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This article illustrates the use of elec-
tronic holography to obtain data for 
calculating modal assurance criteria on 
blade-like structures. The test object was 
a flat aluminum plate clamped at one 
end. It was excited into each of its first 5 
modes, and J0 fringe data were converted 
to numerical data via a pseudo phase-step 
method. The plate was perturbed by fasten-
ing weights to either of the two free corners 
to simulate four modified blades. Modal 
assurance criteria were calculated for the 
unperturbed blade and the four perturbed 
conditions.

It is desirable that replacement blades 
for jet engines exhibit the same vibratory 
properties as the parts they are replacing 
to avoid vibratory fatigue failure dur-
ing engine operation. While matching 
resonant frequencies has been important 
for many years, matching mode shapes is 
also becoming a concern. The ability to do 
this is facilitated by vibration measuring 
equipment such as laser vibrometers and 
electronic holography.

While both technologies offer accurate 
noncontact vibration measurement, they 
have significantly different features. Laser 
vibrometry scans the object under study 
with a laser beam and samples the reflected 
light. This light is combined with a frequen-
cy-shifted reference beam to generate a het-
erodyne signal, which is used to determine 
the vibration amplitude of the point on the 
object being illuminated. Modal frequency 
response may be detected by pointing the 
beam at a single point and scanning the 
sinusoidal excitation frequency of the ob-
ject. Mode shapes may then be obtained by 
scanning the object surface at the frequency 
of each response peak obtained during the 
frequency scan.

By contrast, electronic holography is a 
full-field detection process where the entire 
object is illuminated with laser light and im-
aged onto a television camera. A reference 
beam is combined with the image beam, and 
the phase of the reference beam is stepped 
after each frame, usually by one-fourth of a 
phase cycle. The frames are captured in real 
time and processed to obtain the equivalent 
of a reconstructed hologram image of the ob-
ject. When the object vibrates, the brightness 
of the image is modified by the square of a 
zero-order Bessel function of the first kind, 
J0. The argument of the Bessel function is 
proportional to the vibration amplitude of 
the object and where it is zero. At vibra-
tion nodes, the vibrating object appears as 
bright as the nonvibrating object. Within 
the antinodes, the zeros of the Bessel func-
tion generate fringes that connect points of 
common vibration amplitude. The fringes 

may be converted to numerical data by 
introducing a matching phase modulation 
into the reference beam to shift the Bessel 
function fringes. A set of four shifted Bessel 
function fringe patterns can be used to cre-
ate numerical data in a manner analogous to 
phase-step interferometry.1 This process is 
described in detail in the next section.

With laser vibrometry, if the illuminated 
point on the object happens to lie at the 
node of one of the vibration modes, that 
mode may be missed during the frequency 
scan. Therefore, several frequency scans 
with different probe points may be required 
to assure that all modes are detected. With 
electronic holography, the entire object is 
seen at once, and the response of a vibra-
tion mode is usually very clear. Because 
electronic holography captures data simul-
taneously over the entire object, the number 
of available data points can exceed what is 
practical with laser vibrometry. Also, elec-
tronic holography has an advantage when 
the vibration modes have overlapping fre-
quency response. In such cases, the actual 
response is the phasor sum of modes whose 
relative phase will vary with frequency. 
Near the peak resonance of one mode, the 
response of a combining mode will be very 
nearly 90° out of phase, and the response 
will consist of a standing wave component 
and a traveling wave component. Above or 
below the resonance of one mode, the other 
will combine either nearly in phase or out of 
phase with it and will modify its apparent 
mode shape. With the entire object in view, 
it is much easier to identify and eliminate 
these phenomena and obtain true vibration 
mode data for numerical evaluation.

Quantitative Holographic Analysis
Our company manufactures an electronic 

holography system (K/100 system with the 
HoloFringe300K computer program) that 
was used for this experiment. A description 
of the steps provided by its operating pro-
gram will help one understand the process 
for vibration data recording. The computer 
controls a dual-channel, phase-adjustable 
frequency generator, and one channel sup-
plies sinusoidal excitation to the test object, 
while the other provides sinusoidal excita-
tion at the same frequency to a piezo-electric 
mirror in the reference beam.

Step 1. The program first records an im-
age of the object without vibration to serve 
as a mask during phase unwrapping. It is 
assumed that image points below a certain 
threshold will lie outside the object and 
points above it will lie within the object. But 
the mask can be edited to eliminate points 
that are ambiguous or troublesome, or to 
draw a mask covering the object.

Step 2. The program then displays a stan-

dard time-averaged hologram in real-time, 
which the user can observe to locate the 
vibration mode and identify its frequency of 
maximum response. The user is instructed 
to adjust the amplitude until no more than 
the fifth zero of the J0 function is displayed, 
because beyond that level, the amplitude 
of J0

2 function may be too low to provide 
accurate data.

Step 3. The program switches control 
to the bias vibration generator, and the 
user is instructed to increase its amplitude 
until the zero-order fringe disappears and 
then to adjust its phase until it returns 
with maximum brightness. The range over 
which the zero-order fringe can be seen is 
actually quite broad, and it is typical to find 
phase values below and above this point 
where the zero-order fringe appears equal 
in brightness to its neighbors and then take 
the average of those values. The program is 
set up to instruct the user to find those two 
values in sequence and then sets the phase 
to the average of the two.

Step 4. The excitation to the object is 
turned off, and the user is instructed to 
increase the bias amplitude until the image 
appears as black as possible. This corre-
sponds to the first zero of the J0 function at 
an argument value of 2.4048. The program 
captures that value upon transition to the 
next step. The bias amplitudes used in the 
final data capture are calculated from this 
captured value.

Step 5. The program then proceeds to cap-
ture an image of the vibrating object without 
bias vibration and asks the user to mark a 
point on the zero-order fringe. This point is 
used to tell the unwrapping program where 
the unwrapped phase function should be 
approximately zero.

Step 6. After this point is marked, the 
program then captures four interferograms 
at bias levels corresponding to an equivalent 
phase shift of 135°, 45°, –45°, and –135° 
relative to the periodicity of the J0

2 function. 
The interferograms are processed by a stan-
dard four-step algorithm, and the wrapped 
phase function is displayed. In addition, a 
set of images is created from these data for 
use in phase unwrapping.

Step 7. The program instructs the user to 
save this dataset for unwrapping by a pro-
gram based on calculated unwrap regions.2 
The phase unwrap program first adds multi-
ples of 2p to the values of the wrapped phase 
function to obtain a smooth phase function. 
The entire unwrapped phase function is 
then shifted by a multiple of 2p so that the 
values around the point that was marked as 
lying on the zero-order fringe are as close 
to zero as possible. The unwrapped phase 
function is then read through a look-up table 
that corrects for the fact that the J0 function 
is not actually a cosine function. The final 
data are stored in two files, a *.out file that 
contains 16-bit pixels, where values of 256 
corresponds to one cycle of a phase, and a 
*.img file that has 8-bit pixels scaled so that 
the minimum value is 0 and the maximum 
value is 255. This latter file is used to dis-
play the resulting phase function.
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Figure 1. (a) Blade 1, Mode 1, 139.4 Hz (b) Blade 
2, Mode 1, 136.8 Hz (c) Blade 3, Mode 1, 136.9 
Hz (d) Blade 4, Mode 1, 134 Hz (e) Blade 5, Mode 
1, 134.3 Hz.

Figure 2. (a) Blade 1, Mode 2, 888 Hz (b) Blade 
2, Mode 2, 874 Hz (c) Blade 3, Mode 2, 874 Hz 
(d) Blade 4, Mode 2, 866 Hz (e) Blade 5, Mode 
2, 853 Hz.

Figure 3. (a) Blade 1, Mode 3, 998 Hz (b) Blade 
2, Mode 3, 983Hz (c) Blade 3, Mode 3, 980 Hz 
(d) Blade 4, Mode 3, 956 Hz (e) Blade 5, Mode 
3, 974 Hz.

Figure 4. (a) Blade 1, Mode 4, 2468 Hz (b) Blade 
2, Mode 2, 874 Hz (c) Blade 3, Mode 2, 874 Hz 
(d) Blade 4, Mode 2, 866 Hz (e) Blade 5, Mode 
2, 853 Hz.

Figure 5. (a) Blade 1, Mode 5, 3112 Hz (b) Blade 
2, Mode 5, 3053 Hz (c) Blade 3, Mode 5, 3041 Hz 
(d) Blade 4, Mode 5, 2954 Hz (e) Blade 5, Mode 
5, 2995 Hz.

MAC and Holographic Analysis
The primary purpose of this article is to 

illustrate the use of electronic holography 
data in calculations of modal assurance 
criteria (MAC), which are commonly used 
to quantify the similarity of vibration mode 
patterns on similar but different objects.3 
We will designate two similar vibration 
patterns for two separate structures as Y1 
and Y2. In general these will be vectorial 
quantities, but for holography or laser vi-
brometry systems with a single perspective, 

they will be scalars. The MAC calculation 
for these two patterns is:

where S indicates a summation over the 
number of data points on the object. Note 
that this calculation is self-normalizing, 
and any factor multiplying either pattern 
will be canceled, allowing the MAC values 
to range from 0 to 1.

To apply this calculation to holographic 
vibration analysis data, several things must 
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be considered. First, the images of both ob-
jects should be the same size in the data file. 
This can be accomplished by locating both 
objects the same distance from the holo-
graphic optical head to eliminate variation 
of image size. The holography system used 
in this work uses a zoom lens to provide 
images of the objects under study, and it is 
essential that the zoom lens magnification 
remain constant throughout such tests. It is 
also necessary that the two objects exhibit 
no relative rotation. Small shifts in vertical 
or horizontal position are accounted for by 
software analysis. The same image file that 
is used for guiding the phase unwrap pro-
gram is used to define the valid location of 
the object for the MAC calculations.

Experimental Data
A flat aluminum plate 153 mm long by 

38 mm wide by 3 mm thick was chosen to 
approximate the shape of a blade. It was 
clamped at one end for a length of 24 mm 
to simulate the mounting of a bladed disk. 
The clamping vise was cemented to a trans-
lation stage so that misregistration could be 
simulated. The plate was modified by fixing 
a weight to either of the free corners. The use 
of two weights, 0.15 g and 0.7 g, placed in ei-
ther of the two positions allowed simulation 
of four departures from the modal structure 
of the unperturbed plate. The weight of the 
entire plate, including the clamped section, 
was 47.7 g. 

Figures 1 through 5 show the five vibra-
tion modes recorded as J0 fringes for the five 
conditions of the plate, which have been 
designated as different blades, Blades 1, 2, 
3, 4, and 5. The images have been organized 
to show Mode 1 for Blades 1 through 5 in 
one column, Mode 2 for Blades 1 through 
5 in the next column, etc. This allows com-
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Figure 6. Image data: (a) Blade 1, Mode 5(b) Blade 
2, Mode 5 (c) Blade 3, Mode 5 (d) Blade 4, Mode 
5 (e) Blade 5, Mode 5.

parison of how the modes have changed 
with the perturbation. Figures 6a through 
6e show *.img file images of the data for the 
fifth modes of Blades 1 through 5, and they 
are located to the right of their correspond-
ing J0 images.

Discussion
Table 1 shows an array of the calculated 

MAC values for the five blades and their cor-
responding five modes. The values of 1.0 in 
the first column are the result of MAC calcula-
tions comparing Blade 1 to itself via exactly 
the same data files. The values of 0.998 for the 
first row in the row labeled Mode 1 show that 
very little change occurred to that mode shape 
due to any of the four mass perturbations. The 
values in Columns 2 and 3 are also quite high 
and indicate that the perturbations due to the 
0.15-gram weight had very little effect, if any, 
on the mode shapes. However, the values in 
Columns 4 and 5 show some significant effect, 
and this is expected from looking at the mode 
shapes shown in Figures 1-5. 

Table 1. MAC calculations for five modes of five blades shown in Figures 1 through 5.

	 Blade 1	 Blade 2	 Blade 3	 Blade 4	 Blade 5
Mode 1	 1.0	 0.998	 0.998	 0.998	 0.998
Mode 2	 1.0	 0.992	 0.995	 0.957	 0.953
Mode 3	 1.0	 0.982	 0.984	 0.949	 0.925
Mode 4	 1.0	 0.994	 0.994	 0.981	 0.986
Mode 5	 1.0	 0.993	 0.988	 0.967	 0.969

Table 3. Admixture coefficients for mass perturbation of modes of test plate.

	 Frequency 	 Blade 1	 Blade 2	 Blade 3	 Blade 4	 Blade 5
Mode 1	 139	 1.000	 0.025	 0.020	 0.003	 0.002
Mode 2	 888	 0.025	 1.000	 3.801	 0.149	 0.089
Mode 3	 998	 0.020	 3.801	 1.000	 0.196	 0.115
Mode 4	 2463	 0.003	 0.149	 0.196	 1.000	 1.677
Mode 5	 3112	 0.002	 0.089	 0.115	 1.677	 1.000

Table 2. Flat plate compared with itself 
shifted by 2.5 mm.

	 Blade 1	 Blade 2
Mode 1	 1.0	 0.998
Mode 2	 1.0	 0.997
Mode 3	 1.0	 0.994
Mode 4	 1.0	 0.993
Mode 5	 1.0	 0.992

In assessing the numbers in Table 1, it 
is desirable to have an indication of what 
constitutes the maximum MAC value that 
can be expected between two blades that 
are identical in all respects except for the 
microstructure of their surfaces. When 
illuminated with laser light, the unique 
microstructure of a surface will give rise to a 
unique microstructure in the reflected light, 
which is referred to as a speckle pattern. 
This in turn gives rise to a noisy fluctuation 
in the values of vibratory displacement in 
the data captured by this system.

To get an estimate of the level of error that 
this effect can create, the same five vibration 
modes were recorded of the unperturbed 
blade in two lateral positions relative to the 
holography system. The translation, in the 
order of 2.5 mm, was enough to completely 
decorrelate the reflected speckle pattern, 
which depends on illumination angle, and 
yet, since the plate itself was unchanged, 
simulate two distinct but identical struc-
tures. Table 2 shows the results of MAC 
calculations for these five modes. The ef-
fect of this source of error is less than one 
percent.

Prediction of Mode Shape Changes
Changes in mode shapes and frequen-

cies can be estimated by perturbation 
theory.4 For a purely mass perturbation, as 
in this case, the frequency change can be 
expressed as:

where:
	 Mn	=	modal mass of nth mode number, de-

fined as the integral of mass density  
times Yn

2

	∆Mn	=	integral of the perturbing mass dis-
tribution times Yn

2

	 fn	=	frequency of the mode
	 ∆fn	=	change in modal frequency

The change in any mode shape can be 
expressed as an admixture of the original 
mode shape and small amounts of all the 
other original modes according to the matrix 
equation:

where the prime denotes the perturbed 
modes, and Cnk are the admixture coef-

ficients. The diagonal elements of the C 
matrix are unity, and the off-diagonal ele-
ments are defined as:

and

where DMnk is the integral of the distribu-
tion of perturbing mass times the product 
YnYk. Ckn and Cnk are both the amount 
of mode k subsumed by mode n due to 
the perturbation; however, Cnk is used for 
modes higher in frequency than the mode 
considered, while Ckn is used for those 
lower in frequency.

For a given mass perturbation, the fre-
quency factor in Eqs. 4 and 5 gives an 
indication of how modes are most likely 
to be affected by a given mass perturba-
tion. Clearly, the closer two modes are in 
frequency, the more likely they will admix 
due to the perturbation. Calculation of the 
admixture coefficients for these five modes 
leads to Table 3).

Mode 1 has very small admixture coef-
ficients; therefore, we do not expect much 
change in its mode shape. The admixture 
coefficients between modes 2 and 3 are the 
highest, followed by those between Modes 
4 and 5. These predictions are in reasonable 
agreement with the MAC data in Table 1.

Conclusion
Electronic holography provides an ef-

ficient method for identifying vibration 
modes of structures and recording vibration 
modes as numerical data in a form usable 
for modal assurance criteria calculations. 
As such, it is a viable alternative to laser 
vibrometry for this application.
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Please visit www.pcholo.com for more informa-
tion on the K/100 system with HoloFringe300K 
computer program

The author can be reached at: kastetson@snet.
net.

		  (2)∆ ∆f f M Mn n n n/ /=

		  (3)′  = [ ][ ]Ψ Ψn nk nC

		  (4)C M M f fnk nk k k n= ( ) −( )∆ / / /2 2 1

		  (5)C M M f fkn nk n n k= ( ) −( )∆ / / /2 2 1


