coefficient of variance
“quality variables” at the conclusion of the analysis are shown
in Table 2. Note that some of the ‘quality’ variables increased

Table 1. Initial design parameters.

                          Design Variable                         Coefficient of Variance
Name Value Min. Max Value Min Max
D_1 2.0 1.5 2.5 0.05 0.0 0.2
D_2 2.0 1.5 2.5 0.05 0.0 0.2
D_3 2.0 1.5 2.5 0.05 0.0 0.2
D_4 2.0 1.5 2.5 0.05 0.0 0.2
D_5 2.0 1.5 2.5 0.05 0.0 0.2
D_6 2.0 1.5 2.5 0.05 0.0 0.2
D_7 2.0 1.5 2.5 0.05 0.0 0.2
D_8 2.0 1.5 2.5 0.05 0.0 0.2
D_9 2.0 1.5 2.5 0.05 0.0 0.2
D_10 2.0 1.5 2.5 0.05 0.0 0.2
D_11 2.0 1.5 2.5 0.05 0.0 0.2
D_12 2.0 1.5 2.5 0.05 0.0 0.2
D_13 2.0 1.5 2.5 0.05 0.0 0.2
D_14 2.0 1.5 2.5 0.05 0.0 0.2
D_15 2.0 1.5 2.5 0.05 0.0 0.2
D_16 2.0 1.5 2.5 0.05 0.0 0.2
D_17 2.0 1.5 2.5 0.05 0.0 0.2
D_18 2.0 1.5 2.5 0.05 0.0 0.2
D_19 2.0 1.5 2.5 0.05 0.0 0.2
D_20 2.0 1.5 2.5 0.05 0.0 0.2

Table 2. Optimized design parameters.

                          Design Variable                         Coefficient of Variance
Name Value Min. Max Value Min Max
D_1 2.1017 1.5 2.5 0.0706 0.0 0.2
D_2 1.5000 1.5 2.5 0.0590 0.0 0.2
D_3 2.1341 1.5 2.5 0.0582 0.0 0.2
D_4 2.0446 1.5 2.5 0.0533 0.0 0.2
D_5 2.0507 1.5 2.5 0.0513 0.0 0.2
D_6 1.5000 1.5 2.5 0.0511 0.0 0.2
D_7 1.9468 1.5 2.5 0.0592 0.0 0.2
D_8 2.2331 1.5 2.5 0.0563 0.0 0.2
D_9 2.0939 1.5 2.5 0.0552 0.0 0.2
D_10 2.1221 1.5 2.5 0.0553 0.0 0.2
D_11 2.3242 1.5 2.5 0.0590 0.0 0.2
D_12 2.4451 1.5 2.5 0.0535 0.0 0.2
D_13 2.4023 1.5 2.5 0.0506 0.0 0.2
D_14 2.2840 1.5 2.5 0.0568 0.0 0.2
D_15 1.7898 1.5 2.5 0.0512 0.0 0.2
D_16 2.0275 1.5 2.5 0.0533 0.0 0.2
D_17 2.5000 1.5 2.5 0.0460 0.0 0.2
D_18 2.0215 1.5 2.5 0.0462 0.0 0.2
D_19 1.7239 1.5 2.5 0.0518 0.0 0.2
D_20 1.5000 1.5 2.5 0.0509 0.0 0.2

Figure 5. Optimized velocity response.

and others decreased. A minimum cost solution may require
that the quality of critical components be improved, while
lower standards may be acceptable elsewhere.

Conclusions
With particular reference to vibro-acoustic design applica-

tions, we have discussed some of the methods available to in-
clude the effects of model parameter uncertainty in the analy-
sis process. We have emphasized uncertain model parameters
that are represented probabilistically. The theoretical back-
ground to methods available in CDH/VAO, a special-purpose
vibro-acoustic dynamics program, has been described. The
program was applied to a representative design problem. The
work confirmed the importance of including parameter uncer-
tainty in the design process. CDH/VAO proved to be a useful
tool for frequency response analysis and optimization of vibro-
acoustic structural systems containing model uncertainty.
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