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EDITORIAL
A Common Myth about Mechanical Resonance

Roman Vinokur, Contributing Editor

Generally speaking, myths are more leg-
end than fact, but if not pushed too far, they 
approximately describe the world behavior 
in practical terms. Ancient Mayans believed 
the skies were populated with cosmic ser-
pents and dragons serving as vehicles for 
deities. Based on this hypothesis, Mayan 
priests were actually able to predict solar 
and lunar eclipses. Certainly, such primitive 
science could not help people navigate to 
the Moon nor invent a thermonuclear reac-
tion by analyzing the burning of hydrogen 
in the Sun’s core.

When Apollo 8 mission astronaut Bill 
Anders said “I think Isaac Newton is doing 
most of the driving now,” he meant that 
spaceship movement was governed by Isaac 
Newton’s laws of mechanics. However, 
Newton was more vigilant in describing 
his own achievements: “To myself I am 
only a child playing on the beach, while 
vast oceans of truth lie undiscovered be-
fore me.” 

The best way to engineering success is 
to continue studying new things and ex-
amine common knowledge that may not fit 
present-day requirements. In this context, 
analysis of common “myths” can be very 
effective. Famous composer Igor Stravinsky 
said “I have learned . . . chiefly through my 
mistakes and pursuits of false assumptions, 
and not by my exposure to founts of wisdom 
and knowledge.”

Dual Condition for Resonance. In many 
handbooks, mechanical resonance is gener-
ally defined as: a large vibration caused by 
an oscillating force whose frequency coin-
cides with one of the natural frequencies 
of the resonating body. Strictly speaking, 
resonance occurs at a so-called resonant 
frequency that may differ from the natural 
frequency, but in most practical cases the 
difference is minor.

However, the coincidence of the excita-
tion and resonant frequencies is not even 
mentioned in the existing standard ANSI 
S2.1-2000/ISO 2041:1990: Vibration and 
Shock – Vocabulary. It states: Resonance 
of a system in forced oscillation exists 
when any change, however small, in the 
frequency of excitation causes a decrease 
in a response of the system. Why? Because 
the coincidence of the excitation and 
resonant frequencies is sufficient to create 
resonances only for a 1-DOF (one degree 
of freedom) mechanical system. For multi-
DOF mechanical systems, this condition 
is necessary but may not be sufficient. The 
spatial distribution and orientation of the 
oscillating forces is important as well. 

For example, consider the 2-DOF me-
chanical system of two similar lumped 
masses interconnected with a massless 

spring, shown in Figures 1a and 1b. (Note 
that a damper is not shown for simplicity.) 
The black arrows indicate displacement 
vectors, while the white arrows indicate 
force vectors. Such a system has two 
natural modes: “opposite-phase vibration” 
mode (1a; the masses oscillate in opposite 
directions around the spring center, which 
remains stationary) and “rigid-body” mode 
(1b; the two masses move in phase with no 
spring deformation). The natural frequency 
of the first mode is calculated as:

where k and m are the spring stiffness and 
mass, respectively. As noted previously, the 
resonant frequency is close to the natural 
frequency in most practical cases. On the 
other hand, the resonance cannot be excited 
by two similar “in-phase” oscillating forces 
(Figure 1b). Such forces will only vibrate 
the whole system back and forth as a rigid 
body at any frequency. Therefore, to excite 
the resonance in such a mechanical system, 
two coincidental conditions should take 
place simultaneously:

The oscillating frequency must be equal •	
to the resonant frequency of the “oppo-
site-phase vibration” mode.
The oscillating forces must include a •	
pair of “opposite-phase vibration” com-
ponents. 
Indeed, the second condition can be 

fulfilled in a multitude of practical situa-
tions. In particular, if the oscillating force 
F is applied to the second mass and no 
force acts upon the first mass (Figure 2a), 
such a spatial arrangement is equivalent 
to a combination of two pairs of oscillating 
forces with an amplitude of 0.5 F (Figure 
2b); the upper pair excites opposite-phase 
vibration, and the lower pair shows rigid-
body motion.

Spatial Force Distribution. The 2-DOF 
mechanical system shown in Figures 3a 
and 3b consists of two identical masses 
m supported by identical vertical springs 
with stiffness k and firmly attached to the 
ends of a perfectly rigid and massless rod. 
The rod length is 2L. Such a system has two 
natural modes:

“Piston” mode – in Figure 3a, both masses •	
move “in phase” up and down with no 
rotation about the rod center, which is the 
system center of mass.
“Rocking” mode – in Figure 3b, the •	
masses rotate around the center of mass, 
which remains in equilibrium.
The natural frequency of the piston mode 

calculates:
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Figure 1. Vibration modes of a two DOF mechani-
cal system with force vectors (white) and displace-
ment vectors (black).

Figure 2. Decomposing an arbitrary force into 
modal components.
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Figure 3. Vibration modes of a two DOF mechani-
cal system with differing force and displacement 
vectors.
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but lack “hands on” experience with the 
machinery they model. This can severely 
handicap their ability to interpret the simu-
lation results obtained.

Design engineers can never be 100% 
certain of the structural reliability of their 
creations until a prototype or pre-produc-
tion sample is built to “speak for itself” 
during vibration fatigue and shock testing. 
Simulation test conditions must be close to 
real operation conditions to avoid wrong 
predictions. Occasionally, a new high-speed 
vehicle successfully passes all the simula-
tion and laboratory testing and promptly 
fails in real-world operation.

Since most structural failures occur at me-
chanical resonances, it is important to test 
the prototypes under real-life resonant con-
ditions. Measured acceleration of a system 
tested on a shaker may be high, and the reso-
nance frequency may be carefully explored 
and correlated to the design FE model. But 
the environment encountered in real life 
can present different loading patterns that 
excite untested vibration modes. A clear 
understanding of resonances in multi-DO 
F mechanical systems is an effective tool 
to predict and fix structural problems even 
before a vehicle is tested under real road or 
flight conditions. In combination with true 
experimental data, this should help create 
reliable products. 

The author can be reached at: rvinokr@aol.com.

The natural frequency of the rocking 
mode calculates:

where J = 2mL2 is the moment of inertia 
of the system. The natural frequencies for 
both modes coincide. However, the system 
vibrates in the piston mode if the two 
oscillating forces acting upon the masses 
are identical (Figure 3a) and in the rock-
ing mode if the oscillating forces have the 
same magnitude but opposite directions 
(Figure 3b).

Which Coincidence Condition? Reso-
nance of an ideal 1-DOF mechanical system 
is excited due to the coincidence of the 
oscillating forcing frequency and resonance 
frequency. In this case, the force is always 
applied along the system axis, and just one 
natural vibration mode exists. In an ideal-
ized thin plate of infinite span, where bend-
ing waves are excited by incident sound 
waves in air, a powerful resonance occurs 
if the wavelength of the “along-plate” com-
ponent of an incident sound wave coincides 
with that of a free bending (flexural) wave 
propagating in the plate (Figure 4). Here 
the frequencies of the incident and bending 
waves should coincide automatically as a 
consequence of the energy conservation 
law. Since in this case, the incident wave 
plays the role of the exciting force, the 
resonance is driven by a “force distribution 
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Figure 4. coincidence frequency of an acoustically-
excited structure.

coincidence.”
In real multi-DOF mechanical systems, 

both frequency and force distribution coin-
cidence effects are of practical importance. 
The frequency coincidence may become 
more important because of the input vi-
bration energy redistribution between the 
system degrees of freedom, in particular 
at high frequencies. But at relatively low 
frequencies, such a randomization is less 
significant.

Importance of Understanding Practi-
cal Mechanical Resonances. According 
to Albert Einstein, “intellectuals solve 
problems, geniuses predict them.” Many 
industrial products, particularly in automo-
tive and aerospace industries may exhibit 
significant structural reliability even under 
vibration fatigue and shock loading, so NVH 
engineers must be geniuses predicting and 
reducing the risks of structural failure. Even 
with extensive computer modeling, it is 
difficult to segregate all the discrepancies. 
Sometimes computer simulations do not 
predict actual performance characteristics. 
Many contemporary FEA specialists are 
extremely good at analytical computations 


