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shakers can be updated to involve non-Gaussian characteristics 
such as kurtosis, which can be controlled in the same closed-loop 
iterative manner as the PSD.3-6 If the kurtosis value, Ki

dr , of the 
shaker drive signal is increased or decreased, the kurtosis of the 
acceleration feedback, Ki

acc , will follow it. So the kurtosis can be 
adjusted similarly to the height of a PSD line:

with only one such correction for the entire random signal, not N 
corrections as for the PSD.

Leading controller manufacturers such as Vibration Research, 
Unholtz-Dickie, MB Dynamics, and IMV (Japan) have recognized 
the need for a non-Gaussian random testing approach and have 
started using it.7-10 Currently, their commercial implementations 
are restricted to increasing kurtosis only. The motivation for this 
objective was established in References 3,4,5,7,10. However, is it 
possible to go the other way and decrease kurtosis to generate a 
shaker excitation still with the given PSD but having a time his-
tory smoother than Gaussian? Will a smaller kurtosis value really 
lead to shaker vibration with less distinctive peaks; that is, with 
a lower crest factor? If yes, to what extent will the crest factor be 
lowered? These are the questions addressed here.

Kurtosis and Crest Factor
Implementation of non-Gaussian random simulation in vibration 

testing means controlling a much wider diversity of probability 
distributions of the generated excitations. Various deviations from 
the Gaussian model can be considered but this study focuses on 
controlling the probability of the occurrence of high-amplitude 
time history peaks. In other words, we look at how frequent and 
distinctive high peaks are in a time history block of a limited length. 
That is characterized by the kurtosis parameter: 

Kurtosis is associated with the fourth central moment M4 of 
the signal’s probability density function (PDF) denoted P(x) in 
Eq. 5. The root-mean-square (RMS) value, s, of the signal is also 
involved.

If the Gaussian PDF, P x xG ( ) exp( / ) / ( )= - 2 22 2s s p , is substi-
tuted into Eq. 5, the integral results in 3s4, thereby making the 
kurtosis value equal to 3, regardless of the RMS value, s. So if a 
random signal is Gaussian, then K=3 is the exact theoretical value 
for its kurtosis. If the signal is non-Gaussian with more frequent 
high-amplitude peaks, then PnG(x)>PG(x) for large arguments x. 
With such an increase, the integration in Eq. 5 results not in 3s4, but 
more, making the kurtosis K>3. In the opposite case of PnG(x)<PG(x), 
the corresponding kurtosis value is K<3.

Kurtosis is a useful alternative to the common crest factor char-
acterization of a signal. The crest factor is the ratio of the absolute 
maximum of a signal to its RMS value. That is:

The kurtosis parameter (Eq. 5) is more robust because, being an 
integral-based characteristic, it summarizes the effect of various 
extreme peaks. The crest factor (Eq. 6) is not as comprehensive; it 
takes into account only a single peak, the largest in the captured 
time history. Furthermore, in contrast to kurtosis, no strict theoreti-
cal value can be defined for the crest factor of a Gaussian signal 
because the magnitude of the largest peak depends on the length 

Non-Gaussian random vibration testing with kurtosis control 
has been known as a way of increasing the excitation crest fac-
tor, more realistically simulating ground vehicle vibrations and 
other situations when the time history includes extreme peaks 
higher than those of a Gaussian random signal. The opposite ac-
tion may also be useful in other applications where a lower crest 
factor is desired. This article reviews two methods of kurtosis 
control, polynomial transformation and phase selection. We 
will show that non-Gaussian phase selection during inverse fast-
Fourier transform (IFFT) signal generation can reduce kurtosis to 
1.7 and bring the crest factor from 4.5 to 2. The phase selection 
method does this without any loss of the controller’s dynamic 
range that inevitably occurs with polynomial transformation of 
time histories.

Shaker controllers for random vibration testing can be based 
on the well-established FFT/IFFT method.1,2 In this application, 
the test is specified in the frequency domain by a power spectral 
density (PSD), and actual time histories are reconstructed from the 
prescribed PSD by the inverse Fourier transform. It means that the 
shaker is driven by a multifrequency signal with a large number 
of harmonics, N:

The amplitudes, An, of the harmonics are determined

according to the given PSD shape, S(f), that is discretized with 
the frequency increment, Df. The phase angles, jn, are defined as 
samples of a random variable uniformly distributed in the range 
from 0 to 2p radians. If a different set of phase values is used in 
each sequential data block generated according to Eq. (1), then the 
excitation obtained is a pseudo-random signal. It has a discrete 
power spectrum but, if necessary, a technique of windowing and 
overlapping time history blocks can be implemented1-3 to make 
the resulting signal closer to true-random with a continuous 
spectrum.

The discrete Fourier transform model works well for digital ran-
dom controllers. It allows easy correction of the input PSD shape 
using the acceleration feedback signal collected from the unit under 
test. A closed-loop iteration procedure is arranged to control the 
PSD of the shaker test vibration. The height of a certain spectral 
line, S n fi

acc( )D , located at the frequency f=nDf in the acceleration 
feedback PSD on i-th iteration, may become more (or less) than 
what it should be according to the test specification, Sspec(nDf), at 
this frequency. To compensate for the difference between S n fi

acc( )D  
and Sspec(nDf), the height of the spectral line, S n fi+1

dr ( )D , in the 
drive signal PSD on the next (i +1) iteration should be decreased 
(or increased) compared to the previous iteration value S n fi

dr( )D . 
Mathematically, this can be expressed as:

Equation 3 is repeated for each of N spectral lines within the 
drive signal PSD for the next iteration. Then all discrete spec-
trum values, S n fi

dr
+1( )D , obtained are substituted into Eq. 2, and 

a new drive signal time history is generated according to Eq. 1. 
Such iterations can be continued until the acceleration feedback 
spectrum, S n fi

acc( )D , is within desired tolerance of the specified 
target profile, Sspec(nDf).

This classic technique for simulating random excitations on 
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dynamic range is not required from the controller, or if the test 
specification is mildly non-Gaussian and the harmonic distortions 
are not intolerably large. In these limited situations, the polynomial 
transformation method can be satisfactory. 

However, generally speaking, PSD distortion is a major dif-
ficulty when using the polynomial transform. The problem can 
be avoided if two conditions are met. Firstly, changes to control 
the kurtosis should be done when generating the time history, not 
after the generation. Secondly, these changes should be adminis-
tered by the use of parameters that do not affect the PSD. Since 
the power spectrum does not depend on harmonics phases, they 
can be manipulated to accomplish non-Gaussian simulation as 
discussed subsequently. 

Kurtosis as a Phase-Controlled Parameter
The essence of the phase-selection method is that the variables 

are separated; amplitudes are still determined from the PSD ac-
cording to Eq. 2. But the phases, jn, are not all randomly chosen. 
Instead, some of them are now used to adjust kurtosis. Thus, both 
characteristics, the PSD and the kurtosis, are controlled indepen-
dent of each other. To achieve this, a general equation is needed 
for the kurtosis to be determined via the parameters involved in 
Eq. 1 for time history generation.

The fourth PDF moment, M4, that defines the kurtosis can be 
calculated not only in terms of the PDF as in Eq. 5, but also directly 
from the time history, x(t):

A similar equation holds for a PDF moment of any order simply 
by changing the power superscript in the integrand. Particularly for 
the second moment, it will be {x(t)}2 instead of {x(t)}4.The second 
moment, M2, is actually RMS squared; i.e. (M2)2 can be used in 
Eq. 5 instead of s4.

For a stationary ergodic random signal, the moment M4 or that 
of any other order is found by Eq. 9 with the time history length, 
T, theoretically approaching infinity. However, for a pseudo-ran-
dom signal generated according to Eq. 1, we use a finite data block 
whose length is T=1/Df . Therefore, the fourth and other moments 
calculated using Eq. 9 are averaged over period T, not infinity. 

Now Eq. 1 can be substituted into Eq. 9 or a similar equation for 
M2. If the integrals obtained are taken analytically, both moments 
M2 and M4 are expressed in terms of amplitudes An and phase 
angles jn. For the second moment:

integration poses no problem, because an integral of a product 
of two cosine functions from different harmonics with different 
subscripts (n1 and n2) is zero and an integral of cos ( )2 2

n
T

t n
p f+  

over period T is equal to 0.5. Equation 10 results in the second 
moment, or the mean-square-value, s2, being a function only of 
the amplitudes of the harmonics:

with the phases, jn, uninvolved. 
It is much harder to derive an equation for the fourth moment, 

because the fourth power in the integrand in Eq. 9 produces cosine 
function products with more diverse combinations of harmonic 
indices n1, n2, . . . than in Eq. 10 which involves the second power. 
When all these combinations for M4 are looked at, it appears that, 
after being integrated, many of them vanish similarly to the second 
term of the integrand function in Eq. 10. Some of the combinations 
result in sum functions involving only An

2 for all harmonics but no 
dependence on phases as in Eq. 11. 

Distinct from the second moment, however, there will be non-
zero components in M4 that are functions of both amplitudes An 

of a time history sample.
Therefore, it is harder to quantify non-Gaussian deviations in 

terms of crest factor than in terms of kurtosis. In practice, for record 
lengths typical in shaker testing, CF=4-4.5 can be considered as 
corresponding to the Gaussian kurtosis value KG=3. It is most im-
portant to note that for non-Gaussian random signals, the kurtosis 
and the crest factor follow the same pattern departing from the 
above values either up or down but both in the same direction.

Techniques for closed-loop random testing with kurtosis increase 
were developed first4-8 to raise the crest factor to realistically 
simulate ground vehicle vibrations and other situations when the 
time history includes excessive peaks higher than those appearing 
in Gaussian random signals. However, an opposite action of crest 
factor decrease may also be useful for other test specifications, 
including replacing sigma clipping.11

Polynomial Transformation Can Decrease Kurtosis
The oldest method for generating a non-Gaussian signal is to 

generate a Gaussian time history using Eq. 1 as discussed earlier, 
and then to modify it using a functional transformation, y = f(x), 
that converts digitized instantaneous values of the initial signal one 
by one into a new signal. The transformation can be conveniently 
prescribed in polynomial form with a third-order polynomial suf-
ficient for kurtosis manipulations.

To increase kurtosis,5,12 let x(t) be the standardized Gaussian 
signal (with zero mean and RMS equal to 1) and calculate the 
transform as:

Then the cubic term governed by an appropriate choice of the 
coefficient a3 will stretch those x(t) values that are larger than 
1. This action changes the distribution of instantaneous values, 
making higher peaks more prevalent. As a result, the transformed 
signal, y(t), acquires higher kurtosis and crest factor.

To decrease kurtosis and crest factor, we need an opposite ef-
fect on the transformed signal so that it has peaks not as high as 
the original Gaussian signal. Actually, the same Equation 7 can be 
used12,13 to model the required change in peak behavior, but now 
y(t) must be the standardized Gaussian signal, and x(t) must become 
the required signal with lower kurtosis and crest factor. 

For K<3, an analytical solution was obtained13 for the coefficients 
a1 and a3 in terms of the desired kurtosis value, Kd:

where:

However, even with coefficients a1 and a3 determined, we do not 
really have the transform, since the controller needs a non-Gaussian 
instantaneous value, x(t), to be calculated from the given Gaussian 
value, y(t), not vice versa as in Eq. 7. 

By solving Eq. 7 as an equation in x(t), the required transforma-
tion function has been found in closed form. This is important for 
the controller’s loop time. Actually, our functional transform for 
kurtosis decrease is not a polynomial transform, as was the case 
for kurtosis increase5,12 when using Eq. 7 directly. Nonetheless, 
the method continues to be called polynomial because it is still 
based on the polynomial relationship between the instantaneous 
values of the input and output signals involved. 

Gaussian-to-non-Gaussian signal transformation was initially 
recommended12 for preparing non-Gaussian time histories offline 
before running a test and then reproducing them on the shaker 
using the Time Waveform Replication mode. Later this approach 
was extended and modified5,6 into a method that could be used 
in the closed-loop frequency domain control mode. In this case, 
the polynomial transformation becomes just a post-IFFT signal 
processing addition, still within regular closed-loop FFT/PSD 
vibration testing procedures.

The polynomial transformation method (for both the kurtosis 
decrease discussed here and for the increase developed earlier) 
has an inherent tendency of introducing PSD distortions. This is 
of less concern if the PSD specification profile is such that a wide 
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and phases jn. The structure of the fourth moment equation is:

Equation 12 is not the complete formula for M4. More terms need 
to be included that are also functions of amplitudes and phases as 
the third term in Eq. 12. The behavior of all these phase-dependent 
terms is similar, and we will discuss this using the last term in 
Eq. 12 as an example.

First, note that when calculating kurtosis by dividing Eq. 12 by 
(M2)2 according to the kurtosis definition, a value of 3 emerges from 
the first term in Eq. 12. This is true for any pseudo-random signal 
regardless of its amplitudes and phases. Thus, we are looking at 
something originating from the Gaussian kurtosis value, KG=3, 
but different from it because of the contribution of the second 
and third terms in Eq. 12 and other phase-dependent terms not 
shown in Eq. 12.

The second term in Eq. 12 comes with a negative sign that 
reduces the kurtosis from 3, but this decrease is very small. For 
example, with 500 spectral lines in the PSD (N=500 in Eq. 1), the 
kurtosis is decreased by this second term from 3 to about 2.99. 
For more spectral lines, the change is even smaller. The exact 
value of a combination of the first two terms in Eq. 12 depends 
on the harmonic amplitudes An; i.e. on the PSD shape. However, 
regardless of the PSD and the harmonic phases used to generate 
the pseudo-random signal, any changes in kurtosis are so small 
that they are within the precision of a kurtosis calculation from 
experimental data.

With only the first two terms in Eq. 12 taken into account, the 
kurtosis essentially remains the Gaussian value. It is the third and 
other similar terms omitted in Eq. 12 that make the kurtosis flex-
ible. This is due to the fact that all these terms involve not only 
the harmonic amplitudes, An, but the phases, jn, as well. In the 
third term of Eq. 12, the argument of the cosine function is itself 
a function of phases f f fn n n1 2 3

,   and  of the same harmonic com-
ponents that are present in the product of amplitudes A A An n n1 2 3

2 . 
All subsequent terms in the fourth moment equation that are not 
shown in Eq. 12 have similar structures.

Summation in the third and subsequent terms of Eq. 12 is 
performed only for those combinations of subscripts n1,n2,n3 that 
satisfy conditions written under the summation symbol. Thus, the 
relationship between the harmonic subscripts n1,n2,n3 such as:

must be observed for this trio to form a member of the third sum in 
Eq. 12. For hundreds or even thousands of spectral lines in mod-
ern controllers, there will be plenty of subscript groups n1,n2,n3 
satisfying the condition set by Eq. 13.

If the phase angles, jn, of the harmonics are chosen in a random 
manner, as in the classical random control technique discussed 
previously, the cosine function in Eq. 12 also produces random 
values distributed uniformly in the interval from –1 to 1. These 
random values, corresponding to different subscript groups, com-

pensate each other, bringing the result of summation close to zero 
as the number of groups is large. 

The non-Gaussian phase selection method alters the aforemen-
tioned randomness of cosine function outputs by prescribing 
some of the phases in a certain deterministic way such that the 
corresponding term in Eq. 12 becomes positive or negative, instead 
of being close to zero. The outcome of such an action is that the 
kurtosis is increased or decreased from the Gaussian value, KG=3. 
As it is only some of the phases that become deterministic, with the 
rest of them remaining random, each new data block generated ac-
cording to Eq. 1 comes with a different set of harmonics phases.

The data blocks in the non-Gaussian signal are all different, as is 
the case for the classic Gaussian pseudo-random generation tech-
nique. The non-Gaussian time history never repeats itself, as seen 
in Figure 1, which depicts two signals: one (at the top) with K=1.7 
and another (bottom) with K=5, with each containing two blocks 
of 4096 data points. The labels on the vertical axis correspond to 
1s, 2s, 3s, 4s, . . . which is instrumental for observing the crest 
factor value. For the first signal, the crest factor was CF=2.0; for 
the second CF=7.4.

Effect of Kurtosis on Controller’s Dynamic Range
Increasing or decreasing kurtosis using polynomial transforma-

tion introduces harmonic distortions to the drive signal. If, after a 
drive signal is IFFT-generated, any alterations – either polynomial 
transform or otherwise – are made to the time history, the drive 
signal spectrum will no longer correspond exactly to the target 
PSD. These changes in the PSD are spread over the entire frequency 
interval, including both the test specification bandwidth and out-
of-band frequencies.

Some harmonic distortions caused by polynomial transforma-
tion can be compensated for in the closed-loop iteration process 
by decreasing the corresponding discrete PSD values S n fi

dr
+1 ( )D  for 

the next iteration according to Eq. 3. But this does not work for the 
out-of-band frequencies or in the vicinity of sharp resonances. For 
the out-of-band frequencies, all spectral line amplitudes, An, are set 
to zero instead of being calculated by Eq. (2). At these frequencies, 
therefore, nothing contributes to generation of the time history and 
the discrete PSD values, S n fi

dr
+1 ( )D , cannot be decreased further. 

If any PSD content is present at the out-of-band frequencies, it 
is caused by harmonic distortions only and will stay there as an 
uncontrollable “noise floor” in the PSD.

The harmonic distortions and the increased noise floor they 
produce affect not only the out-of–band frequencies. The shaker 
armature, test fixture, or the unit under test may have resonances 
where, according to Eq. 3, the controller will need very low 
S n fi

dr
+1 ( )D  values in the drive signal PSD to match the required 

acceleration PSD specifications, S n fspec( )D , for this spectral line. 
However, the controller output cannot be lower than the distor-

tion-induced noise floor. Consequently, the noise floor level now 
determines the minimum PSD value that can be controlled. Clearly, 
if the PSD noise floor rises, then the controller’s dynamic range (the 
difference between realizable maximum and minimum PSD values) 
will be reduced. This is the price paid for a simple non-Gaussian 
solution by using the polynomial transformation.

Shaker controller manufacturers regard dynamic range as one 
of the most important performance characteristics14-16 and report 
it to be in the region of 90 dB for modern Gaussian random con-
trollers. A loss of available dynamic range should be expected if 
polynomial transformation is introduced for non-Gaussian random 
vibration testing. But what fraction of this 90 dB disappears when 
switching from Gaussian to polynomial non-Gaussian mode? And 
what happens to the dynamic range when using the phase selection 
non-Gaussian method?

To answer these questions, an experiment was carried out on 
a Derritron VP5/DLA1050 electrodynamic shaker controlled by a 
PC equipped with a National Instruments PCI-MIO-16E-4 DAQ 
board and LabView 7.0 software to accomplish digital-to-analog 
and analog-to-digital conversion of the signals. Kurtosis and crest 
factor were evaluated using data samples of 80 blocks of 4096 
data points each. The power spectrum was analyzed with 2000 
spectral lines and a frequency increment of Df=2 Hz. The target 

Figure 1. Each new data block is different in non-Gaussian signals 
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PSD profile was a uniform spectrum from 20 to 180 Hz and zero 
everywhere else.

Figure 2a shows a Gaussian drive signal that was used initially. 
This signal has a crest factor of CF=4.4. It can be seen in Figure 2b 
that the specified PSD profile was realized experimentally with 
the drive signal dynamic range, DR=80 dB. This drive input pro-
duced an acceleration output signal (Figure 3a) also with CF=4.4. 
The acceleration PSD obtained is shown in Figure 3b. Note the 
dynamic range of the output signal DR=33 dB. This value is less 
than in commercial controllers where special measures are taken 
to achieve higher dynamic range, but it is sufficient to see the 
tendencies discussed below. 

Now look at how it all changes with the polynomial transform 
added to the standard Gaussian technique. The coefficients a1 and 
a3 in Eq. 7 were calculated according to Eq. 8 to decrease kurtosis 
of the drive signal to Kd=1.7. This resulted (see Figure 2c) in the 
crest factor reduced to CF=2.3 from the initial Gaussian value of 
CF=4.4 in Figure 2a. The non-Gaussian drive signal has produced an 
acceleration output signal (Figure 3c) with CF=3.0. It is a substantial 
decrease from CF=4.4 in Figure 3a, but there is a price to pay. 

At the out-of-band frequencies, the acceleration PSD (Figure 
3d) has a much higher level than that of the PSD of the Gaussian 
excitation in Figure 3b. About 70% of the control dynamic range 
has been lost, just 10 dB remaining instead of the initial 33 dB in 
Figure 3b. This is the result of the drive signal dynamic range in 
Figure 2d being only 24 dB rather than DR=80 dB for the Gaussian 
excitation in Figure 2b. That is typically what the non-Gaussian 
method of post-IFFT polynomial transformation can offer, and 
now it will be compared with the performance of the special phase 
selection method.

As previously discussed, the phase angles, jn, in the IFFT pro-
cedure can be manipulated so that the kurtosis value of the signal 
generated by Eq. 1 becomes lower. The amplitudes, An, remain 
responsible for the PSD as in the common Gaussian technique. 
That is what the phase selection method for non-Gaussian random 

shaker control is about. The results obtained by this method for 
the same experimental setup follow. 

A non-Gaussian drive signal with kurtosis K=1.7 is shown in 
Figure 2e, and its magnified fragment is depicted in Figure 4. The 
signal was generated for the same target PSD profile as that used in 
the Gaussian and polynomial transformation experiments (Figures 
2a, b, c and d and 3a, b, c and d). Now, with non-Gaussian phase 
selection control (Figure 2e), the crest factor is CF=2.0, which is 
much less than the value of CF=4.4 for the Gaussian drive signal 
in Figure 2a. Despite such a drastic time history modification, the 
PSD of the non-Gaussian drive signal (Figure 2f) has exactly the 
same low tail for out-of-band frequencies as that of the PSD of the 
Gaussian drive signal (Figure 2b). 

The PSD noise floor for the non-Gaussian simulation using spe-
cial phase selection (see Figure 2f) remains where it was for the 
traditional Gaussian simulation in Figure 2b. This means that the 
drive signal dynamic range is maintained (in this experiment at 
DR=80 dB). After the drive signal kurtosis decrease was achieved 
without compromising the out-of-band frequencies, we can expect 
that the dynamic range of the shaker acceleration signal will be 
as good as for the basic Gaussian simulation and this is confirmed 
by comparing Figures 3b and 3f.

As for the non-Gaussian acceleration time history (Figure 3e), its 
crest factor appears to be CF=2.8. The difference between this value 

Figure 3. Shaker feedback characteristics: (a, b) Gaussian; (c, d) non-Gauss-
ian by polynomial transform; (e, f) non-Gaussian by phase selection.

Figure 4. Fragment of non-Gaussian signal with kurtosis K=1.7 and crest 
factor CF=2.
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Figure 2. Drive signal characteristics: (a, b) Gaussian; (c, d) non-Gaussian 
by polynomial transform; (e, f) non-Gaussian by phase selection. 
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and CF=3 obtained with the post-IFFT polynomial transformation 
(Figure 3c) might look nonessential, but remember that the latter 
comes with the input and output dynamic ranges of 24 and 10 dB, 
while the phase selection method shows an impressive 80 and 33 
dB, which are exactly the same as in the Gaussian mode!

Conclusions 
Two methods of non-Gaussian, closed-loop random control for 

vibration testing have been suggested and realized experimentally, 
first for kurtosis increase, and now for kurtosis decrease. It is im-
portant that in both methods the PSD and kurtosis corrections can 
be done simultaneously in the same iteration procedure to save 
the controller’s loop time.

The non-Gaussian method of post-IFFT polynomial transforma-
tion is easy to implement, but it significantly reduces the dynamic 
range of the controller system compared to traditional Gaussian 
random vibration testing. The dynamic range degradation is un-
avoidable with the polynomial transform, because changes are 
made to the drive signal time history after it has been generated 
by the IFFT, and this results in harmonic distortions. 

Another, more advanced, non-Gaussian method by phase selec-
tion is different, since it decreases kurtosis and crest factor not 
after but in the process of IFFT signal generation. In so doing, 
the multifrequency character of the pseudo-random drive signal 
remains intact with absolutely no alterations from the combination 
of pure sinusoidal components. So there are no harmonic distor-
tions passed to other frequencies, as is the case for polynomial 
transformation. The phase selection method allows us to generate 
shaker excitations with low kurtosis and crest factor while being 
able to preserve the same dynamic range and PSD precision as in 
conventional Gaussian random vibration controllers. 
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