O° A P A A AP AP AP A P A ° o°

README . m
Information for files illustrating Sound & Vibration article:
Brandt & Ahlin, Sampling and Time-Domain Analysis, May 2010.

Installation:

Unpack the files into a directory and go inside MATLAB (or Octave if you
are using that)

Make this directory your working directory

Run the following examples (look inside each example m file for comments)
1. datagex.m Data quality, Example 1
2. interpex.m Interpolation example, similar to that used in article
3. octshapes.m Third octaves, Example 2

function K = akurtosis (x);
AKURTOSIS Calculates kurtosis of (columns in) X

K = akurtosis(x);
K kurtosis (third moment over sigma”3)

X Time data, if more than one column, each column is
computed and S is a row vector

Note: The kurtosis here is defined so that it equals exactly 3 for
Gaussian data (normal distribution).

O° A Ad° A A AP AP A A O° o° of

Copyright (c) 2009 by Anders Brandt
Email: abra@ib.sdu.dk

0P o

Sigma=std(x) ;
K=amoment (x,4) ./ (Sigma."4) ;

function M = amoment (x,n) ;
AMOMENT Calculate central statistical moments of columns in x

%

%

% M = amoment (x,n) ;

%

% M Central moment of order n (mean of x removed)
%

% x Time signal(s), in column(s)

% n Statistical order (2 for variance, ...)

Copyright (c) 2009 by Anders Brandt
Email: abra@ib.sdu.dk

P o

m=mean (X) ;

M=zeros (1, length(m)) ;

for col=1:1length (m)
M(col)=mean((x(:,col)-m(col)).”n);

end

function [Pdf, XAx, G, mu, sigmal] = apdf(x, N, NPlot);
APDF Calculate and plot probability density function, PDF
[Pdf, XAx, G, mu, sigma] = gaussian(x, N, NPlot);
pdf Probability density function of x
XAx Amplitude (x-) axis for Pdf
G Gaussian distribution with same mu and sigma as x
mu mean of x
sigma Standard deviation of x
x Time data, in column vector
N Number bins in histogram (number bars in Pdf)
NPlot If = 0, no plot is produced
If =1, a (lin-1in) plot with G is produced,

If = 2, a semilogy plot with G is produced,
which is often better for classification
purposes (to check if x is Gaussian or not)

Calculates and plots the PDF of x using N bins, and if NPlot=1 or NPlot=2
also plots the "theoretical" Gauss curve using mean and standard
deviation of x. The scaling is so that the surface under P4Af = 1.

With no input parameters, apdf() plots a theoretical Gauss curve for a
normalized variable with zero mean and standard deviation of unity,
z=(x-mu) /sigma.

[Pdf, Xax, Gl=apdf(x,N) returns the histogram in Pdf and
the gauss curve at the center values of Pdf, in G and X axis in XAx.
If N is not given, a default of 30 bins is used.

O A° A° A° A° A° A° O O° J° o°

Copyright (c) 2009 by Anders Brandt
Email: abra@ib.sdu.dk

@ o

if nargout == 0
z=(-5:0.01:5)';
pz=exp(-z.72/2)/sqgrt (2*pi) ;
plot(z,pz)
vlabel ('p(z) ")
xlabel ('standardized variable z')
elseif nargout >= 2 % at least Pdf and XAx requested
if nargin == 1
N=30;
NPlot=0;
elseif nargin ==
NPlot=0;
elseif nargin ~= 3
error ('Too many input parameters!')
end
mu=mean (x) ;
sigma=std(x) ;
XMax=max (x) ;
XMin=min (x) ;
XMax=max (abs ([XMax XMinl])) ;
XAx=(-XMax:XMax*2/N:XMax) ';
dx=XAx (2) -XAx (1) ;
Pdf=hist (x, XAX) ;
Pdf=Pdf (:)/length(x) /dx; % Force to column and
G=1./(sgrt(2*pi)*sigma) .*exp(-0.5* ((XAx-mu) . /sigma) ."2) ;
if NPlot == 1

figure
bar (Xax, Pdf) ;
if NPlot ==
hold on
G=G;
plot (XAx,G, 'r: ")
hold off
end
xlabel ('Units of x')
yvlabel (' Probability Density')
elseif NPlot == 2
figure
semilogy (XAx, [PAf G])
xlabel ('Units of x')
vlabel (' Probability Density')
end
end

function S = askewness (x);
ASKEWNESS Calculates skewness of (columns in) X

S = askewness (x);
S Skewness (third moment over sigma”3)

X Time data, if more than one column, each column is
computed and S is a row vector

O A AP A° A° A° A° A° 0P o

Copyright (c) 2009 by Anders Brandt
Email: abra@ib.sdu.dk

@ o

Sigma=std(x) ;
S=amoment (x,3) ./ (Sigma."3) ;

Data quality example
See article in Sound & Vibration:
Brandt & Ahlin, Sampling and Time-Domain Analysis, May 2010.

This is an example of computing and displaying statistical measures in
order to assess the quality of a set of measurements. This example uses
Q

synthesized data, as opposed to the plot in the % article that was
produced based on a real case.

O° P A° A° A° AP 0P o

Copyright (c) 2009 by Anders Brandt
Email: abra@ib.sdu.dk

P o

clear
close all

warning off

% Produce 8 channels of (Gaussian) random data

x=randn (50000, 8) ; % 50,000 samples on each 'channel'
fs=5000; % Used for scaling only

Now 'contaminate' channels 3 and 5 with a sine and a triangle wave,
respectively, to yield a kurtosis other than 3

=(0:1/fs: (length(x(:,1))-1)/fs)'; % Time axis for disturbances
(:,3)=x(:,3)+10*sin(2*pi*50*t) ; % 50 Hz disturbance

T=square (2*pi*0.5*t) ;

T=timeint (T, £s);

x(:,5)=x(:,5)+5*T;

X T o0 0P

(o}

% Produce standard statistics and print on screen

warning off % Warning issued about no. channels > 1, see statchk
statchk(x,50,1, 'DataQual"') % This saves results in file DataQual.mat
fprintf ('printing file DataQual.log to screen:\n\n')

type DataQual.log

fprintf ('\n\n")

warning on

% Plot normalized kurtosis, normalized by channel 1
figure

load DataQual

bar (Kurtosis/Kurtosis (1)) ;

title('Kurtosis Normalized to Channel #1')

xlabel ('Channel"')

% Apparently channels 3 and 5 are not like the others (surprise!)
% Plot to see what they look like

figure

plot(t,x(:,3))

title('Channel 3 - zoom in to see!')

xlabel ('Time [s]')

figure

plot(t,x(:,5))

title('Channel 5')

xlabel ('Time [s]')

% Demo script to illustrate interpolation.

% See Sound & Vibration article:

% Brandt & Ahlin, Sampling and Time-Domain Analysis, May 2010.
%

o

> This example is similar to Example 1 in file filterex.m, but gives more
information.

% The example produces lowpass filtered Gaussian random noise, with an

% oversampling rate of 10. Then it resamples this data to 4 times lower

% sampling frequency, i.e. to an oversampling ratio of 2.5 (still

% fulfilling the sampling theorem!). From those new data points, the signal
% is then upsampled to the original sampling frequency, and the original

% and the new, resampled signal are compared. The results show a good

% agreement, illustrating that interpolation works.

Copyright (c) 2009 by Anders Brandt
Email: abra@ib.sdu.dk

close all

% Produce 'original' random noise, oversampled by a factor of 10, i.e. the
% sampling frequency is 10 times the bandwidth of the data.

% If you zoom in on the data in this plot, you will find that the curve is
% smoothly moving up and down, as you would suspect an accelerometer signal
% to behave.

x=randn (10000, 1) ; % Data vector

fs=1000;

t=(0:1/fs: (length(x)-1)/fs)';

% Low pass filter data to 10 times oversampling
fc=100;

wc=0.1;

[B,A] = ellip(8,0.1,70,wc);

x0=filtfilt (B,A,x);

plot (t,x0)

xlabel ('Time [sec.]')

title(['Original data, bandwidth ' num2str(fc) ', sampling freq. ' num2str(fs)
Hz'])

Now resample data to a sampling frequency of 2.5 times fc. 'Resampling'
here simply means picking every 4th sample, as we are still below the
nyquist frequency, and there will be no aliasing.

If you zoom in on these data, you will find they look 'sharper', similar
to what we normally see on a data acquisition system, because these data
are oversampled with only a factor 2.5. These data are still 'correct'
but give no good description of the actual motion/acceleration of the
measured structure.

x25=x0(1:4:end) ;

fs25=fs/4;

t25=(0:1/£s25: (length(x25)-1) /£s25) ';

figure

plot (t25,x25)

xlabel ('Time [sec.]')

title(['Data vector resampled at ' num2str(fs25) ' Hz']l)

P 0P 0° o° P o o o°

% Plot the original and downsampled signals with asterisks '*' and '+' signs,
% respectively, to indicate the process of decimating the data.

i25=find (t25<.2);

idx=find(t<.2);

figure

plot(t(idx),x0(idx),t(idx),x0(idx),'*',t25(125),x25(1i25),"'+")

xlabel ('Time [sec.]')

title('Original and downsampled signal, first 200 samples')
legend('Original’', 'Orig. Samples', 'Downsampled Samples')

% Now interpolate up to original sampling and plot overlaid with the

% original samples. You should see that the two sets agree very well. If
% you look closely at the first few samples, you will notice they do not
$ fit, because of end phenomena (no data to the left).

xr=resample (x25,4,1);

$xr=interp (x25,4) ; % This is a different way of interpolation
% which is, in this case, actually a little
% bit more accurate. RESAMPLE is more

% general, though, as it works for up and

% downsampling alike.

figure

plot(t(idx),x0(idx), 'o',t(idx),xr(idx), '+")

xlabel ('Time [sec.]')

legend('Original’', 'resampled')

title('Original and resampled signals, first 200 samples')

function [b,a] = noctfilt(n, fc, fs)
SNOCTFILT Create filter coefficients for 1/n octave-band filter

[b,al] = noctfilt(n, fc, fs)

b Filter coefficients as used by, e.g., FILTER command

a Ditto. Can be one or more rows, see fc below.

n Fractional octave number (for 1/n octave filter)

fc Center frequency (frequencies). If length > 1, b,a will
be rows in matrices with one row per center frequency.

fs Sampling frequency

NOTE n must be 1, 2, 3, 6, 12, or 24

This command produces coefficients for a filter that conforms with
IEC 61260:1995, and ANSI S1.11-2004, if possible. If the sampling
frequency is unsuitable, so that the filter shape is not within the
limits, a warning is issued.

0P 0P A0 A A A A A A A° A° A° A° A° O O OP oP of

suitable ratios for fs/fc is approximately 5 < fs/fc < 500.

Copyright (c¢) 2009 by Anders Brandt
Email: abra@ib.sdu.dk

0P o°

0P

Check that the requested n is supported
N=[1 2 3 6 12 241;
if ~ismember (n,N)
error ('Unsupported fractional octave number') ;
end

G=2; % Base two definition

OctRatio=G"(0.5/n) ;

fl = fc/OctRatio;

fh = fc*OctRatio;

fnyg = £s/2; % Nyquist frequency for BUTTER command

[b,a] = butter(3,[fl/fnyg fh/fnyqg]l); % Third order butterworth bandpass filter as
specified by standards.

% Check that filter corresponds to IEC/ANSI standard, or issue warning

[fu, fl, f]=noctlimits(n, fc); % Calculate limits

[Hf, ff]=fregz (b,a,1000, fs) ; Filter frequency response, 100 values
Hf=Hf (2:end) ; Remove zero frequency

ff=ff(2:end) ;

0P o

fu=interpl (£, fu, £ff, 'linear', 'extrap') ; % Interpolate fu onto ff axis
fl=interpl (£, fl, £ff, 'linear’', 'extrap');
if ~isempty(£find(20*1logl0(abs(Hf))>fu)) | ~isempty(£find(20*1logl0 (abs (HEf))<fl))

warning ('Filter shape does not conform with IEC/ANSI standard. Resample data to
different sampling frequency!')

% figure
loglog (ff,fl,ff, fu, ££,db20 (HE))

o

end

function [Lu,Ll,f] = noctlimits(n, fc);

% NOCTLIMITS Calculate upper and lower limits of IEC/ANSI octave filter(s)
%

% [Lh, L1,f] = noctlimits(n, fc)

%

% Lh Upper limit in dB, in column vector

% Ll Lower limit in dB, in column vector

% f Frequency axis in Hz for Lh and L1, in column

%

vector(s). If fc contains several frequencies, each

column in f corresponds to the same column in fc.

P 0P o

n Fractional octave number, 1 for full octaves, 3 for 1/3 oct.

fc Center frequency of 1/n octave filter. can be a row
or a column vector for calculating limits for several bands

This function calculates upper and lower limits of a fractional octave
band as specified in the standards IEC 61260:1995, and ANSI S1.11-2004.
Particularly note that the limits are always the same values, only the
frequencies changes depending on the chosen center frequency/frequencies.
Thus, Lh and L1 are always single columns, even if several center
frequencies fc are calculated.

00 0P 00 AP O AP A 0P o° (D

Copyright (c) 2009 by Anders Brandt
Email: abra@ib.sdu.dk

oP oP

Filter class 0 is used, as there is no reason in MATLAB to make the accuracy
less than the best.

Base two 1s used (the standard gives you the option of base ten or base
two) .

00 0P o0 o

G=107(3/10) ; % This is the constant for base ten definition
2; % This is the constant for base ten definition

@ o°
1l

(o}

% Calculate base frequency break points
OmegaUpper=[G"(1/8) G~ (1/4) G"~(3/8) G~(1/2)*(1-1le-11) G~ (1/2) G G2 G"3 G"4]1-1;
OmegaUpper=1+((G"(1/2/n)-1)/ (sgrt (G)-1)) *OmegaUpper;

if length(fc) == 1
f=fc*[fliplr(1l./OmegaUpper) 1 OmegaUpper]';
else
f=zeros (19, length(fc));
for n=1:1length(fc)
f(:,n)=fc(n)*[fliplr(1./OmegaUpper) 1 OmegaUpper]';
end
end

% Create limits

Lu=[-75 -62 -42.5 -18 -2.3 .15 .15 .15 .15 .15 .15 .15 .15 .15 -2.3 -18 -42.5 -62 -
751";

Ll=[-inf -inf -inf -80 -4.5 -4.5 -1.1 -.4 -.2 -.15 -.2 -.4 -1.1 -4.5 -4.5 -80 -inf -
inf -inf]"';

Script showing effects of sampling freg. on (third) octave digital filter
See Example 2 in Sound and Vibration article:
Brandt & Ahlin, Sampling and Time-Domain Analysis, May 2010.

0P 0P o

The example calculates upper and lower limits for the filter shapes
according to the standards by IEC and ANSI (see the OCTLIMITS command) .
Three sampling frequencies are used, and the center frequency is kept
constant at 500 Hz. The three sampling frequencies are chosen so that
the first is too low to fulfill the filter shape limits, the second
gives filter coefficients that fulfill the filter shapes, and the last
sampling frequency is (way too) large, creating a filter that does not
fulfill the shape.

O° AP A° A° AP AP P o

Copyright (c) 2009 by Anders Brandt
Email: abra@ib.sdu.dk

@ o

clear
close all

% Parameter values

fc=500; % 1/1 octave center freq.

flo = fc/sgrt(2); % low cutoff freqg. (definition)
thi = fc*sgrt(2); % high cutoff freqg. (definition)

% Calculate filter coefficients for three different fs
c={'b','g','k','m"'}; % Line colors for plotting
fsl=[2 5 1000]1*1000; % sampling frequency list

o

warning off This suppresses the check made by noctfilt
which actually checks if the computed filter conforms with standards
Now loop through the three sampling frequencies and for each calculate a
third octave filter frequency response in H
or n = 1:3
fs=fsl (n);
N=16*1024;
f=(0:fs/2/N:fs/2-1/N) ';
[b,a] = noctfilt (3, fc, fs);
H=freqgz (b,a, f, fs);
semilogx (f,20*1ogl0 (abs (H)),c{n})
if n==1
hold on
end
end
warning on

FHh 00 0P o°

Calculate IEC/ANSI standard limits for the octave filter and plot

those limits on top of the frequency responses (FRF) from above. Only the
middle FRF in H will be within the bounds.

[Lu L1 fll=noctlimits (3, fc);

semilogx (fl,Lu, 'r',£f1,L1,'r")

legend (' fs=2K"', 'fs=5K', '£s=1000K")

title('Filter shape limits of ANSI 1.11 and IEC 1260 in red')

axis([200 1000 -60 5])

grid

set (gca, 'XTick', [200 500 10001)

o° o o°

function statchk(x, N, NPlot, FileName) ;
STATCHK Produce some standard statistics of data in (columns of) x

statchk(x, N, NPlot, FileName) ;

ble Time data in column(s)
N Number of bins for PDF computation
NPlot If NPlot=1 a plot with the PDF of x is plotted with

the equivalent Gaussian distribution overlaid
If NPlot=2, the same is plotted with logy scale
If NPlot=0 no plot is produced.

FileName If this string is given, the output of statchk is
redirected to a log file FileName.log in the
current directory (or in the directory indicated in
the string FileName if a full path is given).

Also, the actual statistical vectors are stored in
mat file FileName.mat.

This function performs some standard statistical analysis of time data in x.
Also, a histogram is plotted with N bins centered around 0. If Nplot=1 a plot of
the Gaussian distribution using mean and std of x is overlayed on the histogram.
If N is not given a default of 30 bins are used for the histogram. After calling
this function, a number of variables with generic names are logged in text file
FileName.

If no FileName is given the values are listed on the screen.

O° ° A A A A A A A A A A A A A A A A A A ° o

in FileName!

% WARNING! This command will overwrite an existing log file with the name
%
%

Copyright (c¢) 2009 by Anders Brandt
Email: abra@ib.sdu.dk

@ o

if nargin == 2

NPlot=0;

fid=1;
elseif nargin == 1

NPlot=0;

N=30;

fid=1;
elseif nargin ==

fid=1;
elseif nargin == 4
fid=fopen (strcat (FileName, '.log'), 'w');

elseif nargin > 4

error ('Wrong number of parameters!')
end

[mx,nx]=size(x);

m=mean (xX) ;
Sigma2=diag(cov(x)) ';
Sigma=sqgrt (Sigma2) ;
Skewness=askewness (xX) ;
Kurtosis=akurtosis (x) ;
RMS=sqgrt (1/mx*sum(x."2)) ;
Crest=max (abs(x)) ./RMS;
XMax=max (xX) ;

XMin=min (x) ;

kol=[1:nx];

if fid ~=1
fprintf (fid, 'Output of command STATCHK\n') ;
fprintf (fid, 'Date: %$s\n',datestr (now)) ;

end

fprintf (fid, 'Statistical parameters:\n');

fprintf (fid, '============================\n') ;

[S,El=sprintf ('%5s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n', 'Col."', 'Max', 'Min', 'Mean',
'Crest', 'RMS', 'Std dev', ...

'Variance', 'Skewness', 'Kurtosis');

fprintf (fid, '$s',S);
for col=1:nx,

S2=sprintf ('%5d%12.2g%12.2g%12.29g%12.29%12.29%12.2g%12.2g%12.2g%12.2g"',kol (col), XMax

(col),XMin(col), ...
m(col),Crest(col),RMS(col),Sigma(col),Sigma2 (col), Skewness (col),Kurtosis(col));
fprintf (£id, '$s\n',S2);

end

[row,col]l=size(X);
if (col > 1) & NPlot
fprintf(fid,' Stat: more than one column in vector, graphing only first
column!\n\n"') ;
end
[H, XAx, Gl=apdf(x(:,1),N,NPlot) ;

(o}

)

if nargin ==
S=['save ' FileName ' XMax XMin m Crest RMS Sigma Sigma2 Skewness Kurtosis'];
eval (S)
fclose(fid) ;

end

function y = timeint (x, fs, type, fc);
TIMEINT Integrate time signal

v = timeint(x, fs, type, fc);

v Time integration of x

x Input time signal

fs Sampling frequency

type 'Simple' (default), or 'HPFilter'

fc Cutoff frequency for HP filter, 5 Hz default

O AP A° A° A A A° A° A° P o

Copyright (c) 2009 by Anders Brandt
Email: anders.brandt@abravibe.com

@ o

oe

Check parameters
if nargin ==
type='SIMPLE"';
fe=[];
elseif nargin ==
if strcmp (upper (type), 'SIMPLE')
fe=1[1;
elseif strcmp (upper (type), 'HPFILTER')
fc=5;
else
fprintf ('Wrong parameter ''type'', se help')
return;
end
elseif nargin == 4
if strcmp (upper (type), 'SIMPLE')
fprintf ('Wrong number of parameters for type ''SIMPLE''')
return;
end
end

% Process each case separately

if strcmp (upper (type), 'SIMPLE')
dx=1/fs;
x=x-mean (xX) ;
y=dx*cumsum(x) ;

elseif strcmp (upper (type), 'HPFILTER')

Q

% Create a 1. order HP filter with cutoff frequency fc

fnyg=£fs/2; % Nyquist frequency
frel=fc/fnyqg; % Relative cutoff frequency as wanted by butter
Amp=1/ (2*pi*fc); % Butterworth has a unity numerator, HP filter does not

[B,A]=butter (1, frel) ;
y=Amp*filter (B, A, x);
end

1. order HP filter coefficients
Integrate time signal

Q
o
Q

)

