
www.SandV.com10  SOUND & VIBRATION/MAY 2010

Envelope and Cepstrum Analyses for
Machinery Fault Identification

All rotating machinery parts wear, as does ancient wisdom. 
Envelope and cepstrum analyses tend to be overlooked, but they 
are still useful tools to identify local machinery faults. The intent 
of this article is to introduce these two tools in a pragmatic way 
and to demonstrate their properties by using a couple of practi-
cal examples.

The spectrum of a random or random-like signal is a continuous 
spectrum. The spectrum of a sine signal is a single discrete line 
in the spectrum. The spectrum of a repeated impulse, repetition 
period = T, is a discrete line spectrum throughout the frequency 
range of interest with a line spacing of 1/T Hz.

A local fault in a machine could be a damaged tooth in a gear, a 
faulty turbine blade, a crack or spalling in a rolling element bear-
ing, etc. Each time a local fault is engaged, the machine structure 
is exposed to an impact force, an impulse, and the corresponding 
vibration spectrum measured on the structure will contain all the 
harmonics of the repeated impact event. So, just as a sine signal 
is periodic in the time domain, the spectrum of a local fault is 
periodic in the frequency domain, which is the property exploited 
in envelope and cepstrum analyses.

As noted, the response of a local fault is measured somewhere 
on the structure and not where it originates. This means that the 
response is the repeated impact seen though a certain, unknown 
transmission path.

In mathematical terms, the response spectrum, Y(f), equals 
the product of the excitation spectrum, X(f), and the spectrum of 
transfer path, H(f): Y(f) = H(f) X(f).

Envelope analysis benefits from the inevitable resonances found 
in any mechanical structure. At resonances, H(f) amplifies X(f), 
the excitation, making it possible to identify local faults at a very 
early stage.

Cepstrum analysis bypasses the transmission path and reveals 
the fault directly. This is important for trend analyses in cases 
where the transmission path changes, because the mechanical 
structure changes, is modified, or the response accelerometer 
is not mounted in exactly the same way and position for every 
measurement. 

Envelope Analysis
Envelope analysis, alias amplitude demodulation, dates back 

to the dawn of radio communication. In AM transmission, the 
information signal is amplitude modulated onto the carrier, which 
in turn is transmitted via the antenna. The purpose of the carrier is 
only to carry the information and facilitate the transmission. The 
receiver tunes in on the carrier frequency and demodulates the 
signal to retrieve the information signal. The demodulation is band 
pass filtering around the carrier frequency followed by detection; 
that is, the creation of the envelope of the filtered signal, which is 
now the information signal that originally modulated the carrier.

How does this relate to identification of local faults in rotating 
machinery? As previously mentioned, the local fault is manifested 
by the harmonics of the impact frequency. The response signal is 
the harmonics weighted by the transmission path, so the obvious 
frequency range in which to look for the harmonics is where the 
harmonics are predominant, which is around the structural reso-
nances where the harmonics are amplified.

Figure 1a shows the response spectrum from a machine with and 
without a local fault. The green curve shows the vibration response 
to a single impact with an ordinary hammer while the machine is 
at rest. It shows a structural resonance at 1.9 kHz. The red curve 
shows the response of the local fault. The highlighted (yellow) part 
of the spectrum looks like the spectrum of an amplitude-modulated 

carrier, but there is no carrier to modulate. Just like the carrier in 
radio communication is the transmission facilitator, the structural 
resonance facilitates the transfer of the impact information. In 
short, the resonance is the (imaginary) carrier, and the impact in-
formation can be retrieved by amplitude demodulation/envelope 
detection around the resonance. The result in the time domain 
and a subsequent Fourier transformation together constitute the 
envelope analysis and gives the spectrum of the local fault. The 
result is shown in Figure 1b, the first eight harmonics of a local 
fault with an occurrence of 42 Hz. 

The zoom spectrum around the resonance, Figure 1c, already 
holds the required information, but the result is most often not 
operational. If the first harmonic varies, say 1 Hz due to RPM 
variation, the Nth harmonic will vary by N Hz. The harmonics 
will smear, the higher harmonics will merge and the result is not 
intelligible – not to mention the problems to deal with if more local 
faults at different occurrences are in play.

Example: Local Faults in Roller Bearings
Rollers, or balls rolling over a fault in a bearing, produce a series 

of force impacts. The rate of the impacts is determined by the RPM 
of the shaft involved and the geometry of the bearing. The repetition 
rates are denoted bearing frequencies and they are as follows:

BPFO: ball passing frequency outer race, local fault on outer •	
race
BPFI: ball passing frequency inner race, local fault on inner •	
race
BFF: ball fault frequency = 2 •	 ¥ BSF, local fault on rolling ele-
ment
BSF: ball spin frequency•	
FTF: fundamental train frequency, fault on the cage or mechani-•	
cal looseness
Most bearing suppliers offer a bearing frequency calculator, 

where the inputs are the bearing type number and the RPM of the 
shaft involved and the output is the bearing frequencies; that is, 
the potential fault frequencies.
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Figure 1. (a) Baseband spectrum; (b) Envelope spectrum; (c) Zoom spec-
trum.
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Second Modulation. As stated, the engagement of a local fault 
produces an impact force. If the engagements are subjected to the 
same (radial) load, the resulting pulse train will be uniform as 
shown in Figure 2. The fault in the outer, stationary race of the 
bearing is subjected to the same load for each over roll of the ball. 
A fault on the rotating inner race, on the other hand, is subjected 
to a varying load, where the frequency of the load variation is the 
RPM of the inner race. Consequently, the envelope signal will be 
amplitude modulated as shown in Figure 2. This is a real ampli-
tude modulation that will show in the envelope spectrum. This 
modulation should not be confused with the (pseudo) modulation 
of the structural resonances that is demodulated by the envelope 
analysis.

Ship Propeller Shaft. Figure 3a shows the vibration signal 
measured on a bearing of a ship propeller shaft. The signal clearly 
shows some impact events, and an audio playback of the vibra-

tion signal definitely confirms the presence of a local fault. The 
propulsion train comprises some 10 (different) bearings and a 
reduction gear, meaning there are at least 50 different local fault 
candidates.

Figure 3b shows the baseband spectrum of the vibration signal. 
Unbalances, misalignments and gear-tooth meshing frequency 
show up at the lower frequencies, and the complete spectrum looks 
somewhat peaky, again suggesting a local fault. The peak at 2.6 kHz 
indicated by the yellow range looks like a structural resonance and 
invites envelope analysis of the indicated range. 

Figure 3c shows the envelope of the time signal that clearly en-
hances the impact events. And Figure 3d shows the final spectrum 
of the envelope, from which the fault can be identified.

The fault signature is that of a clean inner race crack. It shows 
three modulation groups around the three first harmonics of 35 
Hz and modulation sidebands within the groups of 2.95 Hz. The 
propeller shaft is running at 177 RPM = 2.95 Hz, and at this speed, 
one of the bearings has a BPFI of 35 Hz. Together, this doubles 
the evidence for an inner race fault in a particular bearing, which 
proved to be correct when the bearing was replaced.

The real power of the method is that it is able to identify multiple 
local faults with different fault rates. The different faults will show 
as different harmonic families in the envelope spectrum, which in 
turn can be identified using the harmonic cursor.

Cepstrum Analysis
The cepstrum is a relative of the well-known autocorrelation, 

RAA(t), which can be derived from the autospectrum as:

where F-1 is the inverse Fourier transform and SAA(f) is the au-
tospectrum. RAA(t) is in the time domain (more properly the lag-
time domain. The autocorrelation reveals the delay information 
inherent in a periodic autospectrum. One example is identification 
of acoustic reflections.

The cepstrum is derived similarly; it is the inverse Fourier 
transform of the logarithm of the autospectrum:

This has two implications:
The logarithm boosts lower levels of the autospectrum. This •	
means that a low-level part of the spectrum that holds periodic 
information that would not show in the autocorrelation will 
show in the cepstrum.
As noted previously, the response spectrum is the product of •	
the excitation spectrum and the spectrum of the transfer path: 
Y(f)=H(f) X(f) or in power terms:

The cepstrum of the response spectrum becomes:

which means that the effect of the transfer path on the excitation 
is additive in the cepstrum, and the two can be separated in the 
analysis, as will be shown later.

The term cepstrum looks like a spelling error and is often cor-
rected by proof readers. It is not an error; the term has been chosen 
to give the function a scent of “spectrum” because it is advanta-
geous to consider the cepstrum as the spectrum of (the logarithm 
of) the autospectrum.

To support this perception, all terms related to the cepstrum are 
warped versions of the corresponding spectrum terms:

Spectrum: cepstrum•	
Frequency: quefrency•	
Harmonics: rahmonics•	
Low-pass filter: short-pass lifter•	
High-pass filter: long-pass lifter•	
The lifters are used to edit the cepstrum prior to a Fourier trans-

form back to a spectrum, the frequency domain:

Figure 2. Second modulation.

Figure 3. (a) Baseband time signal; (b) Baseband spectrum; (c) Envelope of 
filtered time signal; (d) Envelope spectrum.
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encompasses the rahmonics caused by the local faults, and the 
short-pass lifter covers what is left, that is, the nonperiodic part 
of the original spectrum.

The transformations back to the frequency domain are shown 
in Figure 4. Recalling the relation Y(f) = H(f) X(f), the chosen lift-
ers have effectively separated the H(f) term, the unknown transfer 
path (blue) and X(f) term, the spectrum of the local fault at the 
origin of the fault (red). 

A claim was that the Cepstrum bypasses the unknown transfer 
path and reveals the local fault directly. As shown previously, the 
unknown transfer path wraps up at the short quefrencies in the 
cepstrum, and the local faults are manifest at the long quefrencies. 
This qualifies cepstrum analysis for trending local faults, because 
the result is insensitive to changes of the structure and to the 
mounting position of the accelerometer. 

The cepstrum is a pure calculation of a power spectrum, mean-
ing that the cepstrum can be used in other contexts than those 
discussed here. It is applicable on an order-power spectrum 
when addressing a local fault on a machine operating at varying 
RPM. It can also be used on top of an envelope spectrum to reveal 
multiple faults that have been dug out of background noise by the 
envelope analysis.

References
1. R. B. Randall, Frequency Analysis, Third Edition, Brüel & Kjær, 1987.
2. R.B. Randall and J. Hee, “Cepstrum Analysis,” Brüel & Kjær Technical 

Review, No.3, 1981. 
3. H. Konstantin-Hansen, “Envelope Analysis for Diagnostics of Local 

Faults in Rolling Element Bearings,” Brüel & Kjær Application Note, 
BO 0501, 2003.

4. www.bksv.com/Library, Library search: Cepstrum or Envelope.
5. PULSE Knowledge Library; Part of PULSE Analyzer Platform.

Figure 5. Vibration cepstrum.

Figure 4. Original and liftered vibration spectra.

The cepstrum is useful for all periodic manifests in a response 
spectrum from a rotating machine like amplitude modulation of 
gear-tooth meshing frequency due to load variation, gear eccen-
tricity or general wear of gears and, of course, for identifying local 
faults, which is the aim of this article. 

Example – Local Fault in a 5:3 Gear
The input gear spins with 3000 RPM = 50 Hz, which means that 

a fault on a tooth will generate a repeated impact with the repeti-
tion time t = 1/50 Hz = 20 ms. 

The output gear spins with 3000 ¥ 3/5 RPM = 1800 RPM = 30 
Hz. A faulty tooth on this gear will give a repeated impact every 
t = 1/30 Hz = 33.3 ms.

The noise from the gear suggests a local fault, and the vibration 
was measured on the housing of the gear. The green curve in Figure 
4 shows the vibration spectrum. The spectrum appears peaky; the 
peaks may include one (or more) periods due to local fault(s)

The cepstrum of the vibration spectrum will reveal a possible 
periodicity in the spectrum. The green curve in Figure 5 is the 
cepstrum, and it reveals two rahmonic families indicating two 
local faults with a different fault rate:

A rahmonic family with the fundamental rahmonic = 20 ms •	
(50 Hz), which means a local fault on the input gear, a faulty 
tooth.
A rahmonic family with the fundamental rahmonic = 30 ms •	
(33.3) Hz, indicating a faulty tooth on the output gear.
The reason for the rahmonic component at quefrency 60 ms being 

higher than the other components is that both local faults contribute 
to this component: The 3rd rahmonic of the fault on the input gear 
and the 2nd rahmonic of the fault on the output gear.

At quefrency 120 ms, the two faults should again combine, but 
the rahmonics seem to have drifted apart. The sixth rahmonic of 
the input fault comes out at 120 ms, but the fourth rahmonic output 
fault comes out at 121 ms.

The reason is that the gear ratio is not exactly 5:3 but rather 47:31, 
given by the number of teeth on the gears. So the effective gearing 
is 5:3.29. The output RPM is correctly 3000 ¥ 3.29/5 = 1974 RPM 
= 32.9 Hz, which means that the fourth rahmonic of the output 
fault comes out at quefrency 1/32.9 ¥ 4 ms = 121 ms.

This leads to a discussion of the resolution of the analysis. It 
is not the intention of this article to go into operational details; it 
merely presents an understanding of the power of the cepstrum 
analysis if resolution is selected appropriately. It might be worth-
while to mention that inspection showed a faulty tooth on both 
gears.

Liftered Spectrum. The Fourier transformation of the Cepstrum 
is the original logarithmic spectrum:

By applying a weighting function to the cepstrum prior to the 
transformation, it is possible to get spectra corresponding to differ-
ent parts of the cepstrum. In Figure 5, two weighting functions are 
shown. In cepstrum terminology, the red lifter is called a long-pass 
lifter, and the blue lifter a short-pass lifter. The long-pass lifter The author can be reached at: hans.konstantin-hansen@bksv.com.
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