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Questions Regarding the
Prediction of Building Vibrations

Consider a situation where plans call for construction of a build-
ing near an existing road or a rail line and where the building is 
required to meet definite vibration criteria. How can one predict 
the traffic-related vibrations in a candidate building design that 
exists only in the form of drawings? This article discusses some 
facets of this problem and speculates on approaches to address-
ing a few of these. It is intended to raise questions, to generate 
discussion, and to encourage research, rather than to provide 
answers.

Measurement of Vibrations at the Site
Where to Measure. Some questions about measuring the traffic-

induced vibrations at a building’s site can be answered relatively 
easily. Clearly, vibration data should be obtained at a sufficient 
number of points that cover the footprint of the planned build-
ing.

 Of course, the measurement transducers need to be well coupled 
to the soil. Where the surface of the site consists of rock it probably 
suffices to attach the transducers directly to the rock; where the soil 
is soft, good coupling can perhaps be best achieved by burying the 
transducers in fairly shallow holes. In areas where there are rocky 
outcroppings or curbstones that protrude somewhat from relatively 
soft soil, it may suffice to attach the transducers to these.

Building Foundations at Grade. If the foundation of a building 
is to be essentially at the level of the soil surface, one may expect 
to be able to obtain adequate data by measuring the vibrations at 
the surface of the ground. However, the vibrations one measures 
at a point on the bare soil surface will likely differ from those one 
measures on a slab (representative of the building’s slab founda-
tion) located on the soil, because such a slab will in effect integrate 
the traffic-induced vibrations to some extent over all of the points 
covered by the slab. Thus, if the building is to be supported on 
footings at or near the elevation of the soil, it may be best to mea-
sure the site vibrations on slabs that replicate the footings. For a 
building that is to be supported on a slab foundation, it would be 
useful to measure the vibrations on the actual foundation slab, 
if that is feasible practically. Otherwise, one might measure on a 
similar slab of smaller area and scale the results to the larger area. 
Such scaling, of course, involves some uncertainties. It should 
take account of the fact that a slab, particularly one of large area, 
is likely not to act as a rigid body. One might consider the “active” 
area of an extended slab at a given frequency as that of a square 
slab with edges that are one-half of the slab’s bending wavelength 
long, taking some account of the effect of the underlying soil on 
that wavelength.

Building Foundations Below Grade. For buildings whose foun-
dations are to be below the surface of the site one needs to take 
into account that the vibrations at the level of the foundations may 
differ from those at the surface. One may consider measuring the 
vibrations at the bottoms of boreholes of appropriate depths, but 
practical borehole diameters limit the sizes of the slabs atop which 
the vibrations could be measured, so that much of the aforemen-
tioned integrating effect of a slab would be lost. Measurements 
made on a representative slab at the bottom of a large enough pit 
would not suffer from this shortcoming. 

In situations where measurement at depth is not feasible, one 
might consider relying on data obtained from surface measure-
ments and adjusting these data analytically. One may obtain some 
guidance concerning the difference between the vibrations at a 
given depth and those at the surface by considering that vibrations 
travel along the surface of a uniform halfspace predominantly in 
the form of Rayleigh waves. (At locations within a fraction of a 

Rayleigh wavelength of the excitation point, other waves may also 
contribute significantly to the wave field, so that the Rayleigh wave 
approximation may not be adequate for such locations.) Except at 
very small depths and low frequencies, the amplitudes of Rayleigh 
waves decrease considerably with increasing distance from the 
surface – Figures 1 and 2 show plots of amplitude ratio versus fre-
quency for several depths, calculated for soils with a Poisson’s ratio 
of 0.25.1 Although the ground is not a uniform halfspace, it might 
suffice to approximate it as such for the present purposes as long as 
the soil is relatively uniform down to depths at which the Rayleigh 
wave amplitude is a small fraction of that at the surface.

If the halfspace approximation holds and if the integrating ef-
fect of slabs can be neglected, then one may use the properties of 
Rayleigh waves to estimate the vibrations that occur at a given 
depth from the vibrations measured at the surface. Figures 1 and 2 
show, for example, that at 20 Hz the vertical amplitude at a depth 
of 20 ft is about 30% of that at the surface and that the horizontal 
amplitude is only about 15% of that at the surface. These may 
be considered to be reasonable estimates if the soil is relatively 
uniform down to perhaps 30 ft.

Information on the vibrations expected at a point at depth, as 
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Figure 1. Depth-dependence of vertical amplitude of Rayleigh waves.

Figure 2. Depth-dependence of horizontal amplitude of Rayleigh waves.



www.SandV.com SOUND & VIBRATION/JUNE 2010  13

obtained from borehole measurements or the use of Rayleigh wave 
calculations, probably is most relevant for buildings that are sup-
ported on sleeved columns which rest on footings located at depth, 
because the sleeves prevent soil contact along the lengths of the 
columns. For cases where the columns are not sleeved is not clear 
how one should account for the additional vibration transmission 
along the lengths of the columns.

Another problem arises in the case where the soil over a large 
area under a building’s footprint is to be removed, for construc-
tion of a basement, for example. Removing this soil may be 
anticipated to change the vibrations at the points where at-depth 
measurements were made. At very low frequencies, at which the 
Rayleigh waves have wavelengths that are considerably greater 
than the excavation depth, it is likely that these waves essentially 
just propagate along the soil surface, even though the surface is 
depressed over the limited area where a basement is to be located. 
At these frequencies one may estimate the vibrations at a future 
excavated area from surface vibration data measured in its vicin-
ity. It is questionable how this estimate can be done defensibly for 
higher-frequency vibrations.

What to Measure – Data Acquisition and Analysis
Statistical Spectra. Traffic-related vibrations typically are not 

steady and may depend on such rather unpredictable factors as 
the types and speeds of passing vehicles, as well as on the traffic 
situation and the weather. If the “worst case” is to be used as the 
basis of conservative design, perhaps the best one can do is to 
sample the traffic-induced vibrations for an extended period and 
then to analyze the data statistically, e.g., to obtain “peak-hold” or 
percentile spectra in practically manageable frequency bands. (Peak 
hold spectra are made up of the greatest magnitudes that are ob-
served in each frequency band during the data acquisition period. 
Percentile spectra show the magnitudes in each frequency band that 
are exceeded a given percent of the time.) One-third-octave bands 
may be most practical, because they typically reveal adequate, but 
not excessive detail, because many criteria are written in terms of 
one-third-octave-band spectra, and because such spectra may read-
ily be evaluated by use of available spectrum analyzers. 

Because peak-hold spectra can include potentially irrelevant 
high vibration levels due to unusual events, such as vehicle col-
lisions or thunderstorms, they may overstate the typical traffic-
related vibrations. Thus, use of a percentile level to characterize 
these vibrations is likely to be more appropriate, with the percentile 
selected on the basis of the building’s sensitivity to disturbances. 
For example, for a building in which occasional disturbances 
would be very disruptive it might required that the L1 vibration 
levels (the vibration levels that are exceeded no oftener than 1% 
of the time) do not exceed prescribed limits, whereas for a build-
ing in which relatively frequent disturbances can be tolerated it 
may suffice to place limits on just the L10 levels (the levels that are 
exceeded no oftener than 10% of the time).

Steady-State Versus Transient Analysis. Because the vibrations 
generated by passage of a vehicle clearly are transient and cannot 
be fully characterized in terms of spectra (which in essence apply 
to steady-state conditions), one might consider recording the time-
varying motions of the measurement points and then determining 
the model’s time-varying response by “playing” these recorded 
motions into a model of the building under consideration. Because 
traffic-induced vibrations tend to vary considerably with time, one 
would need to use long vibration records and then to analyze the 
results statistically.

Fortunately, the spectrum approach, which is simpler to imple-
ment, will suffice in many cases. If a sinusoidal force at frequency 
f is applied to a structure that is initially at rest, then the motion of 
each of the structure’s modes, starting from rest, will tend toward 
its steady-state amplitude exponentially. From textbook results for 
a single-degree-of-freedom system one may find that the time Tn it 
takes for the response of a not-too-highly damped mode (z2 « 1) to 
reach a fraction n of its steady-state amplitude obeys

where z denotes the mode’s viscous damping ratio (equal to c/cc 

with c representing the viscous damping coefficient and cc rep-
resenting the critical damping coefficient). This expression holds 
regardless of the natural frequency of the mode.

From Equation (1) one may determine, for example, that the 
response of a building’s mode with a representative damping ratio 
of 0.03 to a 5 Hz excitation takes only about 2.4 seconds to build up 
to 90% of its steady-state value. For higher excitation frequencies 
the times are proportionately shorter. Since most excitations due 
to traffic last more than a second or two, the corresponding modal 
responses would tend to approach their steady-state values closely 
enough for most practical purposes, so that the use of spectra for 
determination of the structural responses often may suffice.

When to Measure
A site’s vibration propagation characteristics may be expected to 

depend not only on the local soil’s constituents and layering, but 
also on the soil’s moisture content and temperature. The magni-
tudes of the effects of these parameters are not known, but frozen 
and/or wet soil likely propagates vibrations relatively well. The 
depth of the water table also may play a role. 

Furthermore, the weather may also have an effect on the genera-
tion of vibrations by traffic. Not only may weather conditions influ-
ence traffic speeds, but weather also may affect the street surface 
conditions, even giving rise to ice clumps or potholes. 

It is likely that the “worst case” vibrations at a site may be 
measured at low temperatures and/or after a heavy rain, or in the 
winter. One again needs to consider the disturbances that can be 
tolerated in the building and perhaps use a percentile criterion, 
possibly evaluated over a year or longer.

Vibration of a Building Coupled to Ground
Ground Vibration Change due to Loading by a Building. One 

may readily visualize that the vibrations observed at a given 
location under “green field” conditions (that is, on the ground, 
in absence of a building) will differ from those observed when a 
building is present at that location, even if the vibrations produced 
by nearby traffic remain the same.

Let us consider the simplest case, where the motion at a given 
point on the ground is taken to occur in only one direction – say, 
the vertical – with the motions in other directions assumed to play 
no role and with the building’s effect confined to only that point 
and only to that one direction. In this case, the velocity amplitude 
VW of a given point on the soil surface with the building in place 
(which also is the velocity at the building’s attachment point to the 
soil surface) is related to the velocity amplitude V0 at that same 
point in absence of a building as

Here ZB denotes the driving-point impedance of the building at its 
attachment point to the soil, and ZS denotes the driving point im-
pedance of the soil at that point. The Ks represent the corresponding 
dynamic stiffnesses. (These are related to the impedances via K = 
jwZ = j2pfZ in complex or “phasor” notation, where j = -1. The 
impedances and dynamic stiffnesses are measured in the same 
direction as the velocities.) If the magnitude of the impedance (or 
stiffness) of the building is much smaller than that of the soil, then 
VW ª V0; that is, the presence of the building does not change the 
vibrations significantly. However, if the magnitude of the build-
ing’s impedance is large compared to that of the soil, then VW « 
V0. In this case the building’s presence results in considerable 
reduction in the local vibrations – and the vibrations transmitted 
to the building are much smaller than the vibrations of the soil in 
absence of the building.

If one models the soil simply as a mass-spring-damper system 
whose spring is fixed to a rigid base and to whose mass a sinu-
soidally varying force is applied, one finds its dynamic stiffness 
to be given by

	
where kS represents the stiffness of the equivalent spring and 
rs = (w/ws)

2, with w denoting the radian driving frequency and 
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wS S Sk m= /  denoting the model’s natural frequency in terms of 
the effective mass ms. The loss factor hS represents the system’s 
damping.

If one models a mode of the building as a mass-spring-damper 
system that is driven by a force applied to the base of its spring, 
one may determine that its dynamic stiffness obeys

Here the various symbols with subscript B pertain to the building 
mode and are defined in analogy to those for the soil. This equation, 
together with Equation (3), permits one to determine VW/V0 from 
Equation (2) for the simple model under discussion.

Response of Building Mode Coupled to Soil
For a building mode modeled as described above, the velocity 

VB of the mode (i.e., of the model’s mass) is related to the velocity 
VW of the soil with the building in place (i.e., of the base of the 
spring part of the building model) as

By multiplying this relation by the expression for VW/V0 one 
may find the following expression that relates the velocity of the 
building mode, coupled to the soil, to the velocity of the soil in 
absence of the building:

This velocity ratio takes on its greatest value at the natural frequen-
cies of the mode and soil combination. These natural frequencies 
correspond to a vanishing of the real part of the denominator of 
the previous relation; the related quadratic equation in w2 may 
readily be solved and yields the classical result for the natural 
frequencies of an undamped two-degree-of-freedom system. The 
natural frequencies w0 obey

The general expression of Equation (6) for VB/V0 is too cumber-
some to explore analytically, but it is of interest to consider some 
limiting cases. For the case where the soil acts like a massless 
spring, which corresponds to the situation where the excitation 
frequency is much smaller than the natural frequency of the soil 
(visualized as a spring-mass system), one finds that

This ratio takes on its greatest value at the resonance frequency 
w0k which obeys

and corresponds to the building mass supported on the springs 
of the building mode and the soil in series. At resonance at this 
frequency the magnitude of the velocity ratio of Equation (8) 
becomes

If the soil is very stiff – that is, if kS » kB – then this reduces to 1/
hB which is the same as the result for resonance of the building 
mode by itself.

For the case where the soil acts purely as a mass, corresponding 
to the excitation frequency being much greater than the natural 

frequency of the soil, one finds that

This ratio takes on its greatest value at the resonance frequency 
w0m which obeys

and corresponds to the two masses connected to each other by 
the building mode’s spring. At resonance one finds from Equa-
tion (11) that

If the soil is much more massive than the building, so that mS » mB, 
then this expression again reduces to 1/hB, the result for resonance 
of the building mode by itself. 

One may observe that here, as well as in the resonant response 
situations discussed earlier, damping plays a crucial role – as it 
indeed does in all resonant response cases. Thus, the vibration 
magnitudes one may compute in these cases suffer from uncer-
tainties in the damping values, which in practice always need to 
be estimated.

Prediction/Modeling of Building Vibrations
Excitation at Base of Building. How can one predict the vibra-

tions that are transmitted into a building from the ground? A 
building’s motion clearly is much more complex than that of the 
minimal model discussed in the preceding section. A building 
obviously does not interact with the ground at just one point – and 
not just in one direction at each contact point. One would at least 
need to work with impedances that account for the six displace-
ment (or velocity) components at each point, rather with the single 
displacement component considered above.

If a building is supported on columns that rest on discrete 
footings, it may perhaps suffice to consider each footing to act at 
a single point and to address the motion of that point in terms of 
six-component impedance matrices. However, in order to deter-
mine the motions of the building’s floors one needs to account for 
the totality of the motions transmitted to the floors via all of the 
columns, so that one needs to consider the different magnitudes 
and phases of the soil motions that act at the column bases. If the 
distance between footings is smaller than a quarter wavelength in 
the soil – that is, at low enough frequencies – the footings likely 
will be set into motion essentially equally and simultaneously, but 
this will not be the case at higher frequencies. Note as a point of 
reference that the Rayleigh wavespeed in dry sand is of the order of 
600 ft/sec and that at 10 Hz a quarter wavelength is a mere 15 ft.

Predicting the vibrations of a building on a foundation slab 
requires consideration of how such a continuous flexible slab 
couples to the non-uniform motion of the soil. At extremely low 
frequencies, at which the slab’s plan dimensions are considerably 
smaller than a quarter wavelength in the soil, the slab likely will 
move approximately uniformly with the soil, but at higher frequen-
cies the relatively complex coupling to the slab to the soil needs 
to be taken into consideration.

One may obtain some answers by means of finite-element mod-
eling of the building as coupled to the soil. However, the utility 
of such modeling is confined to low frequencies, even if one has 
available the computational capabilities for dealing with a large 
number of elements. One always faces the question of how well 
a model represents the real situation. The low-frequency results 
one obtains from a model generally tend to approximate reality 
better than the results obtained for higher frequencies, because 
the low-frequency results depend less on how well the model 
represents the details of the structure. The question is whether the 
low-frequency range in which the model yields realistic enough 
results can encompass the phenomena of concern.
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Building Motion. Even if one can overcome the previously 
discussed obstacles to predicting the vibration inputs at the base 
of a building, one faces difficulties in determining the building’s 
vibrations. Many aspects of an actual building’s design are not 
well defined a priori. For example, design drawings only define 
the gross properties of a building’s structure, the actual loads (that 
is, the weights carried by the structures) generally differ consider-
ably from the specified design loads, and some structural details 
depend on the workmanship of the construction crew. Thus, one 
can only arrive at an approximate model of the building, no mat-
ter how much computational capacity one may have available, so 
that one can expect to obtain reasonable approximate predictions 
only for low frequencies.

In view of the aforementioned uncertainties, one might consider 
using statistical energy analysis (SEA) modeling, which provides 
estimates of the average responses of groups of modes of structures 
that are not well defined. SEA may be of practical use in situa-
tions where the building motions of concern are likely to involve 
a considerable number of modes in a frequency band of interest, 
provided that the parameters involved in the analysis (the relevant 
coupling factors and the component loss factors) can be determined 
adequately. However, the results available from the use of SEA are 
of limited value in the generally most significant practical cases 
where the vibration responses are determined by only a small 
number of discrete modes. 

All analytical modeling, and particularly SEA modeling, is better 
suited to predicting the effects of structural modifications than to 
predicting absolute vibration response magnitudes. Furthermore, 
any analytical model needs to be “calibrated” by comparison 
to corresponding measurement data. This is difficult to do for 
buildings, unless a new building is similar to an existing one and 
measurements on the existing building can be used to validate 
the model.

It also should be noted that neither the magnitudes nor the char-
acteristics of the damping of a building or its components are ever The author can be reached at: eungar@acentech.com.

known accurately. Experienced-based estimates of viscous damping 
coefficients are widely used in computational analyses, although it 
is clear that the actual damping is not viscous and varies differently 
with frequency. Inaccurate prediction of damping is particularly 
troublesome, since the most severe vibrations typically are as-
sociated with resonances at which the magnitudes of the motions 
depend crucially on the damping, as has been mentioned.

Concluding Remarks
The many unknowns and uncertainties discussed above make 

it virtually impossible for one to develop reliable predictions of 
the traffic-related vibrations expected in a building, if one relies 
essentially only on basic principles. Fortunately, in many cases 
one can arrive at reasonable predictions by making use of data 
measured in buildings that are similar to the planned one and that 
are exposed to similar nearby traffic. Scaling of the available data, 
perhaps by use of some of the principles to which this article al-
ludes, may often be useful. This approach may not be applicable, 
however, for radically new building designs.

Fortunately, many practical projects only require that prescribed 
vibration limits not be exceeded in specified parts of the building. 
In such cases there may be no need for precise prediction of the ex-
pected vibrations. Here approximate prediction of the most severe 
vibrations resulting from a confluence of “worst case” conditions 
may suffice for determination of the amount of attenuation that 
would guarantee meeting of the limits. This amount of attenuation 
would be greater than that absolutely necessary to meet the limits 
under the actual conditions, but it should generally be obtainable 
by means of isolation arrangements that involve only a minimal 
cost penalty.
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