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Random Vibration Testing Beyond
PSD Limitations
Alexander Steinwolf, University of Auckland, New Zealand

The traditional approach to random vibration testing using
fast-Fourier-transform simulation has become out-of-date,
since it is restricted to consideration of the power spectral
density only. The latter means that the FFT approach is based
on a Gaussian random signal model. However, the MIL-STD-
810F standard establishes that “care must be taken to exam-
ine field-measured probability density for non-Gaussian be-
havior.” A test engineer is now required to “ensure that test
and analysis hardware and software are appropriate when
non-Gaussian distributions are encountered.” There is wide-
spread belief that the time waveform replication can address
the non-Gaussian issue. However the TWR method is not a
simulation, since the replication test is representative of just
one road sample measured, not of a road type like the simu-
lation test. This difference between replication and simulation
is discussed here. Two methods of non-Gaussian simulation
(polynomial function transformation and special phase selec-
tion) based on kurtosis and skewness characteristics are con-
sidered and examples of simulating various field data are
given.

Components, apparatus, and passengers of ground and flight
vehicles in steady motion, which constitutes most in-service
operations, are subjected to random vibration excitations. This
article addresses the issue of simulating such excitations on
shakers for product reliability testing purposes. Since digital
shaker controllers were introduced, a methodology of convert-
ing field data into the frequency domain and using the power
spectral density (PSD) function of the vibration under consid-
eration has become a common and well-established approach.

The power spectrum presentation of random data (that is a
distribution of vibration energy over the interval of frequen-
cies involved) was implemented first in data analysis, because
it gives a clear insight into frequency decomposition of the
measured vibration and possible dangerous resonance behav-
ior. Then, the PSD approach was naturally extended to the test-
ing area based on the fact that a vibration time history can be
reconstructed from the prescribed PSD by the inverse fast-Fou-
rier transform (IFFT).

The FFT/IFFT procedure has been used by manufacturers of
shaker controllers for many years and remained the only tool
to realize random excitations on electrodynamic shakers. The
technique has numerous advantages and just one restriction.
The PSD is a full description of the given random process only
if it is stationary and Gaussian. The first condition of being
stationary is normally checked and, if not confirmed, the FFT
simulation is abandoned. However, if the measured vibration
appears do be stationary, no check of the second condition of
being Gaussian is ever performed in engineering practice. This
is unfortunate.

Quite surprisingly, it is ignored that there might be two dif-
ferent stationary random processes with identical PSDs while
their differences are concentrated in other (not PSD) charac-
teristics. When two different time histories with the same
power spectrum are converted to the PSD format and then back
to the time history domain during shaker simulation, the in-
puts to the second stage of this conversion will be identical,
since the input is the PSD function only. This makes the out-
puts (i.e., vibration of the shaker table) the same in both cases,
while the road data prescribed were different.

In other words, any features of a vibration test specification
described by characteristics other than the PSD function will

be lost when using the FFT/IFFT simulation technique. How
important this observation is can be seen from the following
example. Figure 1 shows a time history of automobile body ver-
tical acceleration from road measurements. For these data, the
PSD characteristic has been calculated (solid curve in Figure
3), and then a common IFFT simulation procedure was imple-
mented. The resulting time history is plotted in Figure 2, and
its PSD is shown by the dotted curve in Figure 3.

Although power spectral density analyses of the road data
and the synthetic shaker signal are very close in Figure 3, the
time histories presented in Figures 1 and 2 show how errone-
ous the PSD simulation can be for this example. It is obvious
that impacts of these two excitations on vehicle structure, pas-
senger comfort, and reliability of electronic devices will be
quite different. This difference between the measured road
vibration and the shaker excitation by traditional PSD simula-
tion is due to a specific effect inherent to ground transporta-
tion and making this example typical.

When a vehicle is moving over some unusually distinctive
irregularity on the road, a high peak , exceeding average level
of vibration, occurs in the data record. A pothole is an extreme
situation of that kind. But even those roads, which are smooth
at first glance, also have rougher sections where the effect mani-
fests itself. When this happens, the time history of vehicle vi-
bration includes high spikes of random intensity. That is what
is present in the road data shown in Figure 1, but is absent in
the synthetic signal shown in Figure 2.

Although the FFT simulation is a precise reproduction of
road data frequency content (see Figure 3), some other charac-
teristics must be involved to fully describe non-Gaussian road
data. If we additionally compare the probability density func-
tion (PDF) of the road data (solid curves in Figure 4) with the
PDF of shaker excitation (dotted curves), the difference be-
tween the two signals becomes apparent in both the central PDF
section (Figure 4a) and at the tails (Figure 4b), which are shown
on a logarithmic scale. The PDF tails are specifically related
to the excessive time history peaks from Figure 1 that were not
modelled by the PSD simulation that is capable of producing
peaks with a height limited to about 4 root-mean-square (RMS)
values.

The high peaks in question are sporadic and may seem to be
isolated transient events superimposed on a stationary back-
ground vibration (see Figure 5). However, if one looks at a long
enough record of the same signal like that shown in Figure 6,
these high peaks become quite regular, and the assumption of
the vibration being stationary remains in place. Therefore, the
difference in peak behavior is attributed not to the signal be-
ing non-stationary but to the non-Gaussian nature of the sta-
tionary vibration data that should be measured properly with
sufficient record length.

This issue of simulating realistic time history peaks that are
higher than those produced by the FFT/IFFT procedure is just
one of the possible non-Gaussian scenarios. There are other
cases of non-Gaussian behavior discussed in the literature.

What Standards Say
The problem of going beyond the limits of PSD modelling

in shaker testing is not a research matter anymore but a require-
ment imposed on shaker equipment manufacturers and test
labs by the standards. The MIL-STD-810F DOD Test Method
Standard1 establishes that “care must be taken to examine field
measured response probability density for non-Gaussian be-
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havior.” (page 514.5-11)
Along with this general statement, there is a specific refer-

ence to the issue of excessive time history peaks exceeding
those generated by FFT simulation: “in particular, determine
the relationship between the measured field response data and
the laboratory replicated data relative to three sigma peak

height limiting that may be introduced in the laboratory test.”
(page 514.5-11) In another section, the Standard reads: “for in-
service measured data, the distribution may be non-Gaussian
. . . particular care must be given to inherent shaker control
system amplitude limiting, e.g., three sigma clipping.” (page
523.2-13)

The Method 514.5 Vibration of the MIL-STD-810F standard
requires test engineers to “ensure that test and analysis hard-
ware and software are appropriate when non-Gaussian distri-
butions are encountered.” (page 514.5B-4) A similar require-
ment is also present in the Method 523.2 Vibro-Acoustic/
Temperature of the same standard: “The test setup should check
the test item amplitude distribution to assure that it matches
the in-service measured amplitude distribution.” (page 523.2-
13)

The non-Gaussian issue has been also treated seriously in the
UK Defence Standard 00-35.2 Its part 5, Induced Mechanical
Environments, establishes that “Although the vibration expe-
rienced by a road vehicle is of random character, it does not
usually conform to a Gaussian distribution of amplitudes.”
(page 9) The standard warns that “the severity of the test . . .
may not in general be obtained directly from PSDs because, for
tracked and wheeled vehicles, they are unlikely to be an ad-
equate description of the environment.” (page 113)
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Figure 1. Automobile road data time history.
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Figure 2. Shaker excitation time history simulated by making use of PSD
characteristic only.

Figure 3. Power spectral densities of the road data (solid curve) and
shaker excitation (dotted curve).
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(a)

Figure 5. Two 3-second fragments of road data with excessive peaks.

Figure 6. Full time history record of 15 minutes.

Figure 4. Probability density functions of road data (solid curve) and
shaker excitation (dotted curve): a) PDF central section; b) PDF tails.
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dom vibration controller with non-Gaussian simulation (not
replication!) capabilities is now a reality. Specific non-
Gaussian parameters, such as kurtosis and skewness, can be
simulated along with PSD modelling. This could meet the re-
quirement of MIL-STD-810F cited at the end of the previous
section.

The words “autospectral density estimate with a non-
Gaussian amplitude distribution” clearly point out to the PSD-
plus-PDF simulation approach for random vibration test that
had been PSD-only in the past. On the other hand, the MIL-
STD-810F standard defines an alternative purpose for TWR:
“Waveform control strategy is not generally applicable to the
procedures of Method 514.5 Vibration. It is . . . used for con-
trol of transient or short-duration, time-varying random vibra-
tion of Method 516.5 Shock.” (page 514.5-10)

For someone who wants to obey the standards, it should be
obvious when we need non-Gaussian simulation (i.e., PSD-
plus-PDF) and when to use time waveform replication. The
answer to the question in the heading of this section is, of
course, both approaches of going beyond the limitations of the
stationary PSD/FFT technique deserve to be further developed,
each for its right purpose.

Kurtosis and Crest Factor
As discussed previously, the random vibration data pre-

scribed for shaker simulation should be examined for non-
Gaussian behavior. Any deviations from theoretical Gaussian
PDF:

must be quantified and included in the test specification in
addition to the common PSD requirement.

The principal characters describing non-Gaussian PDF fea-
tures are skewness l and kurtosis g:

governed by central moments:

of the probability density function P(x).
The Gaussian amplitude distribution (Eq. 1) is identified by

two parameters: mean value m and variance s2, where the lat-
ter coincides with the second moment M2. However, there is
no variability in PDF moments higher than the second. For the
Gaussian PDF, the skewness and kurtosis related to the third
and fourth moments are constants (l = 0, g = 3). Hence, any
other l and g values obtained for the prescribed field data
would be an indication of Gaussian model failure; i.e., a sug-
gestion about limitations on the use of the PSD/FFT approach
for random shaker testing.

Equations 2 and 3 are the theoretical definitions of kurtosis
and skewness, whereas for the given time histories, both l and
g can be calculated via instantaneous values x(iDt) of the digi-
tized data record by time averaging. Estimates for the mean and
probability distribution moments are found as follows:

and then the kurtosis and skewness are calculated by Eq. 2.
If positive and negative peaks are similar in appearance in

the time history (i.e., the PDF is symmetric with respect to the
mean value m), then kurtosis is the only additional parameter
required to describe deviations from the Gaussian model. On
the other hand, if the PDF is asymmetric, then the skewness is
nonzero, and its sign will indicate the direction in which the
PDF is skewed.

For the purpose of shaker testing, the role of kurtosis is more
important, since it is an indicator of the relative height of time
history peaks. The latter was characterized before by a crest

Typical PDF tail plots given in the UK Defence Standard 00-
35 standard (page 124) are similar to that in Figure 4b and led
to the following conclusion: “the measured data represent a
greater damage potential than Gaussian data because of their
higher probability of high amplitudes. This nonequivalence can
cause difficulties for laboratory testing, because test houses
utilize Gaussian random signal generators.” (pages 9,120)

The latter is repeated several times in more general form in
other sections of the UK standard and followed by a statement
about the necessity of appropriate shaker simulation methods:
“The non-Gaussian properties are in contrast to the character
of vibration generated in test laboratories. Consequently, spe-
cial steps may need to be taken to avoid undertesting in the
laboratory.” (page 113,129) This echoes a similar declaration
in the MIL-STD-810F standard: “To replicate an autospectral
density estimate with a non-Gaussian amplitude distribution,
specialized shaker control system software is required.” (page
523.2-13)

Non-Gaussian Simulation or Waveform Replication?
Specialized shaker control software mentioned above was

not available and none of the commercial random vibration
controllers had the word “non-Gaussian” in their setup options.
Recently the first commercial software capable of kurtosis con-
trol was introduced.3 This product development is based on
earlier research efforts4,5 but, distinct from them, is restricted
to just one parameter (kurtosis) and just one of many things that
could be achieved with this parameter. Full implementation
of non-Gaussian simulation will open much broader horizons.
This is yet to come; meanwhile, the time waveform replication
(TWR) is frequently referred to as a methodology for non-
Gaussian testing.

If a sequence of instantaneous values of the vibration pro-
cess is reproduced with the help of TWR, then any non-
Gaussian features are in place without even considering the
PDF. Such a test will be non-Gaussian, however this is not a
simulation. The TWR is only a replication of one particular
measured record. Simulation and replication are not synonyms.
The replication test is representative of a given road sample,
not of a specified road type. Only the simulation test can do
the latter.

For example, a number of PSD breakpoints are prescribed,
and the controller simulates what did not exist, namely a time
history, with as many time history samples as necessary. It is
not the same as having a single time history sample and to rep-
licate it just to have again one sample, but now on the shaker.
It is typical that the duration of shaker testing is much longer
than the length of available road records. In such a situation,
there is no other usage of TWR; i.e., replication, except rep-
etition of the same target profile many times.

In this context, the simulation approach, like the FFT/IFFT
procedure, has an advantage because an unrestricted number
of different time history samples can be obtained and joined
into a test signal of any length without repetition of the data.
It means that a certain variability of test conditions is provided
that is lacking in the circle replication of the same time his-
tory record. What we always called “random vibration testing”
was the simulation in terms of the PSD function.

Along with the realistic nonrepetitive shaker excitation,
other benefits of the FFT approach are:
• Data storage in PSD format is compact and gives a clear in-

sight into structural resonance phenomena.
• The PSD presentation easily permits averaging of measure-

ments in various conditions and enables a general test speci-
fication to be drawn up.

• The test specification can also include components originat-
ing not from real road measurements but introduced artifi-
cially as a result of previous experience.

• PSD specifications may be obtained not from road data, but
from dynamic structural analysis at the design stage.
There is no need to give up all of these benefits by recom-

mending that non-Gaussian data be treated by TWR only. A ran-
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factor, which is a ratio between the maximum absolute value
of the signal and its standard deviation s:

The crest factor values are also commonly referred as 2-
sigma, 3-sigma, 4-sigma, etc. For more detailed analysis, posi-
tive c+ = xmax (iDt)/s and negative c– = xmin (iDt)/s crest factor
values can be considered separately, resulting from the posi-
tive maximum xmax and negative minimum xmin, not from one
peak with the largest amplitude as in Eq. 5. Any notable dif-
ference between c+ and c– is a hint about the PDF being skewed
(i.e., l being not zero like the case for a Gaussian signal).

The crest factor is well known; but the kurtosis value is a
more robust characteristic, since it summarizes the effect of all
excessive peaks, which make the signal non-Gaussian. The
crest factor is not so comprehensive and takes into account only
one of the peaks – that of the largest amplitude. Furthermore,
in contrast to the kurtosis, no strict theoretical value can be
defined for the crest factor of a Gaussian process, because the
magnitude of the largest peak depends on the length of time
history sample even for the same random signal. The theoreti-
cal kurtosis value for a stationary Gaussian signal is known and
fixed (g = 3). As the kurtosis is found by time averaging (see
Eq. 4), the longer the data sample the more stable the kurtosis
estimate. This is an advantage compared to the traditional crest
factor characterization of peak behavior.

For random vibration data with excessive peaks, like the ex-
ample shown in Figure 1 and discussed previously, the kurto-
sis value appears to be higher than 3. So if a shaker simulation
method could control kurtosis in addition to the PSD and make
the shaker excitation kurtosis equal to that observed for the
field data, such an advanced non-Gaussian technique would
be capable of time-domain peak modelling, but would still be
a simulation, not a replication.

A similar approach with the crest factor (Eq. 5) as an addi-
tional control parameter is not feasible, since there is no ana-
lytical formulation for the relation between the crest factor and
FFT amplitudes and phases; neither for Gaussian nor for non-
Gaussian signals. Moreover, distinct from the mean, standard
deviation, skewness, and kurtosis, the crest factor is not a sta-
tistical parameter. It is just one of the time history instanta-
neous values that are all unpredictable by the definition of
random process.

In terms of the probability density function, kurtosis char-
acterizes the sharpness or flatness of the PDF central section
and the wideness or narrowness of the PDF tails. A kurtosis
value greater than 3 indicates a sharper central section and
wider tails (most important) than in the Gaussian PDF with the
same standard deviation s. Widening the PDF tails implies that
the probability of high peak occurrence in the time history is
larger than that predicted by the Gaussian model. For data
samples of finite length (like time blocks in traditional FFT
simulation), it means that the signal contains high peaks that
would not occur in a Gaussian time history with the same PSD.

While the kurtosis describes the PDF as a function (particu-
larly the tail behavior), the crest factor relates to just one point
on the PDF curve – its left or right limit. Crest factor is not a
probability of this limiting value but only its position on the
argument axis. This is a one more reason to use kurtosis as a
peak descriptor for random vibration simulation beyond PSD
limitations. Possible ways of how to make a shaker vibration
controller be capable of not only sigma limiting (what all com-
mercial controllers can do) but also of sigma stretching are dis-
cussed in the next section.

Methods of Non-Gaussian Simulation
Polynomial Function Transformation. The first idea that

comes to mind about how to advance from the time signal with
a certain PDF (Gaussian) to a signal with a different PDF (non-
Gaussian) is to generate a Gaussian time history in a well-
known way and then modify it somehow. This can naturally

be a functional transformation y = f(x) of the initial time his-
tory6,7,8 where each point of the Gaussian signal in a digitized
form x(iDt) is converted into a corresponding instantaneous
value of the modified signal y(iDt) that is calculated according
to the given function f(x).

The approach is simple but effective as there is an equation:

establishing the relationship between the initial P1(x) and the
resultant P2(y) probability density functions if the transforma-
tion function y = f(x) between the signals is given. This trans-
formation should be a monotonically increasing function for
Eq. 6 to be valid.

The transformation can be conveniently prescribed in poly-
nomial form:

that operates not with probability distributions P1(x) and P2(y)
themselves but with their moment characteristics: standard
deviation s; kurtosis g; and skewness l. The third-order poly-
nomial in Eq. 7 is sufficient for skewness and kurtosis manipu-
lations, and the input probability distribution P1(x) is supposed
to be Gaussian in this case.

The methodology under consideration deals with preserving
the desired PSD in the first stage of generating Gaussian input
and then provides necessary kurtosis and skewness in the sec-
ond stage of functional transformation y = f(x). Here is the
catch: the nonlinear transformation on the second stage affects
not only the PDF (that was the objective of the transformation)
but also the PSD (that is an unwanted distortion of the fre-
quency domain simulation from the first stage). In some cases
this distortion might luckily be nonessential or can be ne-
glected. This is discussed later in more detail.

If the non-Gaussian probability density function (Eq. 6) of
the polynomial transformation output y(t) is substituted into
Eq. 3 for central moments of the distribution P2(y), this results
in an integral:

where the standardized Gaussian distribution P1(x) of the trans-
formation input was taken according to Eq. 1, with the mean
mx = 0 and standard deviation sx = 1. The mean value my of
the transformation output can be found in a similar way and
then substituted into Eq. 8.

Integration in Eq. 8 results in the second M2, third M3, and
fourth M4 central moments being functions of the three poly-
nomial transformation coefficients C1, C2, and C3. However,
after substitution of the moments into Eq. 2 for skewness and
kurtosis, the number of independent variables in the polyno-
mial transformation (Eq. 7) reduces to two: a = C2/C1 and b =
C3/C1. These are the two variables the non-Gaussian shaker
controller will manipulate in the post-IFFT signal transform:

to achieve necessary skewness ly and kurtosis gy of the shaker
driving signal y(t).

The coefficients C0 and C1 in Eq. 9 have nothing to do with
the skewness and kurtosis and will be determined after a and
b are found from the desired ly and gy. Coefficient C0 should
be chosen so that the mean value of the non-Gaussian output
y(t) is zero or equal to the required DC component (if any) in
the driving signal. The role of coefficient C1 is to ensure that
the necessary standard deviation for y(t) is also met; i.e., the
voltage level of the driving signal is correct. The last two con-
ditions are common for the controller operation, no mater if
the random vibration testing is Gaussian or not.

Expressions for ly = Q(a,b) and gy = G(a,b) as functions of a
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and b appear in the form of a ratio of polynomials containing
members anbk with various powers n and k, from 0 to 6. Thus,
there is no analytical solution for a and b for the given ly and
gy. Numerical routines were used to minimize error functions:

or

and to find optimal a and b.7,9,10 If this is the case, the com-
puter code must be one that is capable of doing optimization
with constraints to make sure that the constructed transforma-
tion function is monotonically increasing.

This approach provides a polynomial transformation with
the best precision and can be recommended for generating non-
Gaussian time histories off-line. But in a shaker controller loop,
the computational time is critical and any numerical solutions
in the skewness/kurtosis control algorithm become impracti-
cal. There is another way8 of constructing the Gaussian-to-non-
Gaussian transformation function when f(x) is expressed not
as a simple polynomial (Eq. 7) but is based on Hermite poly-
nomials and then presented in the form of a truncated Taylor
series. This is approximate but gives a closed-form solution:

and a similar equation for b. The coefficients a and b then be-
come algebraic functions of skewness ly and kurtosis gy, which
the shaker driving signal must have with current iteration. The
latter is a key point in justifying usefulness of the approximate
Hermite solution ahead of a ‘precise’ numerical minimization
of functions (Eqs. 10 or 11). An explanation follows.

Simulation of specified skewness and kurtosis values in the
shaker excitation can never be achieved in one shot. As in regu-
lar FFT/PSD simulation, few iterations are needed to compen-
sate for the influence of the shaker and/or test item dynamics.
The approximate equation (Eq. 12) and another one for the
second polynomial coefficients b of the Gaussian-to-non-
Gaussian transformation (Eq. 9) work well in a shaker control-
ler. Errors in determination of a and b will be corrected in the
iterative procedure. This is unavoidable anyway as the degree
of kurtosis/skewness transformation by the shaker and test item
system is unknown. Experimental results below prove that an
approximate solution for a and b is effective.

In many cases, skewness ly of the field data PDF is negligible,
and the vibration is non-Gaussian in terms of kurtosis only,
which now becomes a single target for the polynomial trans-
formation (Eq. 9). For the output signal y(t) to be symmetric,
the transformation function y = f(x) should have no members
with even powers of x; i.e., the first of the non-Gaussian coef-
ficients a must be zero. This is clearly seen from Eq. 12 – if no
skewness; i.e., ly = 0, then a = 0. The remaining coefficient b
is a function of kurtosis only, and this equation is available to
be implemented in the shaker kurtosis controller.

Other, not polynomial, nonlinear transformation functions
are possible. One of them was constructed in piecewise form.7

This solution is actually not for the transformation y = f(x) it-
self but for its inverse function x = g(y) = f –1(y). The latter adds
to the aforementioned issue of difficulties in using numerical
routines in a shaker controller, since the transformation func-
tion f(x) is then calculated by linear interpolation.7

Moreover, the crucial difference between the approach sug-
gested in Reference 7 and this article is that the former is based
on and should be used in conjunction with the TWR, while the
latter is an alternative to waveform replication and further
develops the traditional closed-loop random simulation. Test
technicians know which of the two controller operation modes,
TWR or random PSD, is easier to set up.

Also, as noted in Reference 7, different Gaussian-to-non-
Gaussian time history transformation functions give similar
results. Noting their common and inherent tendency of intro-
ducing PSD distortions, it is worthwhile to look at another

method of non-Gaussian random vibration testing, where noth-
ing is done to the signal after the IFFT generation (i.e., the PSD
is not disturbed at all). There is a possibility4,5,11 of introduc-
ing non-Gaussian behavior in the framework of the classic IFFT
routine itself, and this is discussed in the next section.

Special Phase Selection. A serious difficulty with the poly-
nomial transformation approach is that any nonlinear function
applied to a Gaussian signal changes not only its PDF but the
PSD as well. If then the PSD is corrected back to the desired
shape by passing the non-Gaussian output signal through a lin-
ear filter, this will distort the PDF adjusted initially by the poly-
nomial transformation. Therefore, only by controlling the PSD
and PDF independently and simultaneously, not sequentially,
the best bi-domain PSD-plus-PDF random simulation can be
achieved.

The common and well-established FFT technique of
Gaussian random vibration testing is actually to use a multi-
frequency signal in the form of Fourier series with a large num-
ber of harmonics L:

The amplitudes Ak of the harmonics are determined:

according to the prescribed PSD shape S(f) and frequency in-
crement Df. To make the excitation signal (Eq. 13) somewhat
of random nature, the phase angles fk are defined as samples
of the random variable uniformly distributed in the range from
0 to 2p.

This model is perfect for digital random vibration control-
lers, because it allows one to easily correct the input PSD shape
according to the feedback acceleration signal collected from the
test item. All this convenience and sophisticated modern hard-
ware/software development for the basic iterative procedure
of controller operation can be retained when setting up non-
Gaussian simulation. Additional control of kurtosis and skew-
ness, responsible for PDF and making the shaker driving sig-
nal non-Gaussian, can be achieved without any disturbance to
the PSD. The amplitudes Ak are still determined by Eq. 14, and
many of the phases fk are prescribed randomly as before. How-
ever, some of the phases are found and fixed in a special way.

Since the number L of frequency components (or frequency
lines, as they are called in shaker controller manuals) is large
in the generated signal (Eq. 13), there are plenty of random
phases fk which make the time history of the generated non-
Gaussian process not unique (see data examples below). There-
fore, the special phase selection method, similar to the classic
Gaussian technique, can produce any required number of time
history blocks without repetition of the same data.

The method has been subjected to comprehensive and thor-
ough computer testing5 with various PSD profiles reported in
the literature for different types of vehicles. Numerical results
have shown that all non-Gaussian effects (steepness of the PDF
central section, width of the PDF tails, and height of peaks oc-
curring in the time history) can be changed continuously with
kurtosis control extended up to very high values of several tens.
This worked for different PSD shapes, and precision of PSD fit-
ting remained the same as for ordinary Gaussian techniques.

The latter confirms what was established by the theory of the
method.4 Since the power spectrum of the signal does not de-
pend on phases, any manipulations with them will not change
the PSD shape. It means that the non-Gaussian control achieved
by these manipulations is performed independently of power
spectrum control because variables in the Fourier series model
(Eq.13)  are separated – amplitudes are responsible for PSD,
phase angles for PDF. Thus, the phase selection method meets
the aforementioned objective of being a bi-domain (PSD-plus-
PDF) random simulation.

Non-Gaussian Simulation Examples
Any non-Gaussian behavior of vibration time histories can
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be simulated by the above methods. In the shaker testing area,
a case of higher than Gaussian probability at the PDF tails is
of special interest. As discussed previously, an increase in the
kurtosis of vehicle vibration indicates the occurrence of unusu-
ally high peaks in the data set. The Gaussian model covers
peaks up to some 4 RMS values (4s values). However, peaks
higher than that have been found to be typical of vibration

records measured in trucks and military trailers,12,13 automo-
biles,5,14 and aircraft.15

Polynomial Function Transformation. The first example of
non-Gaussian vibration simulation is an illustration of the
polynomial transformation method. The road data record to be
simulated was automobile vertical vibration acceleration mea-
sured on the body floor when driving on a highway at 130 km/
hour. The recording was much longer than those normally
taken for regular PSD analysis. With a sampling rate of 256 Hz,
the time history record was about 15 minutes long, resulting
in N = 230,000 data points. This is the price to pay for being
able to simulate realistic kurtosis and crest factor values ob-
served in road data. It should be taken into account that the
higher the time history peak, the less frequently it occurs.
Therefore, longer data records are necessary to have represen-
tative statistical material about the high peaks and to calculate
the experimental PDF tails properly.

The PSD and PDF obtained for the road data under consid-
eration are depicted by solid curves in Figures 7 and 8. Note
widening of the PDF tails compared to those of the regular
Gaussian shaker excitation whose PDF is shown in Figure 8a
by the dotted curve. The road data kurtosis value was g = 4.7
(notably larger than g = 3 for a Gaussian signal) and the crest
factor c = 10.2 was more than twice the Gaussian value for such
a record length. The skewness value was mild (l = –0.18).

Initially, the traditional FFT simulation procedure for com-
mercial random controllers was implemented and the shaker
excitation PSD, shown by the dotted curve in Figure 7, ap-
peared to be very close to the road data PSD. But similar to what
was discussed previously, there were no realistic excessive
peaks in the Gaussian shaker vibration time history (compare
Figures 9 and 10) and the PDF tails for the road and shaker data
were different (see Figure 8a).

Then, the FFT-generated time histories with the fitted PSD
were subjected to polynomial transformation (Eq. 9) with the
coefficient a found by Eq. 12 and the coefficient b by a similar
equation providing the desired kurtosis and skewness values.
Since the non-Gaussian time histories obtained in this way had
somewhat lower crest factors and generally less severe peaks,
further increase of the shaker excitation kurtosis was required.

The final result of the non-Gaussian simulation is shown in
Figure 11. Comparison of this time history with the road record
in Figure 9 and with what can be achieved by the Gaussian FFT
procedure (Figure 10) leads to an obvious conclusion. Also, the
shaker excitation PDF (dotted curve in Figure 8b) is now very
close to the road data PDF in contrast to the probability distri-
bution results of the traditional Gaussian technique in Figure
8a. The most important accomplishment is that the shaker ex-
citation is similar to the road record, but not a replication of
it. Any number of different time history data samples, all
equally close to the road time history (see Figure 12), can be
obtained by the same polynomial transformation applied to
common Gaussian time blocks generated by a conventional ran-
dom vibration controller for the given PSD.

Special Phase Selection. The next example is also for auto-
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Figure 9. Time history of road data.
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Figure 10. Gaussian FFT simulation time history.
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mobile vibration simulation, particularly that shown in Figure
1 and discussed earlier. The road was rougher than in the pre-
vious example, so the peaks in the time history were more se-
vere compared to the Gaussian shaker excitation (Figure 2),
which can be generated by a commercial random vibration
controller in terms of PSD. For this example the phase selec-
tion method was implemented. Figures 13 and 14 illustrate the
closeness of the non-Gaussian shaker excitation time history
to the road data record, contrary to what is seen in Figures 1
and 2. The phase method can be set up to model not only kur-
tosis but also skewness and this was demonstrated in Reference
16.

Comparison with Time Waveform Replication. The results
in the previous two sections show that simulation of non-
Gaussian high peaks in a vibration time history can be achieved
by kurtosis control with the help of the methods discussed. If
the TWR is used for the same purpose, the difference is that
with the replication of the field record, nothing else except this
particular record can be seen on the shaker. However, this
record will never be exactly repeated if the vehicle is driven
again over the same road section, not to mention another sec-
tion of road of even the same type.

Such a situation is shown in Figure 15a, where 20 data
records obtained in 20 runs over the same road section are

Figure 12. Different time history samples obtained for non-Gaussian
simulation by the polynomial transformation.
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Figure 13. Time history of road data.

Figure 14. Non-Gaussian simulation with special phase selection.

Figure 15. Time histories: a) road data encompassing 20 test runs; b)
TWR testing if softest road run is used; c) TWR testing if most severe
road run is used.

joined together. These runs were supposed to be identical, but
actually this is not the case. The combined time history dem-
onstrates clearly that there is an inherent variability that is lost
if we utilize a common TWR practice – when someone has a
field record but needs a test 20-times longer, he simply plays
the record 20 times and gets what is shown in Figures 15b and
15c.

If the record captured on the road is something intermedi-
ate compared to the other 19 records that actually exist but were
not measured, then this results only in the loss of variability.
However, the worst happens if the field record used in the TWR
was actually the softest (Figure 15b) or the most severe (Fig-
ure 15c) ride. These will be the cases of under- or over-testing
with unpleasant consequences for the test engineer.

Traditional random testing by FFT simulation certainly pro-
vides variability. But if the original field data is different from
Gaussian, like the example under consideration, then the ben-
efit of having variability is definitely not a sufficient compen-
sation for differences in the behavior of time history peaks in
Figures 16a and 16b (both in peak height and asymmetry). The
answer to the problem is non-Gaussian simulation. A combi-
nation of the special phase selection method and polynomial
transformation was used to produce the 20-times longer non-
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Figure 16. Time histories: a) road data encompassing 20 test runs; b)
Gaussian FFT simulation; c) non-Gaussian shaker simulation. Figure 17. PSDs of acceleration feedback for non-Gaussian shaker simu-

lation with kurtosis γ=6: a) second iteration; b) third iteration; c) fifth
iteration.

Figure 18. Time histories of acceleration feedback signal for non-
Gaussian simulation by the polynomial transformation method: a)
Kurtosis γ=3; b) Kurtosis γ=6; c) Kurtosis γ=9.

Gaussian simulated time history depicted in Figure 16c.
First the phase selection was implemented to achieve quasi-

periodicity of run repetitions seen in the original combined
record in Figure 16a. Then the polynomial transformation
added necessary skewness to make negative peaks higher then
positive like in the road record. As a result, high peaks absent
in the FFT simulation are now present in the shaker vibration.
Their height, which would be constant with the TWR, varies
realistically from frame to frame. This can be continued for any
number of time frames with each representing another road
run.

Experimental Results
The non-Gaussian numerical simulation examples shown in

the previous section demonstrate how a time history with a
specified PSD, kurtosis, and skewness can be generated. It re-
mains to decide what this time history is supposed to be: the
driving signal or the output feedback signal from an acceler-
ometer. If it’s the latter (as in Reference 7), then, after convert-
ing the non-Gaussian kurtosis/skewness behavior into the time
domain, there is no other way of actually reproducing it on the
shaker except TWR.

But what if we do not hurry with converting the specified
kurtosis value into a non-Gaussian acceleration time history,
but first control and adjust the kurtosis for the driving signal
so that the output kurtosis is equal to the specified value. This
is exactly what a commercial random FFT controller is doing
with the PSD, because the input and output PSDs are different
due to system dynamics. The same occurs with kurtosis. It
changes for the acceleration feedback signal compared to that
of the driving signal, as does the skewness.

There is no need in TWR to experimentally implement the
non-Gaussian methods of polynomial transformation or special
phase selection. Kurtosis and skewness of the shaker driving
signal can be considered and included in the iteration proce-
dure simultaneously with the PSD. This has already been re-
alized successfully with the phase selection method.5 Now the
polynomial transformation method is used as well and the re-
sults are reported below.

An approximation for a (Eq. 12) and another equation for the
second coefficient b of the polynomial transformation (Eq. 9)
were used rather than a numerical minimization of Eqs. 10 or
11 for reasons discussed earlier. Any use of numerical routines
to exercise a kurtosis iteration would inevitably slow down the
controller operation. Actually there is no need to refine the ap-
proximate values for the driving signal kurtosis. The iterative
procedure was able to compensate for any kurtosis errors in the
driving signal by increasing or decreasing the target kurtosis
value for the next iteration.

No Resonances of Shaker Armature and Test Item. Before
looking at non-Gaussian behavior, we need to check how kur-
tosis addition affects a traditional PSD simulation. Figure 17
shows that the PSD iterations look familiar with the accelera-
tion feedback PSD gradually approaching the triangle target
profile depicted by the dotted curve (exactly like the one for
no kurtosis). These experimental results are for where kurto-
sis g = 6, but the same frequency domain precision was ob-
served in two other experiments where g = 9 and g = 3 (the

Gaussian case). However there were dramatic differences be-
tween all three experiments when the time domain and the
probability distribution domain results are examined.

It took two iterations for the kurtosis to stabilize. Depend-
ing on the target kurtosis value (3, 6, or 9), the time histories
of the acceleration feedback (Figure 18) demonstrate different
peak behavior with crest factors of c = 3.6, c = 7.5, and c = 9.8,
respectively. To emphasize differences in crest factor, the ver-
tical axis is non-dimensional to represent the ratio between
actual acceleration values and the overall standard deviation
in m/s2 for the entire time history record.

It might be hard to believe but all three time histories shown
in Figure 18 have the same standard deviation and are charac-
terized by the same PSD. These time history plots show the
difference between the Gaussian and non-Gaussian random
vibrations that was always overlooked. In terms of probability
distributions, particularly with PDFs depicted on the logarith-
mic vertical scale (see Figure 19), the difference between prob-
abilities of certain s levels can be seen.

In the Gaussian experiment, the probability of 0.0003 corre-
sponds to 3.6s time history values (Figure 19a) and these s
amplitudes cannot be set for higher probability of occurrence
with the help of a Gaussian controller. Using a non-Gaussian
random controller, a test engineer would be able to raise this
probability 14 times by prescribing a kurtosis of 6. When do-
ing so, the probability of 0.0003 will correspond now to 5.6s
values (Figure 19b). If the kurtosis value is further increased
from g = 6 to g = 9 (Figure 19c), the probability of 5.6s time
history values also increases 2.5 times more than for kurtosis

Figure 19. PDFs of acceleration feedback signal (solid curve) for non-
Gaussian shaker simulation by the polynomial transformation method
(theoretical Gaussian PDF is shown by dotted curve: a) Kurtosis γ=3; b)
Kurtosis γ=6; c) Kurtosis γ=9.

100 200 300 400

(c)

100 200 300 400
Frequency, Hz

(b)

100 200 300 400

(a)

P
S

D
, m

2 /
s3  

x 
10

–5

16

0

4

8

12

0 1 2 3 4

(c)

0 1 2 3 4
Time, s

(b)

0 1 2 3 4
-10

-6

-2

2

6

10

A
cc

el
er

at
io

n/
s

 

(a)

-10 -6 -2 2 6 10

(c)

-10 -6 -2 2 6 10
Non-dimensional argument  x/σ

(b)

-10 -6 -2 2 6 100.00001

0.0001

0.001

0.01

0.1

1.0
P

D
F

(a)



20 SOUND AND VIBRATION/SEPTEMBER 2006

Figure 23. Acceleration PSDs with a resonance of the test item (kurto-
sis γ=6 – thin curve, kurtosis γ=9 – thick curve, and triangle target PSD
profile – dotted line): a) polynomial transformation method; b) special
phase selection method.

Figure 20. Gaussian simulation for a test item with a resonance; PSDs
of acceleration feedback (solid curve) and triangle target PSD profile
(dotted curve): a) first iteration; b) second iteration; c) third iteration.

Figure 21. Non-Gaussian simulation (kurtosis γ=6) by the polynomial
transformation method; PSDs of acceleration feedback with an un-
wanted resonance of the test item at 450 Hz: a) second iteration; b)
fourth iteration; c) sixth iteration.

Figure 22. Non-Gaussian simulation (kurtosis γ=6); PSDs of the driv-
ing signal before (thin curve) and after (thick curve) polynomial trans-
formation: a) second iteration; b) fourth iteration; c) sixth iteration.

g = 6 and so on. The horizontal axes in Figures 19 are non-di-
mensional after dividing real acceleration values by the stan-
dard deviation s. Note in Figure 19 that with the kurtosis in-
crease, the PDF tails become not only wider but also longer.

Resonance of Test Item in the Excitation Frequency Inter-
val. The non-Gaussian method of polynomial transformation
worked well, but this was with no resonances of the shaker/
(test item)/fixture system in the frequency interval of the speci-
fied PSD profile. When the same triangle profile was shifted
by 150 Hz to higher frequencies, it covered a resonance at about
450 Hz. This is seen in Figure 20a showing the PSD of the ac-
celeration feedback on the first iteration made with the uni-
form PSD of the driving signal. This resonance was quickly
reduced when the Gaussian PSD control was used (Figures 20b
and 20c).

Starting from the third iteration of the Gaussian experiment,
the feedback PSD shape was perfect (Figure 20c). However, this
was not the case when a non-Gaussian test specification with
kurtosis γ = 6 and the same PSD profile was tried. The reso-
nance at the right slope of the profile remained at an unaccept-
able level no matter how many iterations were carried out (Fig-
ures 21). The controller was trying to reduce this resonance and
this can be seen from the driving signal PSDs (Figures 22).

The excitation PSD level at the resonance frequency (thin
curve in Figures 22 a,b,c) was further decreased on each next
iteration of FFT control in response to the feedback peaks
higher than the PSD profile value at 450 Hz (see Figure 21).
Why the resonance peak stayed is clear from the thick curve
in Figures 22 a,b,c that is the PSD of the non-Gaussian driving
signal obtained by the polynomial transformation method.
Because of nonlinear distortions, the PSD of an IFFT-generated
input acquires uncontrollable noise that is much larger (see
thick curves) than the value prescribed by the controller feed-
back loop (thin curves). Note that the polynomial transforma-
tion output (thick curve) remains the same on all iterations (sec-
ond, then fourth, then six), not reacting to the controller making
the target input PSD smaller and smaller.

The aforementioned behavior at the resonance is typical for
the polynomial (or any other) nonlinear transformation method

and restricts its use to no resonance cases or very mild kurto-
sis values. When the target kurtosis value was raised from γ =
6 to γ = 9, the height of the uncontrollable resonance peak in-
creased dramatically (see Figure 23a). This is because more PSD
distortions resulted from further increase of the PSD noise level
present in the shaker driving signal near the resonance fre-
quency. Nothing like this happens with the special phase se-
lection method.

Regardless of the target kurtosis value, the special phase se-
lection method, when implemented in the same experiment
with resonance, provided a perfect fit of the acceleration feed-
back PSD (Figure 23b). Note that, with the polynomial trans-
formation method, some extra kurtosis value was always
needed for the drive signal (thin curves with square points in
Figures 24a and b), and it took three iterations to achieve the
target kurtosis value for the acceleration feedback (thick curves
with circle points). For the phase selection method (Figure
24c), the kurtosis of the drive and feedback are close, and the
target value is actually achieved on the first iteration. A
Gaussian simulation with the same PSD is shown in Figure 24
as a zero iteration for comparison.

Conclusions from Experiments. Based on the results of the
experiments discussed, it can be concluded that the polyno-
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Figure 24. Kurtosis control process (drive signal kurtosis – thin curve,
acceleration feedback kurtosis – thick curve, target kurtosis – dotted
line): a) polynomial transformation for target kurtosis γ=6; b) polyno-
mial transformation for target kurtosis γ=9; c) special phase selection
method for kurtosis γ=9.

mial (or any other nonlinear) transformation method is easier
to use. For mild non-Gaussian deviations, it is quite useful, be-
cause PSD distortions are not essential and simplicity becomes
the main consideration. However difficulties arise not only
with stronger non-Gaussian requirements in the test specifica-
tion, but also if any resonances of the test object or the shaker
armature are present in the excitation frequency band.

The polynomial method manages resonances badly. It can-
not achieve low enough PSD levels for the driving signal at
resonance frequencies, because the polynomial transformation
of harmonic components causes nonlinear distortions at all

 0

 5

10

15

20

25

K
u

rt
o

si
s

(c)

0 1 2 3 4 5
Iteration Number

 0

 5

10

15

20

25

K
u

rt
o

si
s

(b)

0 1 2 3 4 5
Iteration Number

 0

 5

10

15

20

25

K
u

rt
o

si
s

0 1 2 3 4 5
Iteration Number

(a)

� �
� � ��

�
� � �

frequencies. There is no such difficulty with the special phase
selection method, since the parameters used for kurtosis con-
trol (the phases) have no effect on the PSD and the frequency
domain specification is not affected by additional non-
Gaussian simulation.
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