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Experimentalists are familiar with the aliasing that happens 
in data acquisition when the sampling rate is less than twice the 
highest frequency of energy in the signal to be sampled. Much 
effort has been made using a combination of analog and digital 
filters to make sure that the higher frequencies are filtered out 
to avoid or minimize the effect of this aliasing. Much less talked 
about is the aliasing that occurs in modal parameter estimation, 
or curve-fitting, when the residual effects of out-of-band modes 
violate assumptions of the finite dimensional parametric model 
that the experimentalist uses to curve-fit the acquired digitized 
data. While the out-of-band energy has been filtered out of the now 
band-limited data, the tails, sometimes called residual flexibility 
and inertial restraint of the out of band modes, are still present 
in the data. This article looks at some classes of modal parameter 
estimation algorithms and shows by theory and example that the 
algorithms based on continuous time or Laplace domain formula-
tions are superior to the discrete time domain or z domain models 
in that they give results that are not contaminated by the aliasing 
effect of these residuals.

Practitioners of the art and science of modal testing and experi-
mental modal parameter estimation carefully choose algorithms 
and excitation methods for each testing situation with a balanced 
combination of prejudice, experience and folklore. Two popular 
methods in use today are narrow-band frequency domain methods 
using polynomials for highly damped structures, and the discrete 
time-complex exponential method with multiple references for 
high modal density and multipoint excitation. Mythologies exist on 
the merits of frequency domain versus time domain modal param-
eter estimation methods, and religious wars have been less fervent 
than some of the debates within the modal testing community.

The classical method of modal testing has been the tuned sine-
dwell method, implemented in the middle of the last century 
with analog instrumentation. (Hence the nomenclature unique to 
ancient sine dwellers of the California desert, which is used when 
its proponents are out of earshot.) While there is much to be said 
for the advantages of exercising modes in their normal form one at 
a time and at high force levels, and the possibility of using damping 
models other than the customary linear viscous damping model, 
we shall limit ourselves in this article to the uses of broadband 
testing and curve-fitting methods due to the ease, efficiency and 
economy of their deployment.

Computational Modes
The motivation for this article is the pervasive existence of 

computational modes around the broadband modal parameter 
estimation methods. Such computational modes, or poles or roots, 
are the by-product of specifying a model order higher than the 
actual physical number of modes in the analysis band. It is almost 
always necessary to specify a model order that is “too high” in 
order to ensure proper identification of modes that correspond to 
the physical ones. The role of the extra computational modes is to 
fill in the cracks caused by residual effects, nonlinearities, noise 
and inconsistency due to mass loading, nonstationarities and a few 
other culprits. Since we are interested in the modal parameters of 

the physical modes and not in the graphical nature of the curve fit 
itself, there is a fine line between choosing a model order that is 
too high and one that is too low. In any case, after the analysis run, 
the analyst is still faced with the triage of choosing those modes 
that clearly correspond to physical phenomena. Those that look 
improbable are discarded as computational modes, and those that 
merely look dubious are slated for closer scrutiny.

The criteria for being a computational mode include negative 
or improbable damping, a frequency that is outside the analysis 
band, or lack of persistence as modal parameters are tracked from 
one model order to the next. This persistence is often depicted 
in a variety of stability diagrams. It is clear from the diagram 
that certain modes are constantly found in order of progressively 
larger orders. A mode that traces a straight line across the stability 
diagram is said to be stable and is therefore assumed to represent 
a genuine physical mode. Parameter estimation methods with 
the same nominal performance may be judged quite differently 
in their performance when equipped with different triage crite-
ria and stability graphics. The phenomenon that separates the 
continuous time methods from the discrete time methods is the 
nonlinear aliasing of the computational modes. The latter methods 
tend to put their computational modes inside the analysis band 
and also require more computational modes to fill in the cracks 
in the nonlinear data.

A Useful Dichotomy 
We shall begin our investigation of computational modes by 

first answering the question, What is the difference between time 
domain and frequency domain in modal parameter estimation? The 
answer that we proffer – The real difference is between continuous 
time and discrete time. The frequency domain enthusiast should 
distinguish between the Laplace transform domain (continuous 
time) and z transform domain (discrete time). An unqualified use 
of the terms time domain and frequency domain is orthogonal 
to the pertinent characteristics of broadband modal parameter 
estimation. The phenomenon that most clearly divides the con-
tinuous time and the discrete time formulations is that of aliasing 
of computational modes as the curve fitter attempts to handle out-
of-band residual effects. Low-pass filtering knocks the out-of-band 
resonance peaks out of the picture, while no amount of filtering will 
remove the residuals, tails and foothills of the out-of-band modes. 
In the discrete-time methods, all modal frequencies are mapped 
onto the analysis band, while in the continuous-time formulation, 
computational modes, or out-of-band phenomena, are allowed to 
go where they should

In practical terms, computational modes in the discrete-time 
methods are forced back into the analysis band, and there are also 
more computational modes, because this aliasing is a non linear 
effect that confuses linear estimation assumptions (see Figure 1). 
Continuous-time methods do not suffer from this weakness. The 
weakness of the continuous-time formulations is that of numerical 
ill conditioning, which rears its ugly head for larger sets of modes 
within an analysis band. This is cured by a change of basis of the 
transfer function expressions from power polynomials into some 
classes of orthogonal polynomials, but such methods have not 
achieved mainstream status yet. In this article, we look at a variety 
of representative continuous-time and discrete-time modal param-
eter estimation algorithms, look at their mathematical derivations, 
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and apply them to a common analytical data set with high modal 
density and a plethora of residual effects. We will then summarize 
the behavior of the different methods with respect to the place-
ment and characteristics of computational modes, especially with 
respect to aliasing of said modes.

Models
We shall consider the simplest of multifunction situations, where 

we have a column of the frequency response function (FRF) matrix 
corresponding to a single point of excitation and multiple accelera-
tion response locations. We will also assume that a frequency band 
of interest has been selected, that the center frequency of this band 
has been translated to DC (zero radians/second), and that scaling 
has taken place so that the highest and lowest frequencies are ±p ra-
dians/second. (Typically done by a combination of zoom, low pass 
filtering and decimation.) The corresponding time histories of these 
FRFs are now complex, with time steps of one second. We select an 
analysis frequency band where we have strong out-of-band modes 
on either side. The data are from an aerospace structure that was 
excited with burst random excitation and with enough attenuation 
between bursts so that the estimated frequency response functions 
would be reasonably clean and leak free. Our selection of models 
is governed by trying to capture the behavior and characteristics 
of the most popular methods in use today. While most of these 
methods have a direct extension to multiple inputs, we shall only 
look at the single-input, multiple-output situation.

Direct Estimation in the Laplace and z Domains
The direct parameter frequency domain estimation methods 

were pioneered by people who wrote the basic equations and saw 
that when inputs and outputs were measured at a set of discrete 
frequencies, the system matrices occurred in a linear fashion. Given 
enough measurements, the curve-fitting equations became a set of 
over-determined linear equations. The model order is small, but 
the size of the matrices could become large. For earlier material, 
see References 1, 2, 3, and 4. The curve-fitting model for both a z 
transform and a Laplace transform formulation is a rational vector 
function in the transform variable; that is: 

   

Where {wk} is the finite set of frequencies for which frequency 
response function data are available, and the matrix polynomials 
A_(.) and B_(.) are of the first order, meaning that the number of 
response coordinates must be at least as large as the number of 
effective modes in the analysis band. The highest order term of 
A_(.) is set to the identity matrix, and we then can write the basic 
equation in the z domain as:

which after expansion of polynomial terms becomes:

Finally, chasing the unknowns to the left side and using all the 
available data, Eq. 3 becomes:

This can then be solved by some least-squares scheme for the 
unknowns, and we then find the z domain roots or poles as the 
eigenvalues of (zI + AZ0)n = 0. The Laplace domain poles are then 
calculated as ln(z), from which viscous damping and resonance 
frequency are extracted. Because of the periodicity of the complex 
exponential exp(i(w + 2p)) = exp(iw), the computed frequencies 
must all be contained within the analysis band [-p,p]. The Laplace 
domain equations are done in exactly the same fashion, except 
that the Laplace domain roots are obtained directly from the 
eigenvalue problem and are in no way restricted to the analysis 
band. This is a key difference between the discrete- and continu-
ous-time methods.

Ibrahim Time Domain
The Ibrahim time domain method (ITD) was first published by 

Sam Ibrahim, who noted that the free decay of a vector of accelera-
tions was governed by a constant transfer matrix. By estimating the 
transfer matrix, the modal parameters could be extracted.5,6 The 
control engineers entered the fray in the middle ’80s and defined 
an equivalent method derived from a state space formulation and 
called it the eigenvalue realization method or, ERA.7 The authors 
added bells and whistles to allow for simultaneous incoherent 
multipoint excitation, so that close and repeated poles could be 
reliably determined. The free decay of a structure in continuous 
time can be expressed as:

where V is the matrix of eigenvectors, L is the diagonal matrix of 
Laplace domain poles. If we assume that we have data at time steps 
of one second apart, we then have the following decay relation 
between the responses one second apart: 

so setting T=Vexp(L)V–1, 

We can find a least-squares solution for T, and then get the sys-
tem poles by solving for the eigenvalues of T. Since we must take 
the natural logarithm of the eigenvalues of the transfer matrix T to 
obtain the poles, ITD is also a z domain or discrete time method. 
Again, the computed frequencies are restrained to the analysis 
band [-p,p]. When the ITD method is used with free decay data 
obtained by inverse Fourier transforms of frequency response func-
tions, it is sometimes of interest to weight the different frequency 
bands according to their coherence. It is much more important, 
though, to discard the first few time samples, since these are not 
free decays, but are contaminated by the numerator terms in the 
rational transfer function. To see this, we take the inverse Fourier 
transform of the z domain transfer function H(z) in Eq. 1, which 
results in a convolution expression for the unit impulse response 
H(n) in discrete time as:

where d(.) is the Dirac delta and N and M are the number of terms 
in the denominator and numerator matrix polynomials. While 
this defines the unit impulse response, the algorithms formulated 
in terms of free decay must have shed any excitation function 
before the measurements are usable in these algorithms. Then we 
rewrite Eq. 8 as: 

For the case where we have more functions than the effective 
number of modes, N = M = 1, and we see from Eq. 9 that we must 
skip at least the first two samples from the unit impulse response. 
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Figure 1. The mechanics of modal aliasing.
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This is also indicated in Eq. 7.

Complex Exponential
The complex exponential method was first used with real expo-

nentials; that is, only decay terms back in 1795.8 Later, in the 1950s, 
it found use as a vibration tool with complex exponentials.9 In the 
early ’80s, one of the authors used this method as the basis for a 
method that exploited multiple references, or exciter locations, 
to enable the estimation of closely coupled modes and repeated 
roots.10,11,12 This method was named ‘polyreference’ and has 
become perhaps the dominant method in commercial use today. 
Here we restrict ourselves to a single reference that handles the 
sample data set. The main difference between the complex expo-
nential method and the ITD method is that the latter is a low-order 
method, while the former looks at one response coordinate at a 
time and thus becomes a high-order method. Let us now look at 
the individual unit-impulse response functions of the measured 
channels, rewriting Eq. 9 in scalar form and letting the subscript 
z denote a generic channel: 

Frequency weighting before applying the inverse Fourier trans-
form is optional and seldom called for. Since the resonances of a 
structure are assumed to be global entities, we are free to use a 
common-denominator polynomial:

The numerator polynomials are location dependent and define 
the mode shape coefficients or residues at the corresponding 
measurement locations. Again, we let N = M = number of effective 
modes in the analysis interval. Just as in the ITD method, we need 
to discard the first M + 1 samples of the unit impulse response to 
reach the free-decay position. Now, normalizing the leading coef-
ficient to unity so that we have a monic denominator polynomial, 
we can use the discrete unit impulse response functions to write 
an overdetermined equation set for this polynomial:

where: 

and

We keep adding columns until the first time history in Tz goes 
end around. By inspecting the structure of Eq. 13, one can see 
that the rows of Tz are time-shifted sections of the unit impulse 
response function hz(n), defining the row vector:

the data matrix of Eq. 13 can also be written as:

Since the scalar denominator polynomial is the same for all 
response channels, we can rewrite Eq. 12 using all the responses 
as the overdetermined system of equations: 

where N is the number of frequency response functions. A least-
squares solution through normal equations may be had by solving 

the positive semidefinite hermitian equations:

which can be written as:

The polynomial a is normally found by normalizing the lead-
ing coefficient to one and solving Eq. 18. The poles of this system 
will then be the natural logarithm of the roots of Eq. 11, and the 
frequencies are kept within the analysis band. This leads to the 
possible aliasing of the computational modes. Looking at Eq. 10, 
we can easily calculate the numerator polynomials for residue 
determinations once the denominator polynomial is known.

Least-Squares Complex Frequency Domain
At the turn of the millennium, a series of papers on a new z do-

main modal parameter estimation method came out of the milieus 
at the Free University in Brussels and the software house LMS 
International.13,14,15,16 The motivation was to construct a method 
that would be easier to use and lead more directly to a complete 
and valid modal model from a set of frequency response function 
measurements from one or more exciter locations. This method is 
also referred to as just LSCF. (Since we have no access to the inter-
nals of the commercial implementations, this article is based solely 
on the published body of work pertaining to the LSCF method.) 
For the purpose of this article, we will also restrict this method to 
the case of a single-force input location and multiple of response 
locations. The basic equation for this scheme is to write the scalar 
form of Eq. 1 in the z domain for the channel z:

Multiplying out the denominator polynomial, Eq. 19 becomes:

Here we see that the unknown polynomial coefficients appear 
in a linear fashion and are amenable to least-squares estimation. 
We next express Eq. 20 explicitly with the error term ek using the 
numerator and denominator polynomial coefficients, including all 
K + 1 frequency lines, rearrange and obtain:

with

and

A minimum norm solution for the denominator polynomial in  
is found by minimizing the quadratic form, 

By setting b aXY XXz z
H H= - -( ) 1 the numerator term can be 

eliminated from Eq. 24, leading to the form:

Finally, a global solution is found by summing over all response 
channels z and minimizing the global error norm:
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A standard least-squares solution is obtained by minimizing Eq. 
26 subject to setting the leading coefficient a0 to unity, while a total 
least-squares solution is found by minimizing subject to keeping 
the global norm equal to unity:

The Relationship to the Complex Exponential Method
Next we will show that the published LSCF and the complex 

exponential methods are essentially the same. The mathemati-
cal details are given in a following section (“The equivalence 
of LSCF and LSCE). We can see from this derivation that for a 
single exciter location, LSCF and LSCE (the classical complex 
exponential method) are mathematically equivalent when no 
frequency domain weighting is used. It can similarly be shown 
that Polyreference implementations of the same two methods are 
mathematically equivalent. The numerical difference between the 
two formulations is in the application of the exceedingly benign 
discrete Fourier transform, which constitutes a rotation without 
any distortion of the least-squares formulations of the curve-fitting 
equations. We can also conclude from this that claiming that one 
method is superior to the other is not valid. The true distinction 
between curve-fitting methods lies in the use of continuous- versus 
discrete-time models. The LSCF method is the same as the LSCE 
method and suffers from the aliasing of computational modes, just 
as all other discrete domain methods. Furthermore, our experience 
shows that when one forgets to remove the leading elements of 
the unit impulse responses to reach the free-decay portions, both 
the LSCE and thereby the classical polyreference methods seem 
to sprout computational modes due to the violation of the free 
decay assumption.

The Laplace-domain rational fraction orthogonal polynomial 
method17,18,19 was introduced around 1975, where the authors 
succeeded in solving smaller models with less than 10 modes. 
The estimates are very clean, and specifically, the residual effects 
are relegated to the outside of the analysis frequency band. These 
methods were observed to be alias free18 due to being formulated 
in continuous time, a benefit of exploiting the bounded spectrum 
of the acquired data. Vold and students at the University of Cincin-
nati determined in the mid ’80s that the weakness of high-order 
models in the Laplace domain lay in the transformation of the 
characteristic polynomial in an orthogonal polynomial basis back 
to the power polynomials before solving for the modes. This weak-
ness was resolved by formulating the direct solution in orthogonal 
coordinates through a generalized companion matrix eigenvalue 
problem20,21 and a number of papers and theses written in the 
circles of the University of Cincinnati and SDRC. With this one 
change of the solution procedure, the limitation of order size went 
from less than 10 to as high as your patience would last, waiting 
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for the computer to finish the calculations.
Vold worked in the mid ’90s with researchers at the Free Uni-

versity of Brussels in Belgium to introduce the use of orthogonal 
polynomials and the generalized companion matrix to Laplace 
domain system identification algorithms for controls and electri-
cal engineering applications.22,23,24 In these papers, the numerical 
and statistical performance of the orthogonal polynomials was also 
formally investigated, and shown to allow for the successful and 
predictable performance of high-order models, something deemed 
impossible before in the Laplace domain or the continuous-time 
domain. Figure 2 shows a graphic difference in the error generated 
with the use of ordinary power polynomials versus orthogonal 
polynomials in solving for the roots of a polynomial of order 18.

AFPoly, the Alias-Free Polyreference Method
This method is based on the Laplace domain orthogonal poly-

nomial rational fraction method, with the added use of a general-
ized orthogonal polynomial companion matrix that allows for 
the numerical stability over an entire frequency range containing 
hundreds and even thousands of modes. For an example of an 
orthogonal polynomial, see Figure 3.

The key observation is that we are working on test data that are 
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Figure 3. Orthogonal polynomial.
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and produces time point M + 1 + q of the inverse Fourier trans-
form when postmultiplying a row frequency domain vector. For 
example, element p,q of the YzU2

H will be hz(M + 1 + q + (N – p)) 
= hz(M + N + 1 + q – p). So Eq. 32 can be expressed as:

which, using the notation of Eq. 14 and Eq. 15 can be written as:

We therefore see from Eqs. 36, 12, 13, and 15 that for a single 
exciter location, LSCF and LSCE (the classical complex exponential 
method) are mathematically equivalent when no frequency domain 
weighting is used.
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bounded in the frequency domain and, appealing to the sampling 
theorem, the formulation may be phrased in terms of continuous 
time or the Laplace domain. Now, the orthogonality properties 
of the orthogonal polynomials in the Laplace domain induces an 
orthogonality property of the inverse infinite Fourier transform of 
these polynomials in the continuous time domain. Since the or-
thogonal polynomials are nonzero only over the bounded frequency 
range of the low-pass-filtered test data, the inverse infinite Fourier 
transform of these polynomials, the so called Green’s functions are 
well defined wavelets with finite energy (see Figure 4). 

In the continuous time domain, the usual differential equa-
tions of motion translate into convolution integrals with these 
finite-energy Greens functions, and the usual numerical problems 
with higher-order differentials vanish. Using these convolution 
integrals, we can also annihilate the differential operators on 
the force contributions in the time domain so that meaningful 
instrumental variables may be defined to process response data 
with unmeasured broadband excitation. The size of the equa-
tion systems is minimized by considering the adjoining system, 
exchanging the role of excitation and response just as is done in 
the polyreference method.

The main advantage of this method is that the residual effects of 
modes outside the frequency band of analysis are kept outside this 
band, avoiding the nonlinear effects of aliasing. One may compare 
the improved clarity of an AFPoly stability diagram compared to 
the aliased complex exponential diagram in Figure 5.

A patent application that contains an exposition in full detail 
has been filed.25

Equivalence of LSCF and LSCE
Proof of the equivalence of LSCF and LSCE. We first note 

that a unitary matrix U, satisfies UHU = I by definition. It is 
also true that the Euclidian norm of a vector, n n n2 = H , 
does not change when multiplied with a unitary matrix, since
U U U U U IH H H Hn n n n n n n n2 2= = = =( ) . Next, we note that the 

matrix X defined in Eq. 22 satisfies XXH = (K +1)I, since by inspec-
tion, the rows of X are the discrete Fourier transform coefficients 
of the transform of length K + 1. We can then easily see that the 
matrix U is unitary, when:

where X^is a unitary complement of X.

Also, when a row vector of length K + 1 is multiplied by UH, it 
is inversely discrete Fourier transformed. Noting that the unitary 
matrix U of Eq. 28 does not change the Euclidian norm of a vector, 
we see from Eq. 21 that:

so that minimizing Eq. 29 gives the same result as minimizing Eq. 
24. Expanding the equation above and using Eq. 28 shows that:

and that by setting: 

when denominator a is known allows us to write the error norm 
as:

To gain an understanding of Eq. 32, consider row p of Yz, which 
is:

Inspecting this expression shows that this is the discrete Fourier 
transform of hz(n + (N – p)) by the basic rule for forming the Fou-
rier transformation of a time-shifted function. Likewise, consider 
column q of U2

H, which is:
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