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Boundary Element Acoustics and
the Fast Multipole Method (FMM)

 Traditional Boundary Element Methods (BEM) for acoustic 
analysis have difficulty with large models and are thus limited 
to analysis of small bodies at low frequencies. Integration of the 
Fast Multipole Method (FMM) with BEM formulations leads to 
software programs with vastly superior performance.

Traditional BEM formulations result in fully populated system 
matrices, leading to large memory requirements and prohibi-
tive analysis times. The FMM is an efficient way to compute the 
far field caused by a collection of acoustic sources. Integrating 
the FMM with BEM formulations leads to the development of 
next-generation, noise-analysis software programs with excel-
lent performance. Just as the advent of the fast Fourier transform 
revolutionized digital signal processing, FMM has the potential 
to change the way we do acoustic simulations, due to its reduced 
computational complexity. FMM-BEM can handle ultra large-scale 
models (1 million unknowns and higher), allowing us to perform 
detailed system level noise analyses, and to extend BEM to the 
higher frequency regimes.

Current State of the Art
The flowchart in Figure 1 shows the virtual prototyping process 

widely followed in the industry for minimizing product noise and 
vibration levels. For instance, any automotive system must satisfy 
stringent noise, vibration and harshness (NVH) requirements while 
simultaneously meeting design goals for stress levels, durability 
and fatigue life, etc. A structural finite-element model that is built 
for stress analysis is typically used to provide the geometry and 
boundary condition inputs for an acoustic analysis. The conven-
tional boundary element method (BEM) has some limitations that 
necessitate building a coarse BEM acoustic mesh.

Conventional BEM
The BEM technique is widely used to predict the sound radiation 

from vibrating structures, as it involves only surface discretiza-
tion and solves exterior problems naturally. The key idea in BEM 
is to represent the acoustic field as a superposition of fields due 
to elementary (monopole, dipole) sources located on the radiator 
surface (Figure 2). The elementary solutions satisfy the Helmholtz 
equation exactly. The sound field from the vibrating structure must 
additionally satisfy the applied boundary condition, namely that 
the normal component of acoustic particle velocity must be equal 
to the structure velocity. The source strengths are adjusted to satisfy 
this kinematic continuity boundary condition.

Limitations of Conventional BEM
Size of the Computational Model. BEM influence matrices are 

fully populated, which limits the size of the models that can be 
analyzed. A 32-bit computer has 2 GB of addressable space for 
applications, limiting the largest BEM model to 11,585 unknowns, 
assuming in-core calculations. Out-of-core implementations reduce 
memory limitations at the expense of CPU time.

Upper Frequency Limit. Element size governs the maximum 
frequency to which a BEM model is valid. An empirical rule of 
six elements per wavelength (l) is commonly used in the industry 
to avoid spatial aliasing (Figure 3). The number of elements (N) 
in a BEM mesh that is good to an upper frequency limit fmax is 
given as:
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where Nx and Ny are the numbers of elements along two coordi-
nate directions that define the radiator surface; S its surface area; 
O stands for “order of”; and c is the speed of sound in the fluid 
medium.

As expected, the number of elements is proportional to the 

Figure 1. Virtual prototyping process for minimizing product NVH.
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Figure 2. Sound field due to a vibrating structure represented as superposi-
tion of elementary solution, illustrating BEM concept.
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Figure 3. Minimum boundary element size required to avoid spatial aliasing 
(on the vibrating surface).
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radiator surface area S. However, the number of elements N is pro-
portional to fmax

2 , the square of the maximum analysis frequency. 
Doubling the frequency range of a BEM model requires a four-fold 
increase in the number of elements and a 16-time increase in RAM 
use. This adverse scaling law is the reason that conventional BEM 
is only suitable for a component level analysis and not for a full 
system analysis, as shown in Figure 4.

Coarsening Problems. Due to the model size limitations of con-
ventional BEMs, the envelope of a structural finite-element mesh 
cannot be directly used for acoustic analysis. A mesh-coarsening 
process is adopted to produce an acoustic BEM mesh from the 
structure finite-element mesh (shown in Figure 1). Mesh coarsen-
ing increases the model preparation time and cost, and results in 
loss of geometrical features and reduces the frequency range for the 
BEM model. Mesh coarsening is only necessary due to the inability 
of conventional BEMs to handle large models. The mismatched 
structure and acoustic meshes also means that the vibration data 
from the dynamic structural analysis cannot be directly used for 
acoustic analysis. Instead, a time-consuming interpolation process 
is required to set up the acoustic boundary conditions. This situa-
tion can be remedied if acoustic BEM could be adapted to handle 
larger models.

Next Generation Code – Coustyx
To overcome the model size and frequency range limitations 

of conventional BEM, Advanced Numerical Solutions (ANSOL) 
has developed a new computational tool for acoustic analysis 
called Coustyx. Coustyx uses sophisticated BEM formulations 
in conjunction with FMM. Coustyx has an extensive selection of 
boundary condition options, and an intuitive graphical user in-
terface. Multiprocessor support, pre/post processing, batch-mode 
option, and geometry/data transfer from standard-finite element 
analysis software are also available. Coustyx results are extensively 
validated against analytical solutions (for ideal radiators) and pub-
lished experimental data on practical components or systems.1 The 
examples used in this article are based on simulations performed 
using the Coustyx software.

Comparative Performance
We have performed benchmark studies to evaluate the perfor-

mance of FMM-BEM relative to conventional BEM. The perfor-
mance metrics compared were RAM use and total solution time. 
The problem of sound radiation from an oscillating sphere was 
considered due to the availability of an analytical solution. We 
constructed a number of sphere meshes with the total number 
of nodes ranging from 150 to 250,000. Figure 5 shows the results 

from the benchmark study.
Figure 5 shows that FMM-BEM uses less memory and is faster 

than conventional BEM for all model sizes, and more so for larger 
models. BEM models with about 5,000 elements are typical in the 
industry. For such a problem, FMM-BEM is 13 times faster than 
conventional BEM and needs 1/3 as much RAM. The proposed 
FMM-BEM can handle much larger models (up to 1 million ele-
ments) that are impossible to analyze using conventional BEM 
(maximum 12,000 elements). The following sections describe 
how Coustyx delivers this “eye-popping” performance without 
any loss in accuracy.

New Formulations
Let G(x,y) represent the sound pressure at a point x due to a unit 

point source located at y. The total sound pressure at x, due to n 
such sources of strength qi (from Figure 2) are obtained by adding 
the individual source contributions:

The acoustic particle velocity vector v(x) is related to the pressure 
gradient( )∇p  as v x p x i( ) ( ) /= — r w0 , where r0 is the ambient density 
of the fluid medium; w is the angular frequency; and i = -1 is the 
imaginary unit. The normal component (nx) of the acoustic particle 
velocity at x is given by:

The kinematic continuity boundary condition must be satisfied 
at each boundary location yi, leading to the following matrix equa-
tion for determining the source strengths {q} :

In Eq. 4, [A] is the BEM-influence matrix. Observe that [A] is fully 
populated and has N2 nonzero entries. The amount of computa-
tion required to build [A] is proportional to N2, and solving Eq. 
4 requires an additional O(N3) operation. The matrix [A] is never 
explicitly constructed in Coustyx, and the source strengths {q} are 
determined by solving Eq. 4 using iterative solvers such as GMRES 
(generalized minimum residual) that require only matrix-vector 
products.2 This brings up the following question: How can we 
compute the matrix-vector product [A]{q} when the matrix [A] itself 
is not available? To answer this question, we have to go back to 
fundamentals and understand the physical meaning of [A]{q}.

By examining Eq. 4, it is clear each row of [A]{q} represents the 
velocity response at a given source location due to the combined 
action of all the sources. Therefore, the matrix-vector product 
[A]{q} is the velocity response at every source location caused by 
the whole ensemble of sources. We will take advantage of this fact 
in the development of a faster BEM code.

Fast Multipole Method
FMM is an efficient way to compute the far field caused by a 

collection of simple (monopole, dipole) sources. The main idea of 
FMM can be explained by considering the problem of computing 
the far-field response due to collection of simple sources clustered 
around a point O (Figure 6). Source strengths are denoted by qi and 
di is the distance of a source from the cell center O. The cell size 

Figure 4. Maximum analysis frequency possible with conventional BEM. 
Conventional BEM is suitable for low-frequency analysis, primarily at 
component level.
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is given as rc=max(di). We are interested in computing the sound 
pressure at a far-field point F.

A naïve way to compute the sound pressure at F would be to 
add up the individual source contributions as shown in Figure 
7a. FMM does the computation a bit differently (Figure 7b). A 
multipole expansion is performed about the cell center O (called 
the multipole expansion center), and the response at F is obtained 
by adding contributions of the multipole sources located at O. The 
advantage is that the contributions from higher-order multipole 
sources decay rapidly, and only a few terms are sufficient for an 
accurate calculation.3 The far field can then be computed accurately 
from the aggregate properties of the source distribution. Individual 
source locations and strengths are not very important for the field 
calculation at a remote observation point. This powerful idea has 
been used in a number of disciplines from gravitation to elasticity 
(Saint-Venant’s principle4).

Far-field sound pressure p(F) varies smoothly with distance R 
from the source cluster. Taylor series expansion is used to com-
pute the sound pressure at points F1, F2, etc., that are close to F. 

The point F is called the local expansion center. Consider the 
mail delivery problem with n senders and m receivers, where O 
is a collection center, and F a distribution center. Organizing the 
calculations in this manner (Figure 7b) is very efficient, since 
the number of operations for n sources and m observation points 
reduces to O(m+n) as opposed to O(mn) for computing all the 
pair-wise interactions (Figure 7a), a huge benefit when m and n are 
large. Note that the near field does not offer any such simplifica-
tions and is computed in the usual way by adding the individual 
point source contributions.

Single-Level, Fast-Multipole Method
Eq. 4 shows that each row of matrix-vector product [A]{q} rep-

resents the velocity response at a given source location due to the 
combined action of all the sources. The total velocity response at 
any observation point (say point 3 or 4 in Figure 8) has contribu-
tions from the near field (sources in the green region) and the far 
field (sources in the pink region). The contribution of the near-field 
sources is dominant given their proximity to the observation point, 
while the far-field sources provide the appropriate background 
level. The near field is computed directly, while the far field is 
computed effectively using FMM. To apply FMM for computing 
the far field, the BEM mesh is enclosed in a computational cube 
that is further subdivided into 64 smaller cubes (two-dimensional 
analogue shown in Figure 8). The sources contained within each 
Level 2 cube are aggregated to form a single equivalent multipole 
source at the cell center. The multipole source is used for the 
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Figure 6. FMM concept – sound pressure at the far-field point F obtained by 
adding multipole source (Q, D) contributions.

Figure 5. Performance of FMM-BEM (red) relative to conventional BEM (blue). 
Here N is the number of nodes in the boundary element mesh.
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Figure 8. Single-level FMM for BEM surface sources.
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Figure 9. Sequence of calculations in Multilevel FMM. Solid circles represent 
acoustic sources; hollow circles represent observation points.

response computation whenever an observation point is in its far 
field. Replacing the source-to-observation point interactions with 
cell-to-cell interactions results in significant speedup.

Multilevel Fast-Multipole Method
The main motivation for multilevel FMM is to maximize the 

portion of calculations that use FMM. The schematic in Figure 9 
shows the sequence of calculations performed in multilevel FMM, 
where the solid circles represent acoustic sources, and the hollow 
circles represent observation points. The arrows represent how 
the acoustic sources are recursively aggregated to form multipole 
sources, which in turn are used for response computation at the 
observation points.

In multilevel FMM, a cell hierarchy is constructed by recursive 
subdivision of Level 2 cells (Figure 10). The cells adjacent to a 
given cell are called its neighbors. The cells at the next level that 
are obtained by subdividing a given cell are called its children. 
Interaction cells are cells at the same level that are not neighbors 
themselves, but whose parents are neighbors. 

Two tree traversals are performed in multilevel FMM. The 
upward pass starts at the finest level (Level 4 in the example 
from Figure 10) and proceeds to the coarser levels. At Level 4, 
the sources contained within each cell are aggregated to form a 
single equivalent multipole source. At the next level (Level 3), 
the multipole sources from the children cell are combined. This 
process continues to Level 2. At the end of the upward pass, we 
have different sets of multipole sources whose expansions are valid 

Figure 10. Multilevel FMM for BEM surface sources.

Figure 11. Downward pass in multilevel FMM.

Figure 12. Sound pressure levels (in near field) radiated by an automotive 
transfer case at 5,000 Hz.

at varying spatial distances from the expansion centers.
The response computation is performed in a downward pass 

that starts at Level 2 and proceeds to the finest level, as illustrated 
in Figure 11 (for the observation point 4), using a multiscale 
approach that uses a coarse representation for the farthest cells 
and increasingly finer resolution as source cells get closer to the 
observation point.

Practical Applications
The following examples demonstrate the applicability of Coustyx 

to analyze complex noise and vibration problems in industry.
Example 1 – Radiation From Gearbox Casing. An automotive 

transfer case distributes the torque between the front and the rear 
axles. Noise radiation from the transfer case housing is an impor-
tant factor affecting product quality. The BEM mesh considered 
for analysis5 was obtained by skinning the structure finite-element 
mesh. From Figure 12, it is clear that the transfer case BEM model 
has a high-fidelity representation of its surface geometry. Mesh 
coarsening and the associated approximations were completely 
avoided. The BEM Mesh has 44202 elements and 41288 nodes. 
The representative element length is about 7.8 mm, and the BEM  
model is valid up to 7255 Hz.

A surface velocity distribution induced by a spherical source 
located inside the transfer case was chosen as the boundary excita-
tion, since it allows comparison with the exact analytical solution. 
Coustyx software allows functional representation for boundary 
conditions, making it very easy to implement this complex spatially 
and frequency-dependent boundary condition.

The surface sound pressure at 5 kHz shows the distinctive 
spherical spreading behavior that is in excellent agreement with 
the analytical solution. It was even possible to observe the quarter-
wave modes of the bolt hole cavities.

Example 2 – Analysis of Transmission Assembly Noise. Noise 
analysis was performed on a system-level model of an automotive 
transmission that included gearbox housing, oil pan and transfer 
case. The structure mesh is extremely complex and includes solid 
elements, shell elements, re-entrant corners, and holes along with 
several rib stiffeners. The skinning algorithms in Coustyx auto-
matically create a valid BEM model suitable for acoustic analysis 
– containing duplicate variable nodes along edge lines, constraint 
equations to handle surface junctions, and jump conditions at the 
free edges, all with minimal user input. The gearbox system model 
shown in Figure 13 has 2000 constraint equations, in addition to 
40908 nodes and 48405 elements. Coustyx FMM-BEM solvers in-
corporate these junction constraints along with the BEM equations 
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Figure 13. Contribution of surface panels to the noise radiation from a 
transmission assembly at 1 kHz.

Figure 14. Noise levels inside a vehicle cabin at 1 kHz.

Figure 15. Transmission loss of a perforated muffler with flow plug.

to yield accurate solutions. Figure 13 depicts the contributions of 
various surface panels to the noise radiation at 1 kHz.

Example 3 – Vehicle Cabin Noise. Interior problems or noise 
prediction within enclosures has been difficult to handle in the 
past due to high modal density and the requirements for very 
fine BEM meshes to accurately capture high-frequency behavior. 
FMM-BEM techniques overcome both these limitations. The SUV 
cabin BEM model has 22836 elements and 22774 nodes. Figure 
14 shows the sound pressure levels in an SUV cabin caused by a 
dashboard speaker at 1 kHz.

Example 4 – Transmission Loss of a Muffler. The transmission 
loss of a perforated muffler with a flow plug was computed in Cous-
tyx (Figure 15). Coustyx has a perforated-plate boundary condition 
option that models the transfer impedance of a perforated plate 
as function of hole density. Taking advantage of symmetry, only a 
quarter model was analyzed. The transmission loss calculations 
from Coustyx analysis are in excellent agreement with published 
experimental results.6

Conclusions
Realistic simulation of full system models in the audible fre-

quency range requires the integration of FMM with BEM, since 
FMM-BEM results in impressive performance improvements while 
retaining the solution accuracy. Next-generation software such as 
Coustyx, with integrated FMM-BEM, represent the way forward 
for acoustic simulations at the system level.
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