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When modal testing a structure for model validation, free 
boundary conditions are frequently approximated in the lab to 
compare with free boundary-condition analyses. Free conditions 
are used because they are normally easy to simulate analytically 
and easier to approximate experimentally than boundary condi-
tions with fixed conditions. However, the free conditions can 
only be approximated in the lab, because the structure must be 
supported in some manner. This article investigates and quanti-
fies the effects of the support conditions on both the measured 
modal frequencies and damping factors. The investigation has 
determined that the measured modal damping is significantly 
more sensitive to the support system (stiffness and damping) than 
the measured modal frequency. Included in the article are simple 
formulas that can be used to predict the effect on measured modal 
parameters given the support stiffness and damping.

Modal testing is frequently used to validate the accuracy of struc-
tural dynamic models. Modal tests are performed on a structure to 
measure the modal frequencies, damping factors, and mode shapes. 
However during the modal test, a structure must be supported in 
some manner by the surrounding environment. Very frequently, 
free boundary conditions are the desired support conditions for 
comparison with computational results. Free conditions can only 
be approximated in the lab using soft supports, but the stiffness and 
damping of these added supports will affect the modal parameters 
of the combined structural system. A required part of pre-test plan-
ning is to design the support system to minimally affect the modal 
parameters. Obviously, one can include a model of the support 
system as part of the overall system model, and sometimes that 
is required due to compromises involved in the support system 
design. But one would like to be able to calculate the effects of the 
support system on the modal parameters to determine whether the 
effects are negligible or need to be accounted for.

One of the primary objectives of this article is to derive fairly 
simple formulas and rules of thumb by which one can calculate 
the effect of the support conditions on the measured modal fre-
quencies and damping factors so that appropriate support design 
can be performed before the test. The formulas and the effects of 
poor support conditions are also illustrated with results from two 
different modal tests. 

Historically, there has been concern for support stiffness and its 
effect on measured modal frequencies. Bisplinghoff, Ashley and 
Halfman1 discuss the effects of support stiffness and mass on the 
modal frequencies, based on results of Rayleigh.2 Wolf3 discusses 
the effects of support stiffness with regard to modal testing of 
automotive bodies. He reports that the rule of thumb to simulate 
free boundary conditions is to design the support system so that 
the rigid-body modes, that is, the modes that would be at zero 
frequency except for the support conditions, are no more than 
one-tenth the frequency of the lowest elastic mode. But it is seldom 
possible to achieve this separation for vehicle tests. He states that 
test engineers frequently use a 1:3 to 1:5 separation ratio between 
the rigid-body modes and the lowest elastic mode. Wolf shows that 
such stiff supports can lead to significant errors in the measured 

modal frequencies. One of the current authors discussed support 
conditions in an earlier work,4 and this article expands on that 
work with additional theoretical results and illustrates the theory 
with experiments and modeling. In his second edition of Modal 
Testing,5 Ewins briefly discusses the issue of location of suspen-
sions for free boundary conditions in the test planning chapter. 
More recently, Brillhart and Hunt presented an exposition of many 
of the practical difficulties involved in designing good fixtures for 
a modal test,6 and Avitabile briefly discussed this issue in a “Back 
to Basics” article.7

In this article our primary emphasis here was to develop some 
quantitative measures of the effect of the support conditions on 
the modal frequencies and the modal damping ratios. Most finite-
element models could include the support stiffnesses and masses 
in the model, thus taking into account those effects. However, 
structural dynamic models often do not initially include damping, 
but use the measured modal damping ratios from a test to create a 
model, including damping. There is typically no validation of the 
damping model; it is taken directly from the test with the support 
conditions included. Consequently, one must be concerned with 
how the support conditions affect the measured damping. The 
remainder of this article is divided into four primary sections. In 
the first section, simple formulas are derived for a two degree-of-
freedom system. These formulas are simplistic, but can be used 
to derive rules of thumb and also easily illustrate the severity of 
the problem. The next section develops approximate formulas for 
the multi-degree-of-freedom problem that can be used for general 
structures. The last two sections further illustrate both the problem 
and the theory with some example modal tests, first from a very 
lightly damped uniform beam and second with a wind turbine 
blade that required a modal test for model validation and damp-
ing determination.

The Two Degree-of-Freedom System
Perhaps the best way to develop an understanding of the effects 

of support conditions is to examine a two degree-of-freedom (DOF) 
system. Wolf3 also analyzed a two DOF system, but we examine 
a somewhat different system that also includes damping. Let us 
consider a simple model, pictured in Figure 1, of an unconstrained 
structure (free boundary conditions), consisting of two masses 
connected by a linear spring and a viscous damper with motion 
restricted to a single direction.

We could add support conditions in several ways, but let us add 
them symmetrically as diagrammed in Figure 2. In these figures, the 
t subscript designates parameters for the true system, while the s 
subscript designates the added support stiffness and damping. One 
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Figure 1. Freely supported two DOF system.
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Figure 2. Two DOF system with added support stiffness and damping.
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could write down the equations of motions for this simple system, 
but using the symmetry, the modal parameters can be solved by 
inspection. There are two modes for this system f1 = [1 1]T and f2 
= [1 –1]T. The first mode is referred to as the support mode or the 
rigid-body mode, because there is no deformation in the original 
structure (Figure 1). The second mode is the elastic mode, because 
it involves elastic deformation of the original structure. The un-
damped natural frequencies for the two modes are:

 
where ws indicates the mode due to the support system while wm 
indicates the mode of the measured system including the support. 
Similarly, the damping factors can be derived from inspection 
and are:

Following Wolf’s example,3 we now define symbols for the true 
natural frequency and damping factor of the structure if it had no 
supports as:

Combining Equations 1 and 3a, we find a very simple and easily 
remembered expression relating the measured frequency wm to the 
true frequency wt and the support frequency ws:

Or the true frequency can be expressed as:

And if ws/wm << 1.0, then:

From Equation 6, it is easy to see the effect of added support 
stiffness on the measured frequency of the test item. If the sup-
port stiffness is such that the ratio of the rigid-body frequency ws 
to the measured frequency wm is 1:10; then the true frequency 
would be approximately one half of 1 percent different from the 
measured frequency. So the 1:10 ratio is a good rule of thumb for 
most applications for reasonable accuracy. However, if the ratio 
were 1:3 as discussed by Wolf, then the error would be over 5 
percent, which generally would be unacceptable. Wolf shows a 
case where the error would be even as large as 15 percent for a 
different dynamic system. Wolf’s example illustrates where this 
simple rule of thumb, Equation 5, is just that, a very simplistic 
approximation. For example, envision supporting a horizontal 
beam with two vertical, soft bungee cords and wanting to measure 
the first bending mode of the beam. If the supports are attached 
at the extreme ends of the beam, then the supports would have 
a much greater effect on that modal frequency. In fact, the effect 
would be four times greater than that shown in Equation 5. One 
would need to insert the multiplier of 4.0 in front of the ws term. 
In contrast, if the supports are attached at the node points of the 
bending mode, then the supports would have zero effect on that 
particular modal frequency. 

Let us now turn our attention to the measured damping ratio. 
Following the example of the frequency analysis above, combin-
ing Equations 2 and 3b, we find another simple formula relating 
the damping factors:

The above expression can now be solved for the true damping ratio 
in terms of the measured and rigid-body damping ratios:

This expression is similar to Equation 5 (frequencies), except that 
the frequency ratio inside the brackets is no longer squared, and 
it is also multiplied by the ratio of the damping ratios. So if we 
have a frequency ratio of 1:10, as the rule of thumb suggests, and 

if the support and measured damping ratios zs and zm are equal; 
then there would be a 10 percent error if the true damping was 
assumed equal to the measured damping. 

However, suppose now we are testing a moderately damped 
structure, the frequency ratio is still 1:10, but the support damp-
ing is 5 percent and the measured damping is 1 percent. Now 
the ratio of dampings in the bracket is 5.0 and has a large effect. 
The true damping would only be 0.5 percent, so one would have 
a 100 percent error if one assumed the measured damping was 
the true damping. Lastly, let us now consider the case where 
the frequency ratio is 1:3. If the true damping ratio is again 0.5 
percent and the support damping ratio is 5 percent, then the 
measured damping ratio would be 2.59 percent, resulting in 
400 percent error if one assumed the measured damping was 
the true damping. 

 From these examples and Equation 7, the situation for the 
measured damping ratios is different from that for the measured 
modal frequencies. An assumption that the true damping ratio is 
the same as the measured damping ratio can result in huge errors as 
compared to those for the modal frequencies. Unfortunately, many 
finite-element models do not include damping, and frequently, 
test-derived modal damping is used in the model to create the 
damping model.

Now, there is one saving factor in measuring modal damping. 
The viscous damping model (one that is independent of frequency) 
is frequently not a good model for many support structures, in-
cluding bungee cords and airbags. Damping in materials and the 
estimation of damping models has been the subject of many papers, 
just a few have been referenced here,8-11 since examining damp-
ing models is beyond the scope of this work. But many authors 
would use a structural or solid damping model, at least in part, 
to model damping. Using structural damping, the damping force 
in the differential equation is modeled by an imaginary structural 
damping coefficient g  times the stiffness times the displacement, 
rather than the viscous damping coefficient c times the velocity. 
So the damping force is    times the displacement, rather 
than c times the velocity. Using the structural damping model, 
then the typically measured viscous damping factor z at the reso-
nant frequency is approximately equal to g/2.12 And Equation 7, 
which relates the viscous damping factors, would be modified if 
structural damping models are used instead of viscous damping 
models. The measured structural damping coefficient gm can be 
expressed as a weighted sum of the support damping gs and the 
true damping gt as:

Note that structural damping elements do not add in the same 
way as viscous damping elements. Dividing the numerator and 
denominator of the fraction in Equation 9 by the mass, we obtain 
a relationship similar in form to Equation 7 but significantly dif-
ferent due to the squares of the frequencies:

This expression can be solved for the true structural damping in 
terms of the measured and support damping coefficients:

This equation is much more forgiving of the support system 
damping than Equation 8, due to the squares of the frequency 
ratio. Also, recall that the viscous damping factor z at the reso-
nant frequency is approximately equal to g/2.12 For example, 
suppose we are again testing a moderately damped structure 
and the frequency ratio is still 1:10, but the structural support 
damping is five times that of the structural measured damping, 
then the measured damping would contain only a 5 percent er-
ror as compared to the true damping. In the extreme case, when 
the frequency ratio is 1:3 and the support damping is five times 
that of the measured structure, then the measured damping is 50 
percent in error and would be unacceptable but not nearly as bad 
as the viscous damping model. Even for this structural damping 
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model, one can still vastly overestimate the modal damping in a 
structure if the true damping is exceptionally small, as we will 
see later in this article. So, for applications with low damping, 
one must be particularly attentive to the added support damping 
regardless of the model.

The Multi-Degree-of-Freedom System
In this section, the multi-DOF problem will be examined to derive 

formulas similar to those above. Typically, we are only concerned 
with the lowest mode of the dynamic system, because it will be 
most affected by the support system. So one might think that the 
single DOF model should be sufficient, and that is frequently true. 
However with a multi-DOF system, the placement of the supports 
relative to the mode shape can be included. That is a very important 
aspect of the support problem. We alluded to this aspect somewhat 
in the previous section by mentioning that, for a beam, the frequency 
shift depended whether the supports were attached at the beam ends 
or the nodes of the first mode. If the supports were attached at the 
beam extremities, the effect of the support conditions was four times 
that which the single DOF formulas provided; and if attached at the 
nodes of the mode, then the effects reduced to zero.

Let us first examine the real eigenvalue problem for the multi-
DOF system that yields the eigen or modal frequencies and compute 
the change in a particular modal frequency wp due to a small change 
in the stiffness matrix K:

The easiest procedure is to take the partial derivative of Equation 
12 with respect to just one support stiffness, say kii. This would 
be on the diagonal of the matrix, because the support stiffness is 
to ground. Using established formulas for the derivative, (see for 
example Ref. 5, page 152, Equation 2.165), after a few simplifica-
tions, we find:

Equation 13 assumes we have mass normalized modes. Now, we 
can let the stiffness matrix for this system be equal to the true 
stiffness Kt plus the support stiffness Ks, where the kii parameter 
only appears in the Ks matrix. Then the partial derivative of K 
with respect to kii would just be a matrix with all zeros, except at 
position i on the diagonal, where it would be unity. Using this in 
Equation 13, we find:

where the superscript i indicates the ith component of the vector. 
With this relationship for the partial derivative, we can now ap-
proximate the change in modal frequency due to the addition of a 
support stiffness Dkii by:

This formula for the change in frequency is quite simple, and it 
is straightforward to evaluate using the stiffness of the support 
system. With more than one support element, one would simply 
add the contributions from the elements, including rotational 
constraints as well. Comparing Equation 15 with 6, the result for 
the multi-DOF case reduces exactly to that of the single-DOF case, 
remembering that the mode shape has been mass normalized. Also 
note that the square of wp is in the denominator on the right-hand 
side of Equation 15. So at higher modal frequencies, Dwp/wp varies 
proportionally as (1/wp)2.

We can now turn to the issue of damping in a supported struc-
ture. For the support damping, the situation is more complicated 
than for the modal frequency, because one will typically not have an 
analytical model of the damping in the structure. But the issue is the 
same as for the stiffness, given a measurement of the damping for a 
particular mode. How can we determine the change in the modal 
damping due to the support system? We will show in the following 
analysis that we can compute an approximation to the change in 
modal damping if the support system makes a negligible change 

to the mode shape of the structure; and we have the mode shape 
components at the support connections and a damping model for 
the support system. Let us now look at the complex eigenvalue 
equation for a particular mode of the system:

where we have pre-multiplied by the transpose of that mode shape 
y. K is the total stiffness matrix, wm is the measured eigenvalue, i 
is  , Ct is the damping matrix for the true structure and Cs is that 
for the support structure. Now let us assume that the mode shape 
from the real eigenvalue problem can be used in Equation 16 to 
evaluate the damping in a mode. This basically assumes that the 
diagonal elements of    adequately reflect the damping in the 
system and that the off-diagonal terms can be ignored. Also implied 
in this assumption is that the mode shape changes negligibly with 
the addition of the support damping. The damping ratio is now 
defined conventionally as if the real modes did indeed diagonalize 
the damped system:

Now we can define the true modal damping as before:

Expand Equation 17 and combine with 18, taking the mode shape 
to be mass normalized, we have:

which is very similar to Equation 7 derived for the single DOF 
system. Here the contribution due to the support damping has 
just been generalized to include the mode shapes. Solving for zt, 
we find:

This formula for the true damping ratio as the frequency formula, 
Equation 15, is a fairly simple expression. Given the measured 
modal damping, the measured modal frequency, the mode shape 
components at the support DOFs, and the damping model, the 
true damping ratio of the unsupported structure can be calculated. 
Equation 20 can also be compared to Eauation 8 for the single 
DOF case. Again, these equations are very similar, and Equation 
20 reduces to Equation 8 for the single DOF case. 

Equation 20 reveals some important features, just as Equation 8 
did. Because the quantity in the brackets is the difference between 
one and a positive number, the difference between the true damp-
ing ratio and the measured damping ratio can be significant if the 
last term in the brackets is not close to zero.

Experimental Application – Uniform Beam
In this section, an experimental demonstration of these issues 

involving the support system is described. An extremely lightly 
damped system was chosen for the experiment to highlight the 
effects of the support system on the measured damping as well 
as measured frequency. To achieve the light damping, a 72-inch 
aluminum beam with a 1.0- by 1.5-inch cross-section was selected. 
The supports were placed at the ends of beam, the optimal loca-
tions for creating a change. Seven light-weight accelerometers 
were mounted at equal spacing on the beam to measure the mode 
shapes, although we were only interested in the first bending 
mode and the rigid-body bounce mode. The supports were very 
thin, long elastic cords attached at the ends; and the lengths of 
the cords were varied. Figure 3 shows a photo of the beam with 
its elastic supports.

The length of the elastic cords was varied with modal tests 
performed for eight different length configurations. Along with 
the first bending mode, the frequency and damping of the bounce 
mode were also measured for each configuration to ascertain the 
support stiffness and damping. Preliminary to these eight hori-
zontally supported tests, one test was conducted with the beam 
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suspended vertically from a very long pendulum support at just 
one end. The pendulum frequency (lateral mode) was exceptionally 
low compared to the first bending mode to truly simulate a free 
support. This test condition was assumed to be the ideal condition 
from which all other test data would be compared. In this vertical 
suspension, the beam frequency was 58.6 Hz with 0.066 percent 
of critical damping. As mentioned earlier, the beam was very 
lightly damped, and the seven accelerometer cables actually did 
contribute to the nominal damping. Special care was taken so that 
the instrumentation cables and their lengths remained constant for 
all testing. The measured data from these nine tests are shown in 
Table 1, with the frequencies and dampings for the bounce mode 
and the first bending mode. The modal parameters were estimated 
using a frequency-domain, narrow-band algorithm. Included in the 
chart are the changes in the frequencies and dampings for each 
configuration as compared to the nominal data.

Examining the first column of the chart, one can see that the 
bounce frequency (support frequency) increased from 2.31 Hz to 
8.65 Hz, so the frequency ratio decreased from 25 to 7. And we see 
an increase of 2.9 Hz (5 percent) in the frequency of the bending 
mode for the stiffest support condition. We can calculate the sup-
port stiffness because we have measured the bounce frequency, and 
along with the bending mode shape, we can apply Equation 15 to 
compute the predicted changes in measured frequency due to the 
support stiffnesses. Figure 4 plots the computed results versus the 
observed results as recorded in Table 1. The frequency changes are 
plotted as a function of the ratio of the elastic mode to the rigid-
body bounce mode of the beam. As predicted from the theory, the 
change in the measured frequency diminishes as the ratio increases. 
Although here, one needs a ratio of approximately 15 before the 
frequency change drops below 1 percent. The predicted changes 
using Equation 15 follow the observed changes quite well. Recall 
that Equation 15 shows only the first-order effects, so there would 
be some differences. Equation 15 also assumes the support stiffness 
is not a function of frequency.

Figure 5 plots the change in the measured damping as a percent 
of the nominal damping versus the frequency ratio. Even for the 
highest frequency ratio of 25, there is a 100 percent change in 
the measured damping. In contrast to the changes in measured 
frequency, the measured damping for the bending mode has in-
creased dramatically as the support has increased its stiffness and 
damping. For the worst case, the measured damping is 15 times 
that of the true damping (1400 percent increase). Of course, the 

changes in damping have been intentionally amplified in this test 
because the beam structure was chosen to be very lightly damped. 
Nevertheless, these results do show how sensitive the measured 
damping can be to the support conditions. Even with supports 
designed using the rule of-thumb (frequency ratio = 10), the error 
in the measured damping can be huge. 

One would like to contrast these observed changes in the 
measured modal damping to predicted changes using Equation 
20. However upon application of Equation 20 using the viscous 
damping determined from the rigid-body modes, the predicted 
changes in damping vastly over-predicted the observed changes 
by factors of 5 to 10, convincing one that the viscous damping 

Figure 3. Photo of lightly damped aluminum beam with variable-length 
elastic supports.

Table 1. Measured frequency and damping data for the beam with variable support conditions.

 Bounce Mode First Bending Mode
 Frequency, Damping Factor, Frequency, Damping Factor, Increase in Bending Frequency, Increase in Bending Damping Factor
 Hz % of critical Hz % of Critical Hz % % of critical % of damping

 0.32 (pendulum) ~ 0 58.6 0.066    
 2.31 3.7 58.7 0.13 0.1 0.2 0.06 90
 3.09 4.3 58.8 0.18 0.2 0.4 0.11 170
 3.43 4.5 58.9 0.21 0.3 0.6 0.14 220
 3.81 4.3 59.0 0.21 0.4 0.8 0.14 220
 4.41 6.7 59.2 0.26 0.6 1.0 0.19 300
 5.31 8.6 59.6 0.33 1.0 1.7 0.26 400
 6.96 11.7 60.5 0.53 1.9 3.1 0.46 700
 8.65 13.2 61.5 1.00 2.9 5.0 0.93 1400

Figure 4. Comparison of the observed changes in modal frequency versus 
predicted changes using Equation (15).

Figure 5. Observed changes in modal damping as a function of the fre-
quency ratio.
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model was inappropriate for the supports. But upon application of 
Equation 11, the predicted changes were much smaller than those 
observed. Consequently, it is believed that the damping model 
for the supports should be a combination of both viscous and 
structural damping. Unfortunately, measurement of the damping 
at the rigid-body modal frequency does not provide sufficient data 
to fully characterize the support damping, so a comparison with 
predictions is not possible.

This test of a lightly damped uniform beam provides some 
interesting insights into support issues. It clearly shows the ef-
fect of the support stiffness on the measured modal frequency 
and the error that could result if one assumed the measured 
frequency was the true frequency. The formulas derived in the 
theory section adequately predict the observed changes in the 
measured frequency. For the measured damping, this example 
illustrates how very much the supports can affect the damping. 
Unfortunately, the damping changes could not be predicted 
because of an uncertain damping model. In the next section, we 
will examine modal test results from a production modal test of 
a wind turbine blade. Modal parameters were desired to validate 
the model both for stiffness and fatigue concerns, so the modal 
damping in the blade was required.

Experimental Application – Wind Turbine Blade
The tested wind turbine blade was the first blade of a series of 

new designs coming from the Sandia Blade System Design Studies 
(BSDS) program, and this blade was 27 feet long and weighed 290 
pounds. This blade is from an exploratory development program 
and is much smaller than blades used for commercial turbines. A 
photo of the blade is shown in Figure 6. Additionally we note that 
the root end of the blade is 20 inches in diameter, and the blade CG 
location is nominally 84 inches from the root end. The blade was 
instrumented with 48 biaxial accelerometers plus 10 strain gauges 
in the flatback trailing edge region for a total of 106 measurement 
channels. The total mass of the instrumentation including the 
accelerometers, mounting blocks, and adhesive was 1.9 pounds. 
The blade was supported softly at two locations. Nylon straps were 
used to hold the blade using a choker style loop. The suspension 
was designed to be soft using bungee cords, as shown in Figure 6. 
A variety of bungee cord configurations were used for these tests, 
including a set of bungee cords deemed to be optimal.

The blade has two sets of bending modes, flatwise and edgewise. 
The flatwise modes involve bending about the x-axis (Figure 6) and 
bends the blade in its flat or soft direction. The edgewise modes 
involve bending about the y-axis or in the stiff direction of the 
blade. The flatwise bending modes are the lowest elastic modes of 
the blade, and consequently the support system was designed to 

use the pendulum stiffness in the flatwise direction. The rigid-body 
pendulum modes are very low, and consequently have little effect 
on the measured frequencies. In contrast, the edgewise direction 
is directly restrained by the stiffness of the bungee cords, and 
their stiffness is enough to affect the measured modal parameters. 
Consequently we were mostly concerned with the effect of the 
support on the modal frequency and damping of the first edgewise 
bending mode, which is a bending mode in the direction of the 
bungees. Although for this particular blade structure, it was fairly 
easy to design a soft support system, because the blade had a high 
stiffness-to-weight ratio.

As part of the pre-test planning phase, bungee cords were tested 
for their stiffness and damping by suspending rigid masses from the 
bungee cords and measuring the resulting frequencies and damp-
ing factors. Their frequencies and damping factors were measured 
for various deformation amplitudes, frequencies of vibration and 
preloads on the bungee. Unfortunately, the stiffness and damping 
varied significantly with preload, amplitude and frequency, mak-
ing it difficult to fully characterize the bungee cords and creating 
uncertainty in the bungee model. Consequently, after the pre-test 
design, the bungee cord characteristics were deduced from the 
rigid-body modal parameters measured during the actual test of 
the blade. 

Four preliminary modal tests with very sparse instrumentation 
were conducted to experimentally assess the effects of various 
configurations of the support conditions. Table 2 describes these 
four configurations, designated 1, 2, 3, and 4. 

For Configuration 1, the support is a stiff configuration with 
low load on each of the bungee loops. However, we found the 
rigid-body bounce mode at 4.7 Hz compared to the first edgewise 
bending at 16.38 Hz to be much too high, with a frequency ratio of 
only 3.4. For Configuration 2, we reduced the number of bungee 
loops from 8 to 6, and the bounce mode dropped from 4.7 to 3.2 
Hz, producing a still high frequency ratio of 5.1, but the bending 
frequency decreased by 1.2 percent, and the damping factor went 
from 1.0 to 0.8 percent. Configuration 3, with the supports placed 
near the nodes of the mode, produced a total 1.8 percent reduc-
tion in frequency and a 27 percent reduction in damping even 
though the bounce mode increased in frequency. Configuration 3 
clearly showed the advantage of placing the supports at the nodes 
of the affected mode, as Equation 15 implies. Configuration 4 is 
considered the optimal configuration, where the number of bungee 

Figure 6. Photo of BSDS wind turbine blade in the test lab.

Table 2.  Four different bungee configurations for supporting blade.

No. Description No. Loops Motivation of Configuration

1 & 2 Bungees spaced 8,8 Low preload on each bungee loop
 30 inches either  of 20 lbs; safe support design
 side from CG 
  6,6 Slightly higher preload (25 lbs)
   reduces stiffness of bungee loops

3 & 4 Near nodes of edge- 6,6 Moved to nodes of mode to
 wise mode, 46 and  reduce effect of bungee; preload
 148 inches from CG  changed

  4,2 Reduced number of bungees to 
   reduce support stiffness and
   balance preload

Table 3. Measured modal parameters for four support configurations for bending and rigid-body modes.

 First Edgewise Bending Mode
 Rigid-Body Bounce Mode  Increase from  Increase from Ratio of Edgewise

Config. Freq., Hz Damping Factor, % Freq., Hz Config. 4, % Damping Factor, % Config. 4, % to Bounce Freqs.

 1 4.72 4.2 16.38 2.0 1.00 52 3.5
 2 3.19 4.9 16.18 1.0 0.80 21 5.1
 3 5.59 5.2 16.09 0.1 0.73 10 3.1
 4 1.28 3.2 16.07 — 0.63 — 12.5
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crease involved the ratio of frequencies rather than the square of 
their ratio and the ratio of the dampings. Consequently, even for 
a softly supported structure, the measured damping could be far 
from the true damping. These formulas can be used to aid in the 
design of a support system for modal testing of free or constrained 
structures. 

The effects of the support system on both modal frequencies 
and modal damping were illustrated with two test structures. 
The first structure was an extremely lightly damped beam that 
revealed changes in the measured modal frequency and damping. 
The changes in the measured damping for the elastic mode were 
huge, indicating the care that musts be taken to accurately measure 
damping for a freely suspended structure. The second structure was 
a blade for a wind turbine in which modal data were required to 
validate the analytical model of the blade. Several support configu-
rations were used for this blade, again revealing significant changes 
in the measured frequencies and dampings. These changes in the 
measured modal parameters were large enough that they needed 
to be taken into account to validate the blade model.
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loops is further reduced to decrease the stiffness and placed on the 
nodes. The bounce frequency has now dropped to 1.28 Hz for a 
frequency ratio of 13. However, the frequency of the bending mode 
only decreased by 0.1 percent between Configurations 3 and 4, but 
its damping factor dropped from 0.73 to 0.63. These four support 
configurations demonstrate the effect that the support conditions 
can have on the measured modal parameters of the elastic modes, 
increasing the frequency by 2 percent and the damping by 59 
percent. Even though this blade structure is quite stiff compared 
to its mass, it still requires careful consideration of the support 
design if one does not want to introduce significant errors to the 
measured modal parameters, particularly the measured modal 
damping. The measured frequencies and damping factors for these 
four configurations for both the rigid-body bounce mode and the 
first edgewise bending mode are listed in Table 3.

We can now compare the predictions using the developed for-
mulas from the theory section with what we have observed from 
this test data. Comparing Configurations 1 and 4, we observed a 
frequency increase of 0.31 Hz and a damping factor increase of 0.37 
percent of critical for Configuration 1. Using the rigid-body modal 
frequency and damping factor to compute the stiffness and damp-
ing of the bungee cords supporting the blade, we can predict the 
frequency change with Equation 15. Utilizing the mass normalized 
mode shapes from the pre-test analysis, we computed a predicted 
increase in frequency of 0.27 Hz, which is very comparable to the 
observed 0.31 Hz. Regarding the change in damping, we can also 
apply Equation 20, and here we compute that the true damping 
would be only 0.32 percent of critical. Actual damping for Con-
figuration 4 is 0.63 percent. This clearly overestimates the effect of 
the support damping, which we would suspect is due to the fact 
that the damping model must include some structural damping 
as well as the viscous damping assumed in Equation 20. Using a 
structural damping model, we compute the true damping to be 0.80 
percent, which underestimated the effects. So we are seeing the 
same results here as with the uniform beam. The viscous model 
overestimates, and the structural damping model underestimates 
the change in the measured damping. Nevertheless, this example 
from a production modal test on a wind turbine blade clearly il-
lustrates the primary points of this article: support system stiffness 
can increase the measured frequencies above the true frequencies, 
and the measured damping is much more sensitive to the support 
system than the modal frequencies. Care must be exercised when 
designing a support system for ‘free’ modal tests.

Conclusions
In this article, we have examined the effects of support stiffness 

and damping on measured modal frequencies and damping ratios. 
The analysis of the single DOF system provided very revealing 
results that produced insight to the general system. The analysis 
of the multi-DOF systems produced results very similar to that of 
the single-DOF system, except now the mode shape of the elastic 
mode was included in the formulas. The increase in the measured 
frequency of the elastic mode was related to the square of the ratio 
of the frequencies of the rigid-body mode and the elastic mode.  
The damping was much more sensitive, since the damping in- The author may be reached at: tgcarne@sandia.gov.


