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Most noise and vibration measurement and analysis systems 
are able to record time history signals for subsequent process-
ing. This article deals with some important aspects of recording 
and processing these data streams in order to maintain analysis 
integrity.

Sampling Theorem
The sampling theorem was presented by Nyquist1 in 1928, 

although few understood it at the time. It was not until Shannon2 
in 1949 presented the same ideas in a clearer form that the sam-
pling theorem was more generally understood. (Reprints of both 
these papers can be found on the web for the reader interested in 
history.) Actually, Shannon stated that the sampling theorem was 
“common knowledge in the art of communication,” but he is widely 
acknowledged for formalizing the mathematics of the sampling 
theorem in a precise and accessible way. The principle of the 
sampling theorem is rather simple, but still often misunderstood. 
As described by Shannon, when a time history is sampled at a 
frequency fs, the spectrum of the sampled signal is the spectrum of 
the analog signal, plus repetitions of that spectrum (and its nega-
tive frequency conjugate), spaced fs apart. For the sampled signal 
to have the same spectrum as the analog signal within, –0 £ f £ fs/2 
the bandwidth B of the sampled signal must be:

Half the sampling frequency fs/2 is generally called the Nyquist 
frequency, after being named so by Shannon. It is important to un-
derstand that if the sampling theorem is fulfilled before sampling 
an analog signal, then the sampled signal is an exact representation 
of the analog signal. In other words, the sampled signal contains 
all information in the analog signal. Why this is so, is not easily 
understood intuitively, but a signal with limited bandwidth cannot 
vary much between two samples.

Mathematically the sampling theorem can be written in terms 
of the interpolation formula expressed by Equation 2:

where Dt is the sampling interval 1/fs. This equation (or an ap-
proximation of it) is used for interpolation in modern systems with 
resampling-based order tracking3 and can also be used to change 
the sampling frequency of a signal. Equation 2 may at first appear 
rather complicated, but is actually quite easy to understand once 
the math is revealed. It says that if you know the sampled signal 
(right-hand side), then you can calculate the original signal x(t) 
at any instance in (analog) time t. To understand what Equation 2 
actually does, the two factors x(n) and the sinc function inside the 
sum in Equation 2 are plotted in Figure 1 for a limited time span 
around t. Equation 2 implies that a sinc (sin(px)/px) is centered at 
the time instant t where we want to calculate the signal x(t), and 
then the values of the sinc are calculated at the sampling instances 
nDt (where the sampled signal x(n) exists). The new value of x(t) 
is the sum of the product of the sampled signal x(n) and the sinc. 
Note also that the width of the sinc is such that its zero crossings 
appear a distance Dt apart.

Three implications of the sampling theorem are discussed here. 
First, we must make sure before sampling a signal that it has no 
frequency content above half the sampling frequency. This is done 
by an analog antialias filter before the A/D converter (ADC).4 The 
antialias filter must have a cutoff below fs/2, as the slope of any 
analog filter above the cutoff frequency is finite. The ratio between 
the sampling frequency and the cutoff frequency of the antialias 
filter is called the oversampling ratio (sometimes oversampling 
factor), and the steeper the slope of the antialias filter, the lower 
the oversampling factor can be. Traditionally the oversampling 

factor was always 2.56 in FFT analyzers, but in some modern 
analyzers with sigma-delta ADCs, the oversampling factor has 
been reduced.

Second, when resampling a signal in practice, a truncation er-
ror will occur because of the finite record length, since Equation 
2 includes a sum of infinite length. The sinc function falls off 
(decreases) by 1/t away from the center point. So in practice, the 
truncation error is most prominent at the ends of the data stream 
where there is limited (or no) data on one side of the interpolation 
point t. Some data at the ends should preferably be excluded after 
resampling; 100 samples are normally sufficient for time-domain 
analysis. If very accurate data are needed, for example, to perform 
input/output analysis in the frequency domain, many thousands 
of points must be discarded at each end.

Third, the sampling theorem says that the signal has to be 
sampled at more than twice the bandwidth of the signal (and not 
twice the highest frequency, as is often erroneously stated). A 
band-limited signal, where the frequency range of the signal does 
not start at 0 Hz and go up to B, but rather lies in some frequency 
range (fc – B/2) £ f £ (fc + B/2), where fc >> B can be sampled at a 
sampling frequency much lower than the frequency fc. Though of 
little practical use for noise and vibration analysis, it is frequently 
used in modern cell phones, where signals in the 1.8 GHz band of 
the GSM network are sampled at a few MHz (typically after down 
conversion to a base-band signal).

Data Quality Analysis
In the noise and vibration analysis community, it has been 

common to reduce time history data to spectra in real time during 
the measurement. This was originally implemented in the first 
FFT analyzers in the 1970s due to the high cost of memory, but 
has since been widely adopted as a standard. Although time his-
tory recording is possible in most commercial software today, the 
software architecture is still usually based on frequency domain 
analysis. This is an unfortunate habit, since there are very good 
reasons to save time history data for later processing. One reason 
is due to the nature of frequency analysis, since all information 
about the spectral content of a signal cannot be analyzed with one 
set of parameters (time window and frequency increment). Another 
reason is that diagnosing problems with transducers, cables, and 
electrically generated noise can generally only be done in the time 
domain. So we strongly advocate always recording time data, pos-
sibly with the exception of applications like online monitoring or 
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Figure 1. Illustration of principle of interpolation as described by sampling 
theorem.
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shaker testing.
Data quality analysis aims at finding problems with transducer 

(accelerometer) mounting, cable problems, etc., that are commonly 
experienced in noise and vibration measurements. In principle, 
data quality analysis is based on calculating a suitable number of 
statistical parameters of the signal and comparing them with what 
is empirically known (or learned) to be “normal.” Accelerometer 
signals are most common, and we will focus our attention on 
such signals. But our discussion here is largely applicable to any 
dynamic measurements. Dynamic acceleration signals tend to have 
zero mean; otherwise, double integration to displacement would 
be nonzero, meaning the test specimen moved permanently during 
the test. Dynamic measurements on missile launches, for example, 
could be exceptions to this if the piezoelectric transducers used 
have a response down to DC (static). The use of accelerometers 
with frequency performance down to DC, such as piezoresistive 
or capacitive transducers, may require extra care.

Most acceleration signals should have approximately symmetric 
amplitude distribution. This may not always be the case, such as 
vertical acceleration measured on a vehicle driving over potholes, 
or where severe, one-directional shocks are included in the data. 
Measurement equipment often adds a small offset voltage to the 
signal, so good practice is to always remove the mean of the entire 
record before proceeding with the analysis described here.

A first check is to assure that data are approximately symmetric 
around zero. This can be done by observing the minimum and 
maximum values of the signals. Another particularly useful statis-
tical function is skewness. Skewness of a signal x, denoted Sx, is 
the third statistical moment, normalized by the standard deviation 
to the third power:

		

where x is the measured signal, N samples long; mx is the mean 
of x, and sx its standard deviation (rms value, if mean is zero). 
Skewness resembles mean value in the sense that the third power 
keeps negative numbers negative. A skewness value not equal to 
zero indicates that the probability density function of the signal 
is not symmetric around the mean. Normally for dynamic signals, 
the skewness will be zero. A difference between skewness and 
mean is that larger values are emphasized in the skewness by 
the third power. For example, skewness will be more sensitive 
to electrical spikes in the signal in one direction only (positive 
voltage, or negative).

Normalized kurtosis is the fourth moment divided by the stan-
dard deviation to the fourth power:

		   

Here we have something entirely different from skewness, since 
the fourth power makes all values in the sum positive. Indeed, 
the kurtosis resembles the variance, for which the power is two. 
However, kurtosis is more sensitive to large values in the signal 
than the variance. It can be shown that the kurtosis of Equation 
4 for a Gaussian-distributed signal is exactly three. This causes 
some people to define the kurtosis as Equation 4 minus 3, which 
is also often referred to as excess kurtosis; so be sure to check 
your software.

The kurtosis depends on the statistical distribution of the data so 
that if the data exhibit large values more often than corresponding 
Gaussian data, the kurtosis is higher than three. If the kurtosis is 
less than three, then the data exhibit large values less often than 
corresponding Gaussian data. Another way of putting it is that the 
kurtosis is greater than three if the tails of the probability density 
are above the probability density curve of a Gaussian distribution 
(based on the same mean and variance) as that of the signal in 
question, and less than three if the tails are below the same density 
curve. For data quality purposes, there is little need to present the 
probability density, since the kurtosis is easier to interpret.

There is no such thing as a “normal” kurtosis value for “real-
world” measurements. In a mixed signal composed of random, 
modulated tonal and impact components, the kurtosis can vary 

considerably. For data quality purposes, it is therefore necessary 
to compare a particular measurement to normal kurtosis values. 
Usually, comparing the kurtosis between channels is reasonable 
as long as the vibration characteristics are the same for different 
measurement locations. (One case where this would not be true 
is if one transducer is close to some rattling part and other trans-
ducers are not.)

The statistical metrics you choose should preferably be com-
puted two ways; first, the overall values, using the entire recording 
of the signal, should be calculated. Secondly, the same statistical 
metrics should be calculated for shorter time frames, such as one 
second intervals, for example. (A suitable record length depends 
on the bandwidth of the data.) A single spike will tend to disappear 
in the overall kurtosis, where it is more likely to give a significant 
contribution in the frame where it appears. To reduce the amount 
of values to look at from the frame analysis, the largest (without 
sign) of the values could be extracted. Since the intention is to find 
intervals with problems, it may be quite sufficient to find if there 
is any such interval at all in the data.

When recording many channels, or many measurements, a 
useful trick is to normalize each statistical metric by the metric 
of one channel that you assume (or perhaps confirm via manual 
analysis) is without quality errors. A plot of all those normalized 
metrics will clearly show a channel with a potential problem, as 
plotted in Figure 2, where data from an 11-channel measurement 
are presented, and where the kurtosis of at least Channels 1, 2, 4, 
6, 7, and 8 are clearly different than the rest. (The example was 
taken from a case with many problems in the data and is not rep-
resentative of any normal measurement). Those channels should 
be more thoroughly checked.

Time-Domain Analysis
In cases where minimum and maximum values in the time 

signal are to be estimated in an analysis procedure, it is impor-
tant to consider the oversampling ratio. Such procedures are 
most commonly used in fatigue analysis, where different forms 
of reduction processes are used for cycle counting, such as range 
pair and rainflow reductions. Transient analysis, for example in 
pyroshock or shock-table applications, is also a common example 
where time-domain analysis is used. The shock response spectrum 
is another related example. With a low oversampling ratio of 2.56 
or less, as used in FFT analyzers, minimum and maximum values 
will be seriously in error. It is generally accepted to use 10-times 
oversampling, which yields less than 10% error in minimum and 
maximum estimates.5 From the above discussion of interpolation, it 
is clear that 10 times oversampling can be obtained by resampling 
the data immediately prior to the time domain analysis. If storage 
space is limited, data with an oversampling of approximately 2.56 
(whatever the hardware manufacturer has implemented) can be 
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Figure 2. Bar graph with kurtosis values for each of 11 channels normalized 
to that of channel 3. (Channels 1, 2, 4, 6, 7, and 8 are inconsistent, and 
should be considered suspicious in terms of quality.)
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stored without losing any significant data quality. This oversam-
pling ratio is sufficient to allow for accurate resampling when so 
needed (see Example 1).

Another important aspect of data acquisition for time-domain 
analysis is the phase characteristics of the antialiasing filters used. 
In this case, the analog and digital (decimating) antialias filters 
are important. For a transient to come out of a filter undistorted, 
the filter must have linear phase characteristics as a function of 
frequency. Typically, analog antialias filters have significantly 
nonlinear phase characteristics. With modern data acquisition 
systems using sigma-delta ADCs,4 it is quite easy to accomplish 
linear phase characteristics over the entire frequency range, from 0 
Hz to (nearly) fs/2. Not all manufacturers implement this, however, 
because it involves some additional costs for the digital filters. 
Therefore, users must check the documentation and verify that 
the phase characteristics of the measurement system are indeed 
linear prior to using it for any type of transient recording or other 
data where min/max analysis is to be used.

Note that for amplitude probability density estimation, although 
done in the time domain, it is not necessary to use oversampling 
greater than 2.56. The same applies to statistical metrics, such as 
standard deviation and skewness, which are insensitive to the 
oversampling ratio.

Digital Filters
Digital filters are frequently used when analyzing noise and 

vibration data. Their design is a whole discipline of its own and 
here we will touch only on some simple facts that are important 
to understand from a user perspective.

First of all, a rather general definition of a digital filter between 
an input xn and an output yn is shown:

		   

where the filter coefficients al and bk define the filter characteristics. 
If all the al coefficients are zero; that is, the filter is using only old 
input values to compute the output, then the filter is called a finite-
impulse response (FIR) filter, since it will have a finite-impulse 
response of length Nb+1. On the other hand, if there are al coef-
ficients in the filter, it is called an infinite-impulse response (IIR) 
filter. IIR filters are generally more time efficient than FIR filters; that 
is, more powerful filter characteristics can be provided using fewer 
filter coefficients. In some special cases, however, FIR filters are 
preferred, especially if linear phase characteristics are desired.

Many times, we would like to create a digital filter with char-
acteristics equivalent to a specified analog filter, because most 
filter theory was developed in the analog days. However, there 
is no such exact transformation. Therefore, the science of digital 
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filters deals mainly with how to make the digital filter that best 
approximates analog filter characteristics. Here it is sufficient to 
mention a few basic facts about digital filter performance that a 
user must be aware of.

First, the digital filter approximation of an analog filter performs 
more poorly the closer one gets to the Nyquist frequency. So if the 
filter characteristics are defined in the analog frequency domain, 
one should use sufficient oversampling prior to filtering the sig-
nal. In the IEC/ANSI standard for octave filters,6,7 for example, a 
minimum oversampling of five times the highest center frequency 
is recommended. We recommend using a 10-time oversampling 
when performing digital filtering of data unless you are sure some 
other factor is better.

Second, the oversampling factor should not be too large, since 
this produces larger filters (more filter coefficients) and potential 
numerical truncation problems.

Third, a useful trick to produce linear phase characteristics 
even for an IIR filter can be achieved by filtering the data first in 
the normal (time) direction and then running the filter backward 
in time. The scaling of the filter has to be considered when using 
this method. In Matlab®, there is a function filtfilt that performs 
this type of filtering, including scaling the output so that the ef-
ficient (amplitude) filter characteristics are the same as for the IIR 
filter used in the “normal” way. As a curiosity, note that an analog 
version of filtfilt was sometimes used in the old analog days by 
running tape recorders forward and backward. Digital computers 
have certainly made things easier.

Figure 3. Result plot of Example 1 showing the first 100 original samples 
and samples recreated by the resample process.
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Example 1 (see text for details).
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Example 1. Matlab script illustrating effect of resampling.

N=1000;	 % Number of samples to start with
fs=1000;	 % Sampling freq. for simulation
x=randn(N,1);	 % Gaussian noise, oversampling ratio is 2
% Low pass filter data to 10 times oversampling
fc=100;
wc=fc/(fs/2); 	 % Cutoff as part of fs/2
[B,A] = ellip(8,0.1,70,wc);	% 0.1 dB ripple, 70 dB suppression
x=filtfilt(B,A,x); 	 % oversampling ratio of x is 10
x25=x(1:4:end); 	 % Oversampling ratio of x25 is 2.5
xr=resample(x25,4,1); 	 % oversampling ratio of xr is 10
% Plot ‘original’ data x, and the resampled xr
plot(1:100,x(1:100),’o’,1:100,xr(1:100),’+’)
legend(‘Original’,’Resampled’)
xlabel(‘Sample Number’)

Example 2. Matlab script to calculate filter coefficients for 1/1-octave 
filter with center frequency of 500 Hz for three different sampling fre-
quencies – 2, 5 and 1000 kHz.

fc=500; 	 % 1/1 octave center freq.
flo = fc/sqrt(2); 	 % low cutoff freq. (definition)
fhi = fc*sqrt(2); 	 % high cutoff freq. (definition)
fsl=[2 5 1000]*1000;	 % List of sampling frequencies
N=16*1024;	 % Number of frequency lines for H
for n=1:3
	 fs=fsl(n);
	 [b,a] = butter(3,[flo/(fs/2) fhi/(fs/2)]);
	 f=(0:fs/2/N:fs/2-1/N)’;
	 H=freqz(b,a,f,fs);
End

To show an example of filtering and resampling, the Matlab 
script in Example 1 is used to produce random data with Gauss-
ian distribution. An elliptic digital filter is used to filter the data 
to an oversampling ratio of 10 in the variable x, defining the “true 
signal.” The Matlab function filtfilt is used to produce a filter with 
linear phase (not needed but an example of its use). A “simulated” 
sampled signal, x25, is then produced taking every fourth sample 
in x, which will essentially produce the result you would get from 
your measurement system if it uses the traditional oversampling 
ratio of 2.5. Finally, this sampled signal, x25, is used to recreate 
the “thrown away” samples, using the Matlab resample function, 
producing the new signal xr. The resample function essentially 
uses Equation 2 to change the sampling frequency of any signal 
to a new sampling frequency, which is a rational fraction of the 
original sampling frequency.

The resulting plot of Example 1 is shown in Figure 3, where the 
‘o’ symbol shows the original samples, and the ‘+’ symbol shows 
the recreated samples after resampling. As can be seen in the 
figure, the first few samples are not accurate, which is due to the 
truncation effects discussed previously. After those first samples, 
however, the recreated samples are seemingly identical to the 
original. This example shows that 2.5 times oversampling is high 
enough to be able to use the resample function to temporarily get 
a higher oversampling ratio whenever needed with sufficient ac-
curacy, at least for time domain analysis.

An interesting result of Example 1 is plotted in Figure 4, where 
the difference signal x – xr is plotted over the entire record (1000 
samples). From this difference signal, it is clear what is happen-
ing at the ends, where the oscillations of the sinc function at both 
ends is revealed. 

As a second example of filtering, we will use octave filters. 
This example will illustrate the importance of choosing a suitable 
sampling frequency and will also show how easy it is to construct 
a filter in Matlab. Example 2 shows a script that produces filter 
coefficients for a (1/1) octave filter at center frequency fc for three 
different sampling frequencies. The filter conforms to ANSI S1.11 
and IEC 1260 if the sampling frequency is chosen properly.6,7 
According to the standards, octave (all 1/n octaves) filters are 
calculated as third-order Butterworth filters, which is done by 
the Matlab butter function. In Example 2, we also use the func-
tion freqz, which computes the analog frequency response of a 

digital filter. Note that the example only shows the essential code 
to produce the filter coefficients. It should be followed by a filter 
function if you want to use it for filtering your data.

In Example 2, the filter shape (frequency response) is calculated 
for a 500-Hz center frequency and for the sampling frequencies 
of 2 kHz, 5 kHz, and 1 MHz. These frequencies were selected to 
show what happens if the sampling frequency is too low (2 kHz 
is less than five times the center frequency as specified by the 
standards), a suitable sampling frequency (10-time oversampling), 
and finally a sampling frequency that is too high compared to the 
center frequency. In Figure 5, the shapes of the three filters are 
plotted together with the limits as specified by the ANSI and IEC 
standards. As can be seen, only the 5 kHz sampling frequency gives 
a filter shape that conforms to the standard.

This article would not be complete without a few words about 
editing time data. In general, editing time data should be avoided 
if frequency analysis is to be performed on the data, since virtually 
any tampering with the data will change its frequency content. A 
better approach for frequency analysis is to simply skip the time 
block of data containing whatever you want to remove in the av-
eraging process. When other types of analyses are performed, great 
caution always has to be taken when editing data.5
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