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In recent years, a variety of numerical approaches have been 
proposed for modifying a finite-element-analysis (FEA) model 
so that its modal parameters more closely match those obtained 
from experiment. Such factors as real-world boundary conditions 
and joint stiffness are often difficult to model correctly in an FEA 
model, and damping is usually left out of the model all together. 
A method called structural dynamics modification (SDM) was 
commercialized back in the 1980s as a method for predicting the 
effects of structural modifications on the modes of a structure. 
In its more recent implementation, it utilizes the same finite ele-
ments to model structural modifications as those used in FEA 
modeling. SDM is a fast and efficient algorithm that can be used 
for updating FEA models using experimental results. In this 
article, we show in several example cases how SDM can be used 
together with a search procedure to yield a list of the “10 Best” 
FEA model changes that cause its modes to more closely match a 
set of experimental modes. Some FEA model changes are always 
more physically attainable than others, and by providing a list of 
the 10 best solutions instead of just one solution, a realistic model 
updating solution can be chosen.

Today, most companies that manufacture mechanical products, 
or products with mechanical parts in them, are relying more and 
more on computer modeling and simulation, called finite-element 
analysis (FEA) to develop products more quickly. In the automobile 
industry, for example, most companies are using FEA modeling 
heavily and simulation tools to help bring new car models to market 
in less time to gain a competitive edge.

FEA models are usually built in the early stages of product 
development to get a preliminary understanding of the static and 
dynamic behavior of the mechanical structures involved in the 
design. FEA models have been used since the 1950s for perform-
ing static-load analyses of structures. Static loads are applied to 
the model to locate the areas of high stress and strain, where the 
structural material is most likely to fail.

More recently, FEA models are being used to simulate the dy-
namic responses of structures under a variety of operating condi-
tions. Dynamic loads can often exceed static loads by orders of 
magnitude, causing unacceptable levels of noise and vibration and 
perhaps unexpected structural failures.

Before using an FEA model for simulation work, it should be 
correlated with experimental data to ensure that it models the 
dynamics of the real structure. If that’s not the case, then it must 
be updated so that its dynamic responses more closely match the 
real structure dynamics.

Experimental modal analysis (EMA), also called modal testing 
or a modal survey, is performed on a real structure to character-
ize its dynamic behavior in terms of its modes of vibration. Each 
mode is defined by its modal frequency, modal damping, and a 
mode shape.

An FEA model also provides the modes of vibration of the 
structure. FEA is analytical (using a computer model), and EMA 
is experimental (requiring the testing of a real structure). Modes 
are the common ground by which these two engineering activities 
are compared for accuracy.

If both an EMA and FEA are done correctly, then both should 
yield the same modes of vibration. In practice, however, this rarely 
occurs, even for the simplest of structures. Since EMA produces 
a set of modes for a real structure, these modes can be used for 

updating an FEA model so that its modes more closely match the 
modes of the real structure.

In recent years, a variety of numerical approaches have been 
proposed for modifying an FEA model so that its modal parameters 
more closely match those obtained from experiment. This is called 
FEA model updating.

Advantages of EMA and FEA. Fortunately, EMA and FEA are 
complementary and each has advantages over the other. EMA can 
accurately measure the modal frequency and damping of the modes 
of a real structure. But for practical reasons, EMA mode shapes 
typically have far fewer DOFs (a degree of freedom is motion at 
a point in a direction) than FEA mode shapes. FEA mode shapes 
also contain rotational DOFs, which are usually not measured 
experimentally.

Even though FEA mode shapes may have many thousands of 
DOFs, their associated modal frequencies are usually less accurate 
than experimental frequencies. In addition, modal damping is 
typically not modeled at all but can always be obtained experi-
mentally.

To summarize:
EMA is good for obtaining accurate modal frequency and 
damping.
FEA is good for obtaining mode shapes with thousands of DOFs, 
including rotational DOFs. 
Modal Model. Although mode shapes are eigenvectors and 

have no unique values, a set of properly scaled mode shapes 
preserves the mass (inertia), stiffness (elastic) and optionally the 
damping properties of a structure. This set of modes is called a 
modal model. 

Modes are solutions to the homogeneous equations of motion 
for a structure:

						    
Equation 1 is a set of n simultaneous, second-order, linear-differen-
tial equations in the time domain, where x(t) is the displacement 
vector, and the dots above x(t) denote differentiation with respect 
to time. M, C and K are the (n by n) real symmetric mass, damping 
and stiffness matrices respectively.

Orthogonality. Equation 1 is a force balance between the in-
ternal forces within a structure after all external forces have been 
removed, but it still undergoes resonant vibration. If the damp-
ing forces, represented by          , are assumed to be insignificant 
compared to the inertia,           , and stiffness, Kx(t), forces (or if C 
is assumed to be proportional to the mass M and stiffness K), then 
the mode shapes are calculated in a manner that simultaneously 
diagonalizes both the mass and the stiffness matrices. This is the 
so-called orthogonality property.

When the mass matrix is postmultiplied by the mode shape 
matrix and premultiplied by its transpose matrix, the result is a 
diagonal matrix:

where:
	[M]	 = (n by n) mass matrix
	[f]t	 = [{u1} {u2}...{um}] = (n by m).mode shape matrix 
	 t	 = the transpose
	 m	 = number of modes in the model
This diagonal matrix is called the modal mass matrix. Modal 
masses, like mode shapes, are arbitrary in value. One of the com-
mon ways of scaling mode shapes is so that the modal masses are 
one (unity). This is called unit modal mass (UMM) scaling. The 
modal mass matrix then becomes an identity matrix, with diagonal 
elements equal to one and zeros elsewhere.
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When the mode shapes are scaled to UMM, the orthogonality 
property for the stiffness matrix becomes.

where                  (m by m) modal stiffness matrix
Each diagonal term in the modal stiffness matrix is the undamped 
natural frequency squared of a mode.

Computing the Modes of an FEA Model. An FEA dynamic 
model is essentially a set of differential equations that describes 
the dynamic behavior of a mechanical structure. An FEA model 
will often contain thousands, sometimes millions, of differential 
equations. Each equation describes motion for a single DOF. Con-
sequently, the mass and stiffness matrices of an FEA model are 
typically very large.

Modes of vibration are computed for and FEA model by solv-
ing a so-called eigensolution problem. That is, modal frequencies 
are computed as eigenvalues, and mode shapes are computed as 
eigenvectors of its differential equations of motion.

Very large numbers of equations are usually required to obtain 
sufficient accuracy with an FEA model. This means that the mass 
and stiffness matrices are very large. Therefore, solving for an FEA 
eigensolution requires a large computer with lots of memory.

Structural Dynamics Modification (SDM). The SDM method, 
also called eigenvalue modification or diakoptics, was originally 
developed as a way to more quickly calculate the new modes of an 
FEA model1-3 when localized changes were made to it.

SDM was first commercialized in 1980 as a method for predicting 
the effects of structural modifications (changes in its mass, stiffness, 
and damping properties) on the modes of a structure. Structural 
Measurement Systems, Inc. (SMS), a Santa Clara, CA, engineering 
software company, was the first company to commercialize the use 
of the SDM method for use with experimental modal data.4

Since FEA models typically have no damping, for FEA model 
updating, the damping term in the equations of motion (Eq.1) will 
be ignored. With only mass and stiffness modifications, the equa-
tions of motion become:

	
where:
[DM] = mass modification matrix (n by n)
[DK] = stiffness modification matrix (n by n)
While Equation 4 is a set of time domain differential equations, its 
eigenvalues (modal frequencies) and eigenvectors (mode shapes) 
are found as solutions to the equivalent set of algebraic equations 
in the frequency domain:

where:
X(ω)	=	Fourier transform of displacement
     ω	 =	frequency variable
A typical FEA model will easily create thousands of equations (Eq. 
5), and solving them for the new modes due to mass and stiffness 
modifications is still very time consuming.

However, the SDM method transforms Equation 5 into the modal 
domain by taking advantage of the orthogonality property in Equa-
tions 2 and 3 of the mode shapes of the unmodified structure. Using 
orthogonality, Equation 5 becomes:

where:

SDM solves for the eigenvalues of Equation 6. This equation con-
tains (m by m) matrices instead of (n by n) matrices as in Equation 
5, and m (the number of modes) is usually much smaller than n 
(the number of physical DOFs). Therefore, literally thousands of 
SDM solutions to Equation 6 can be found in the same time that 
it takes to calculate one solution to Equation 5.

Computing Modes Using SDM. While an FEA eigensolution 
requires very large matrices with thousands to millions of DOFs, 
SDM typically solves for an eigensolution using matrices with 

less than 100 DOFs. Since its eigensolution problem size is much 
smaller, SDM can solve for the modes due to thousands of po-
tential mass and stiffness modifications in the same time that it 
takes to solve for one FEA eigensolution. Furthermore, SDM can 
be implemented in software running on a desktop or laptop PC 
with the two advantages of computational speed and the need for 
less computer memory. This makes SDM ideal as a practical tool 
for FEA model updating.

FEA Model Updating Method
Our new FEA model updating method (called SDM targeted 

model updating) uses the SDM method along with a search proce-
dure to yield a list of the “10 Best” FEA model updates that cause 
its modes to more closely match a set of experimental modes. 
Some FEA model changes are more physically attainable than 
others, so by providing a list of the 10 Best solutions instead of 
just one, a more realistic model updating solution can be chosen 
from the list.

Changes to Finite-Element Properties. It is usually too difficult 
to make changes directly to components of the mass and stiffness 
matrices, and more importantly, those changes may correspond 
to structural changes that are not physically attainable. A more 
practical approach is to change the physical properties of the finite 
elements themselves in the FEA model and translate those changes 
into mass and stiffness changes.

Typical finite-element property changes that are physically 
attainable are:
•	 Point translational and rotational masses
•	 Translational and rotational spring stiffnesses
•	 Translational and rotational damping
•	 Rod-element, cross-sectional areas
•	 Beam-element, cross-sectional areas and inertias
•	 Plate-element thicknesses
•	 Rod-, beam-, plate- or solid-element elasticity, Poissons ratio, 

and density material properties
A typical FEA model may contain several different kinds of ele-
ments, each having the above properties. Spring elements, plate 
elements, and solid brick elements are used in the examples that 
follow.

Cost Function. FEA model updating is concerned with changing 
the physical properties of the finite elements of an FEA model so 
that its modes more closely match a set of experimental modes.

To be closely matched, either the modal frequencies and/or the 
mode shapes of the updated FEA model should be as ‘close’ as pos-
sible to the experimental modal parameters. Therefore, a numerical 
measure of the ‘closeness’ of modal parameters is required.

The following cost function quantifies errors in both modal 
frequencies and mode shapes:

where:
	 ΩA(k) 	= analytical modal frequency for mode (k)
	 ΩE(k)	 = experimental modal frequency for mode (k)
	MAC(k)	= modal assurance criterion between analytical and ex-

perimental mode shapes for mode (k)
The modal assurance criterion (MAC) is essentially a normalized 
dot or scalar product between a pair of mode shapes. Its values 
range between 1 (meaning that the two shapes are alike) and 0 
(meaning that they are different).

The 10 Best Solutions. To find the 10 Best solutions, we use an 
exhaustive search using a prescribed number of steps between 
prescribed lower and upper bounds for each physical parameter 
to be updated in the FEA model. The 10 solutions that have the 10 
lowest cost function values are saved. This approach has several 
advantages:
•	 The speed of the SDM algorithm allows an exhaustive search of 

the entire solution space. That is, all combinations of parameter 
values stepped between the lower and upper limits of each 
parameter are evaluated.

•	 The exhaustive search finds the solution with the true minimum 
cost, thus avoiding the potential problem of getting ‘stuck’ at 
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local minimum values of the cost function.
•	 The 10 Best solutions provide a choice of modifications, some 

of which may be more physically attainable than others.
•	 The 10 Best solutions show the sensitivity of the structure to 

different potential modifications.
This 10-Best procedure does not require eigensolutions of the 

original FEA equations. Therefore, it can be implemented on a 
desktop or laptop PC using the FEA model, its analytical mode 
shapes and a set of experimental mode shapes.

Example 1 – Updating Plate Thicknesses
In this example, the experimental modes of the beam structure 

shown in Figure 1 will be used to update the thickness of some 
of the plate elements in the FEA model shown in Figure 2. The 
beam was constructed using three, 3/8-inch-thick aluminum plates 
fastened together with cap screws. The overall dimensions of the 
structure are 12 in. long by 6 in. wide by 4.5 in. high.

The experimental modes were obtained from a set of 99 Fre-
quency Response Functions (FRFs) that were acquired during an 
impact test of the beam structure. During the test, the structure 
was impacted at the same DOF (a corner of the top plate), and a 
roving tri-axial accelerometer was used to measure the beam’s 3-D 
response at 33 points. The resulting experimental mode shapes had 
three DOFs per point, for a total of 99 DOFs each.

An FEA model of the beam structure was built using 80 quad-
plate elements, as shown in Figure 2. The plate elements had the 
following properties: 
•	 Thickness = 0.375 in
•	 Elasticity = 1 ¥ 107 lbf/in2

•	 Poissons ratio = 0.33
•	 Density = 0.101 lbm/in3

The FEA model was solved for its first 20 (lowest frequency) modes. 
The FEA mode shapes had three translational and three rotational 
DOFs at 105 points, for a total on 640 DOFs each.

FEA Versus EMA Shapes. Ten FEA mode shapes matched with 

Table 1. Mode shapes before model updating.

	 Mode	 FEA Frequency, Hz	 EMA Frequency, Hz	 MAC

	 1	 149	 165	 0.957
	 2	 211	 225	 0.963
	 3	 311	 348	 0.948
	 4	 417	 460	 0.925
	 5	 451	 494	 0.950
	 6	 590	 635	 0.935
	 7	 1000	 1110	 0.902
	 8	 1100	 1210	 0.892
	 9	 1180	 1322	 0.848
	 10	 1400	 1560	 0.830

Table 2. 10 Best solutions.

	 Solution	 Back Plate Thickness, in.	 Cost Function

	 1	 0.421	 0.819
	 2	 0.427	 0.821
	 3	 0.433	 0.822
	 4	 0.440	 0.823
	 5	 0.446	 0.824
	 6	 0.453	 0.825
	 7	 0.459	 0.826
	 8	 0.466	 0.827
	 9	 0.472	 0.827
	 10	 0.479	 0.828

Figure 1. Beam structure showing 33 test points. Figure 2. FEA model with 80 quad plate elements.

10 of the experimental mode shapes. This was verified by animated 
display of the mode shapes and by their MAC values. Only trans-
lational DOFs of the analytical shapes at the same 33 points as the 
experimental shapes were used for the MAC calculations. Table 1 
lists the analytical and experimental modal frequencies and MAC 
values between the paired shapes.

FEA Model Updating Results. Table 1 clearly shows that the 
analytical mode shapes match the experimental mode shapes 
quite well (indicated by MAC values above 0.80). However, the 
FEA model is not as stiff as the real structure, since each FEA 
frequency is less than its corresponding EMA frequency. In this 
model updating example, thickness values of the elements on the 
back (vertical) plate were allowed to vary in an attempt to make 
the FEA modes more closely match the EMA modes. The search 
for the 10 Best solutions was done over a range (0.2 to 0.7 in.) 
using 50 different thickness values on either side of the original 
thickness (0.375 in.).

The 10 Best thicknesses for updating the back plate are shown 
in Table 2. The 10 Best cost function values indicate that all of the 
10 best solutions yield similar overall errors between the modal 
parameters. There is only a 1% increase in the cost between Solu-
tion 1 and Solution 10.

This small change indicates that the cost function ‘surface’ is 
very flat in the region of the optimum solution. With a flat cost 
function like this, it would be difficult to find the optimum solu-
tion using derivatives of the cost function (variational calculus) 
as part of a search method.

Table 3 contains the modal properties of the beam structure after 
the back plate thickness was changed to 0.421 inches. There is a 
clear improvement in the FEA modal frequencies, and the MAC 
values indicate a negligible change in the mode shapes.

Example 2 – Updating Boundary Conditions
One of the most challenging problems in FEA modeling is 

constraining the model with boundary conditions that match real-
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world boundary conditions. In this example, we update an FEA 
model of a cantilever beam so that its FEA modes more closely 
match its EMA modes.

The aluminum beam shown in Figure 3 is made from 1-in.-
square aluminum bar stock and is 25 in. long. To approximate a 
cantilever beam, the aluminum bar was clamped to a table top 
using a C clamp.

It is easy to convert an FEA model of a free-free beam into a 
cantilever beam, simply by rigidly constraining one of its ends. 
In the real world, however, there is no such thing as a rigid con-
straint; and certainly not in this case, where a C clamp was used 
to constrain one end of the beam.

FEA Cantilever Beam Model. First an FEA model of the canti-
lever beam was built using 20 brick elements with the following 
material properties for aluminum (see Figure 4a):
•	 Elasticity = 1 ¥ 107 lbf/in2

•	 Poissons ratio = 0.33
•	 Density = 0.101 lbm/in3

To model the attachment of the beam to the table, several springs 
were attached between the beam and ground (fixed points) in the 
vertical direction (Z-axis) and axial direction (X-axis), as shown 
in Figure 4b. These springs were given nominal values of 100,000 
lbf/in. to simulate the stiffness of the C clamp. During model 
updating, these stiffnesses were allowed to vary to obtain a better 
match between the analytical and experimental modal frequencies 
and mode shapes.

The first seven vertical modes of the FEA beam model are listed 
in Table 4. The frequencies of the first six EMA modes obtained by 
impact testing the cantilever beam are also shown in Table 4, along 
with the MAC values between the FEA and EMA shape pairs.

Table 5 contains the model updating results. It shows that both 
the modal frequencies and shapes are more closely matched fol-
lowing model updating. Solution 1 of the 10 Best solutions was:
S1 = 10 lbf/in
S2 = 1 ¥ 109 lbf/in
S3 = 10 lbf/in
S4 = 10 lbf/in
It had a cost function value of 0.9206. Solution 10 of the 10 Best 
solutions was:
S1 = 10 lbf/in

Table 5. Cantilever beam shapes after model updating.

		  Updated FEA
	 Mode	 Frequency, Hz	 EMA Frequency, Hz	 MAC

	 1	 22	 12.5	 0.993
	 2	 243	 250	 0.943
	 3	 756	 800	 0.923
	 4	 1544	 1580	 0.948
	 5	 2590	 2610	 0.975
	 6	 3886	 3800	 0.925

Table 4. Cantilever beam mode shapes before model updating.

	 Mode	 FEA Frequency, Hz	 EMA Frequency, Hz	 MAC

	 1	 43.8	 12.5	 0.974
	 2	 292	 250	 0.963
	 3	 830	 800	 0.952
	 4	 1620	 1580	 0.958
	 5	 2600	 2610	 0.939
	 6	 3700	 3800	 0.699
	 7	 4700	 –	 –

Table 3. Shapes after model updating (back plate thickness = 0.421 in.).

		  Updated FEA
	 Mode	 Frequency, Hz	 EMA Frequency, Hz	 MAC

	 1	 166	 165	 0.954
	 2	 213	 225	 0.961
	 3	 314	 348	 0.948
	 4	 429	 460	 0.925
	 5	 454	 494	 0.948
	 6	 593	 635	 0.932
	 7	 1010	 1110	 0.901
	 8	 1100	 1210	 0.891
	 9	 1200	 1322	 0.851
	 10	 1400	 1560	 0.829

Figure 3. Aluminum bar clamped to table top.

Figure 4.  a) Cantilever beam model; b) Close-up view of cantilever beam 
model.

S2 = 2 ¥ 108 lbf/in
S3 = 1000 lbf/in
S4 = 10 lbf/in

It had a cost function value of 0.9289.
The updated stiffnesses show that the table top and clamp 

provided plenty of stiffness in the vertical direction but only a 
negligible amount of torsional stiffness to the beam. In other words, 
the table top itself was undergoing local bending to be compliant 
with the much stiffer beam.

Conclusions
A new FEA model updating method based on the SDM (struc-

tural dynamics modification) algorithm was introduced. Since this 
method allows targeting of small areas (such as joint stiffnesses) 
of a structure for updating, it has been called the SDM targeted 
model updating, or STMU, method.

The speed of the SDM algorithm allows an exhaustive search 
for the 10 Best finite-element property changes that minimize 
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the difference between the modes of an FEA model and a set of 
experimental modes. Not only is this search procedure fast, intui-
tive, and easy to use, but it always finds the true optimum solution, 
together with alternatives from which to pick the best physically 
attainable solution.

This model updating method was used on two common applica-
tions, updating the thicknesses of plate elements of an FEA model, 
and determining realistic boundary conditions (mounting stiff-
nesses), for a cantilever beam FEA model. This approach doesn’t 
necessarily require the entire FEA model but only its mode shapes 
and the elements to be modified. The effects of translational and 
rotational mass and stiffness changes are easily modeled using the 
SDM method. In Example 1, only the plate elements of the back 
plate were required for modal updating. In Example 2, spring and 
brick elements were used to generate the original FEA shapes, but 
only the spring elements were required for modal updating.

This tool shows much promise for “closing the gap” between 
FEA models and EMA results. Model updating not only provides 

more understanding of how structures behave dynamically, but 
it also improves the accuracy of FEA models so that they can be 
reliably used for further modeling and simulation work. 
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