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A new procedure is proposed that uses the real cepstrum to 
localize and edit the log amplitude of the original signal, removing 
unwanted discrete frequency components, and then combines the 
edited amplitude with the original phase spectrum to return to 
the time domain. This cepstral editing procedure (CEP) is used to 
remove discrete frequency components from signals measured on 
two machines with a faulty bearing, and then perform envelope 
analysis on the residual signal to diagnose the bearing fault.

Signal processing used for condition monitoring purposes is 
usually concerned with separating various signal components from 
each other to identify changes in any one of them. This has to be 
done blind, since measured responses are a sum of components 
from a multitude of sources, and include deterministic (discrete 
frequency at constant speed), stationary random, and cyclosta-
tionary random components. The latter are typically produced by 
modulation of random signals by discrete frequencies and are often 
produced by rotating and reciprocating machines.

A fundamental division is into discrete frequency and random 
components (both stationary and cyclostationary) for which a 
number of techniques have been developed over the years. This 
will normally separate gear from bearing signals, for example, since 
the former are deterministic and phase-locked to shaft speeds, 
while the latter can be treated as cyclostationary. As pointed out in 
Reference 1, the signals generated by local faults in rolling-element 
bearings are actually “pseudo-cyclostationary,” since the repetition 
frequency is affected by random slip and is not known exactly in 
advance, but the signals can still be treated as cyclostationary for 
envelope analysis. Signals produced by bearings with extended 
spalls are truly cyclostationary if the discrete carriers (such as gear-
mesh harmonics) are modulated at a fixed cyclic frequency (shaft 
speed for an inner race fault). The roughness of the spall surface 
introduces randomness in the modulation and allows separation 
from deterministic gear faults.

Where the deterministic components are of primary interest, 
such as in gear diagnostics, the best separation method is undoubt-
edly time-synchronous averaging (TSA),2,3 where a separate signal 
is obtained for each fundamental period over which the averaging is 
performed (typically a different result obtained for each individual 
gear in a complex gearbox). It can be used to obtain the residual 
signal after removal of all deterministic components4 but is quite 
arduous, since the signal has to be separately order tracked for 
each independent shaft speed (e.g. in a gas turbine engine) and in 
any case resampled to an integer number of samples per period for 
each periodicity even after order tracking (removal of small speed 
fluctuations by resampling at uniform increments in rotation angle 
rather than time). After removing all discrete components, the 
signal has to be converted back to a time axis by reverse mapping. 
However, this procedure does result in the least disruption of the 
residual signal, though this is rarely necessary. It is limited to the 
removal of harmonics only and will not, for example, remove 
modulation sidebands unless these are also harmonics of one of 
the fundamental frequencies. The process also only works over 
the full frequency band, including zero frequency, and cannot be 
used for partial bands (zoom).

Where the primary interest is in removing the discrete frequency 
components to obtain the random residual, often dominated by 
bearing signals in certain frequency bands, other methods have 
been developed based on the different correlation length of discrete 
frequency and random signals. The first is SANC (self-adaptive 
noise cancellation),5 which is a modification of ANC (adaptive 

noise cancellation). The latter procedure has two input signals, 
a primary signal containing a mixture of two components to be 
separated and a reference signal containing only one. This does 
not have to be identical to the corresponding component in the 
primary signal, just coherent with it. An adaptive filter finds the 
linear transfer function between the two versions and subtracts 
the corresponding component from the primary signal, leaving 
the other in the residual. It has been used to separate gear and 
bearing signals in situations where the primary signal was mea-
sured on a faulty bearing in a gearbox and the reference signal on 
another remote bearing with no fault signal present.6,7 In SANC, 
the reference signal is a delayed version of the primary signal, 
with a delay just longer than the correlation length of the random 
component so that only the deterministic part is recognized by 
the adaptive filter.

In Reference 8, it was shown how the same effect could be 
achieved much more efficiently by the so-called “discrete/random 
separation” (DRS) technique using efficient FFT processing in the 
frequency domain. The transfer function between the primary 
signal and its delayed version (representing only the deterministic 
part) is calculated in the same way as the H1 frequency response 
function (FRF). This has a value near 1 at discrete frequencies and 
near zero at other frequencies. It is used to filter the whole signal 
by “fast convolution” in the frequency domain and once again 
allows the deterministic part to be separated out and the random 
residual signal to be obtained by subtraction.

For both the SANC and DRS procedures, all discrete frequency 
components are removed as long as they have a correlation length 
longer than the delay time. The correlation length of bearing signals 
is generally short – in the vicinity of the high frequency resonances 
that are normally demodulated for diagnostic envelope analysis. 
For example, it is normal for the random slip in bearings to give 
about 1% variation in the characteristic fault frequencies. It is com-
mon for the resonance frequencies excited by the bearing faults to 
be two orders of magnitude higher than the repetition frequency, 
in which case the harmonic orders above about 50 will be smeared 
together. This is the same as saying that the correlation length is 
shorter than the pulse spacing. If a bearing frequency is 100 Hz, 
but the demodulated resonance at about 10 kHz, the 1% variation 
will correspond to 100 Hz, or a correlation length of about 10 ms. 
The delay would then typically be set >30 ms. DRS can operate on 
partial band signals obtained by selecting only the frequency band 
to be demodulated using so-called Hilbert transform techniques 
based on a one-sided frequency spectrum with positive frequencies 
only. It can easily be shown that the frequency shifting involved 
does not change the amplitude (envelope) of the demodulated 
signal, which can then be used for diagnostics based on envelope 
analysis. However, it does give a notch filter of fixed width that 
can have detrimental effects at high and low frequencies. At low 
frequencies (low harmonics of the bearing frequencies if they exist), 
the bearing harmonics may still be within the bandwidth of the 
comb filter, and they may be treated as discrete frequencies. At high 
frequencies, some random modulation of the discrete frequency 
components may be left in the form of a narrow-band noise and 
not completely removed. This can occur at harmonics of blade-
pass frequencies in turbo-machines, because the transmission of 
the blade-pass signals to the casing is via a turbulent fluid rather 
than a mechanical connection.

The cepstral editing procedure (CEP) gives some advantages 
compared with all the techniques noted previously. It can be used to 
remove selected discrete frequency components in one operation, 
without order tracking as long as the speed variation is limited, but 
it can leave some periodic components if desired. It can operate on 
partial-band (zoom) signals, at least in the same sense as the DRS 
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technique, where it is only the envelope of the residual signal that 
is of interest. It is based on the cepstrum of the signal that very 
efficiently collects spectral components that are uniformly spaced, 
that is, both harmonics and modulation sidebands.

The Cepstrum
The cepstrum has a number of versions and definitions, but all 

can be interpreted as a “spectrum of a log spectrum.” The original 
definition9 was the “power spectrum of the log power spectrum,” 
but even though one of the authors (Tukey) was a co-author of the 
FFT algorithm, Reference 9 predated the latter and was from the 
era before the FFT. The definition of the cepstrum was later revised 
(post FFT)10 as the “inverse Fourier transform of the log spectrum,” 
giving a number of advantages compared with the original defini-
tion. It can thus be represented as:

where:

in terms of its amplitude and phase so that:

When X(f) is complex, as in this case, the cepstrum of Equation 
1 is known as the “complex cepstrum.” But since ln(A(f)) is even 
and f(f) is odd, the complex cepstrum is real valued. Note that by 
comparison, the autocorrelation function can be derived as the 
inverse transform of the power spectrum, or:

When the power spectrum is used to replace the spectrum X(f) in 
Equations 1 and 4, the resulting cepstrum, known as the “power 
cepstrum” is given by:

and is then a scaled version of the complex cepstrum, where the 
phase of the spectrum is set to zero. The term “real cepstrum” is 
sometimes used to mean the inverse transform of the log ampli-
tude, not having the factor 2 in Equation 5. It corresponds to the 
complex cepstrum obtained from Equation 3, where the phase has 
been set to zero.

Note that before calculating the complex cepstrum, the phase 
function f(f) must be unwrapped to a continuous function of fre-
quency. This is often possible for frequency response functions, 
where the phase is continuous, and quite often related to the log 
amplitude. (For minimum phase functions, they are related by a 
Hilbert transform.) However, it is not possible for response signals 
containing a mixture of discrete frequency components, for which 
the phase is undefined between components, and random signals 
for which the phase is discontinuous.

Proposed Method
Editing in the real cepstrum has been used for some time to re-

move harmonics and/or sidebands from the spectrum, as illustrated 
in Figure 1.11 Note that in this respect, periodic notches in the log 
spectrum also give components in the cepstrum, so there will be a 
tendency for the residual spectrum to be continuous at the former 
positions of discrete frequency components after removal.

In cases where it is desired to remove discrete frequency compo-
nents but leave a random residual signal with the same envelope 
(no essential change in phase), we realized that it would be pos-
sible to remove the discrete frequency components using the real 
cepstrum (as in Figure 1) but then generate the time signal of the 
random residual using the original phase spectrum. This would 
be in error only at the frequencies corresponding to the removed 
components, but these would be relatively few in number, and the 
corresponding amplitudes reduced to the same level as the adjacent 
random components. As mentioned, the act of setting cepstrum 
values to zero means that the residual log spectrum will tend to 
be continuous across the gap where the discrete frequencies have 
been removed. For a random signal, this gives the best estimate of 

the amplitude of the spectrum at those frequencies.
The proposed method is shown schematically in Figure 2. 

Sections of the input signal are transformed to the frequency 
domain using the FFT algorithm. The phase is stored while the 
log amplitude is processed using the IFFT (inverse fast Fourier 
transform) to obtain the real cepstrum. Families of “rahmonics” 
(uniformly spaced components in the cepstrum) corresponding to 
the families of harmonics and sidebands to be removed from the 
signal are set to zero as in Figure 1, and the edited cepstrum is 
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Figure 1. Editing the cepstrum to remove a particular family of harmonics: 
(a) spectrum and cepstrum with two families of harmonics/sidebands; (b) 
spectrum with only one family retained after editing the other family from 
the cepstrum.

Log
amplitude

Real
cepstrum

Edited
cepstrum

Edited log
amplitude
cepstrum

Time
signal

Input
signal

Edited log
spectrum

Complex
spectrum

Phase
FFT  +             Exp.

               +    IFFT

              IFFT

              Edit

              FFT

Figure 2. Schematic diagram of the cepstral method for removing  
selected families of harmonics and/or sidebands from time signals.

Figure 3. (a) Spur gear test rig; (b) schematic diagram of spur gearbox rig  
(components of interest contained in dotted box).
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transformed by a forward FFT to the edited log amplitude spectrum. 
This is then recombined with the original phase spectrum to 
form the complex log spectrum, which can be exponentiated 
to rectangular form (real and imaginary parts) rather than polar 
form (log amplitude and phase). This complex spectrum can then 
be inverse transformed to obtain the time signal of the residual 
random part.

Results and Discussion
The new cepstral technique was applied to signals measured on 

two test rigs. One is the UNSW gear test rig shown in Figure 3. The 
rig is driven by a variable-speed electric motor, but torque load can 
be increased using a circulating power loop involving a hydraulic 
pump supplying a hydraulic motor. For these tests, the motor was 
run at 10 Hz, with 50 Nm torque load, and two 32-tooth spur gears 
in mesh. A bearing with an inner race fault was inserted in the 
bottom right location in the diagram, and signals were measured 
by an accelerometer on the casing immediately above it.

Figure 4 compares the time signals for two separation methods, 
TSA and the Cepstral Editing Procedure (CEP), with the original 
signal. Removal of the gear signals reveals the hidden bearing 
signals, with a slightly better result achieved using TSA. Note that 
even though this is an inner-race fault, the expected modulation 
once per revolution (the rate at which the fault passes through the 
load zone) is not very strong in this case.

Figure 5 shows the corresponding power spectra up to 3 kHz – 
this being the band dominated by the gear-mesh signal. Harmonics 

of the gear-mesh frequency (320 Hz) are indicated by a harmonic 
cursor in the spectrum of Figure 5a, and these can be seen to be 
surrounded by sidebands that are spaced at shaft speed of 10 Hz, 
the rotational speed of both gears. It can be seen that these discrete 
frequency components have been removed in both residual signals 
for which the spectra are very similar.

Finally, Figure 6 shows the corresponding envelope spectra for 
the three signals. For the raw signal of Figure 6a, this is seen to be 
dominated by harmonics of shaft speed, including the gear-mesh 
frequency of 320 Hz, even though some harmonics of BPFI (ballpass 
frequency, inner race) can be detected with some difficulty. Both 
residual signals give a clear diagnosis of the inner-race bearing 
fault, though modulation sidebands spaced at shaft speed are more 
evident around the higher harmonics above about 350 Hz. This 
corresponds with the fact that the modulation is not very strong 
in the time signals.

Measurements were also made on another test rig designed to 
study the signals from a rotating bladed disc that can be run over a 
range of speeds. The shaft is supported by two self-aligning, double-
row ball bearings, one of which an outer-race fault inserted and on 
which acceleration measurements were made. The rotor has 19 flat 

Figure 4. Time domain signals for gearbox test rig: (a) raw signal; (b) residual 
signal after removing synchronous average; (c) residual signal after editing 
cepstrum to remove the shaft rahmonics.
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Figure 5. Power spectra for time signals of Figure 4: (a) raw signal; (b) re-
sidual signal after removing the synchronous average; (c) residual signal 
after editing the cepstrum to remove the shaft rahmonics.
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Figure 6. Squared-envelope spectra, 1-20 kHz: (a) raw signal; (b) residual 
signal after removing synchronous average; (c) residual signal after editing 
the cepstrum to remove shaft rahmonics.
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Figure 7. Comparison of spectra 0-5 kHz: (a) original signal; (b) residual 
after TSA; (c) residual after CEP.
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Figure 8. Comparison of spectra 5-10 kHz: (a) original signal; (b) residual 
after TSA; (c) residual after CEP.
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Figure 9. Envelope spectra obtained from three residual signals: (a) TSA; 
(b) DRS; (c) CEP.

blades and, because of its inefficiency as a fan, produces multiple 
harmonics of the blade-pass frequency as well as sidebands around 
these spaced at shaft speed (harmonics of shaft speed). 

Analyses were made over a frequency range up to 30 kHz, but 
only results up to 10 kHz are shown here. The new cepstral method 
was compared primarily with TSA for the efficiency of removal 
of harmonics of shaft speed, including blade-pass harmonics, but 
the DRS method was also tried.

Figure 7 compares spectra up to 5 kHz, and Figure 8 from 5-10 
kHz. The order in both figures is the same, with the spectrum of the 
original signal at the top (a), the middle spectrum (b) representing 
the results after extraction of shaft speed harmonics using TSA, 
and the bottom spectrum (c) showing the results after extraction of 
shaft harmonics using the cepstral method. Figure 7a has two sets 
of harmonic cursors, showing the harmonics of shaft speed (39.8 
Hz), and those of the bladepass frequency at 19¥. Figure 7b shows 
the harmonics of BPFO (ball pass frequency, outer race), and these 
are seen to be the dominant components left after removal of the 
shaft speed harmonics. The cepstrum result in 7c appears to give 
similar results to the TSA.

Figure 8a has a sideband cursor centred on the 10th harmonic of 
the blade-pass frequency (approximately 7580 Hz) with sidebands 
spaced at the bladepass frequency. In this frequency range, the 
TSA has left some components spaced at the blade-pass frequency, 
though these are obviously not discrete frequency components. 
We surmise that they are residual, narrow-band random sidebands 
around the blade-pass harmonics caused by the fact that the 
detection of blade passing on the casing is via pressure pulsations 
transmitted through a turbulent fluid. Because this pattern is still 
periodic in the frequency domain, it has been removed by the 
cepstral method (see Figure 8c).

Envelope analysis carried out on the residual signals shows even 
more clearly how the cepstral method removes all periodicity in 
the log spectrum, even that coming from uniformly spaced narrow-
band noise peaks. The envelope spectra in Figure 9 show periodic 
patterns in the signal envelopes. In the TSA result of Figure 7a, 
harmonics of BPFO can be found, but there is some disruption from 
residual harmonics corresponding to the shaft speed. These can 
possibly be explained by the same mechanism as the residual blade 
pass pattern in Figure 8b – periodic narrow-band noise peaks. But 
another possible explanation is that there are sidebands distributed 
throughout the spectrum caused by modulation of nonsynchronous 
vibration components by the shaft speed. TSA removes only 
harmonics of the fundamental frequency and not sidebands caused 
by modulation of nonsynchronous components. Figure 9c, using 
the cepstral method, shows only the harmonics of BPFO, with all 
periodicity related to the shaft speed having been removed.

As a matter of interest, Figure 9b shows the results of applying 
the DRS technique. In principle this should remove all discrete 
frequency components, including sidebands, but it also has some 
remnants related to shaft speed, although not as strongly as TSA. 
This is possibly because high-order harmonics of shaft speed 
have been smeared sufficiently by minor speed variations (order 
tracking was not applied before the DRS) so as to be broader than 
the fixed-width notch filter given by DRS.

Conclusions
A new method has been proposed for separating periodic and 

random components in a signal, such as those arising from bearings 
and gears. It is based on the cepstrum, which collects all periodic-
ity in the log spectrum into a small number of components which 
can then be edited to remove selected families. This method has a 
number of advantages compared with alternative methods such as 
TSA and DRS. Unlike the former, it can remove sidebands as well 
as harmonics and also periodic narrow-band noise peaks rather 
than just discrete frequency harmonics. It can also operate over 
limited band regions, where the TSA must include all harmonics 
down to zero frequency.
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