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More than 30 years ago, A. H. Vincent of Westland Helicopters 
demonstrated that if a structure is excited harmonically at a fixed 
frequency, the response at another position will trace a circle in 
the complex plane as a result of a stiffness modification between 
two points. This can be more generally expressed in the following 
manner. The structural or acoustical response at any position will 
map a circle in the complex plane for any straight line impedance 
modification in the complex plane. This article reviews the basis 
for this little-known principle and illustrates its usefulness for 
vibro-acoustics problems. The principle is demonstrated for noise 
radiation from a cantilevered plate and operator equipment cab. 
The technique can also be applied to waveguides.

Noise can sometimes be mitigated by making a change to a 
structural energy path by adjusting mass, stiffness, damping, or 
some combination of the three. Certainly, numerical simulation 
can often be used to guide the design process. However, we believe 
that an over-reliance on numerical simulation can mask important 
design insights that may be acquired using basic engineering 
principles. We believe that the principle discussed in this article 
is a useful observation that can aid engineers in making improve-
ments to products.

Discovered by A. H. Vincent1 of Westland Helicopters in 1972, 
it was largely overlooked in the intervening years until a recent 
paper by Tehrani, et al.2 Vincent1 noted that introducing a stiff-
ness modification and varying the stiffness from minus to plus 
infinity would result in a circle when the displacement response 
was plotted in the complex plane. Vincent limited his scope to 
structures excited at a single point with a one-dimensional spring 
added between two positions on a structure. More than 30 years 
later, Tehrani2 discovered that the principle could be generalized 
to an impedance modification in one dimension, incorporating 
mass and damping modifications.

Recall that mechanical impedance ZM can be expressed as

 

where k, m and cD are stiffness, mass and damping respectively. 
According to the principle, changing cD or the quantity –k/w+wm 
(i.e., the real and imaginary part of ZM respectively) from minus 
to plus infinity will trace a circle in the complex plane. This im-
pedance modification is at one position and in a single coordinate 
direction. The minimum value of the response corresponds to the 
point on the circle closest to the origin of the complex plane.

Using the principle, the entire response region can be described 
for a structural modification introduced between two points or be-
tween a single point and ground. Use of Vincent’s circle had previ-
ously been limited to vibration suppression problems and has been 
proven valid for structural loads, dynamic stiffness modifications 
and vibratory responses. However, our recent work3 demonstrated 
that the principle can be generalized for both mechanical and 
acoustic impedance modifications and acoustic responses.

A Simple Example
The principle is illustrated via a plate with a single-force excita-

tion. Figure 1 shows a plate cantilevered on one edge excited by a 
point force. A spring-mass-damper modification was introduced 
at point r. Numerical simulation was used to calculate the sound 
pressure (in air) at point q due to a force applied at point p. All 
simulations were performed at a frequency of 140 Hz.

The results are shown for two modifications in Figure 2. The 
large circle is for a stiffness k and/or mass m modification with the 
damping cD set to zero. This corresponds to varying the imaginary 
part of the mechanical impedance. Similarly, the smaller arc is for 
a damping modification (real mechanical impedance modification) 
with the stiffness and mass set to zero. Note that the circle and arc 

intersect at two points. One point occurs when all three constants 
(k, m, and cD) are zero (unmodified case). The other is when either 
k, m, or cD is infinite. The smaller circle divides the larger circle 
into two separate arc lengths. The longer and shorter arc lengths 
correspond to stiffness and mass modifications respectively with 
the other set to zero. An optimum modification can be identified as 
that point where the response is a minimum (closest to the origin 
of the complex plane).

In Figure 3, the damping is plotted on the vertical axis and a 
series of circles are traced in the different complex planes as the 
real part of the mechanical impedance (damping) is increased. The 
circles have a smaller diameter for higher values of damping, since 
damping tends to reduce the differences between the amplitude 
of vibration at resonances and anti-resonances. As expected, the 
circles move toward the origin of the complex plane as the damp-
ing is increased.

Application to Mechanical Impedance
The development of the method below is similar to that shown 

by Done and Hughes.4 Figure 4 shows a schematic of a structure 
with a modification between points r and s. The structure is excited 
at point p, and the response will be computed at point q. Done 
and Hughes supposed that point q was on the structure, and the 
response was a structural vibration. However, the derivation here 
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Figure 1. Schematic of cantilevered plate, approximate location of mechani-
cal impedance modification at point r, and point q for acoustic response.
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Figure 2. Sound pressure at point q (for a unit force at point p) plotted 
in a complex plane as a function of real and imaginary modifications to 
mechanical impedance.
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assumes a structural force at point p and an acoustic response at 
a point q.

Assume that the spring is replaced by two forces Fr and Fs. In 
this case, the vibration responses at points r and s in the direction 
of the mechanical impedance and the acoustic response at point q 
can be written in terms of the applied forces Fp, Fr, and Fs. Thus:

where Hij are the unmodified transfer functions (determined prior 
to any impedance modification) between the vibration (velocity) 
or acoustic responses at point i and the forces or acoustical inputs 
at point j.

Note that the forces Fr and Fs can be expressed in terms of the 
mechanical impedance, ZM, and the velocity responses, vr and 
vs, as:

and then substituted into Equation 2. This results in a set of three 
simultaneous equations with three unknown responses, xr, xs, and 
pq. Solving for the modified transfer function (pq/Fp), the following 
expression is obtained:

Note that Equation 4 is of the form:

where b, c, and d are complex numbers defined as:

Tehrani2 noted that Equation 5 is a form of the Moebius trans-
formation, which can be expressed as:

where a, b, g, and d are complex numbers. Equation 5 can be 
converted to the form of Equation 7 by just putting the right-hand 
side under a common denominator. The Moebius transformation 

states that a straight line or circular modification of z in the com-
plex plane will result in a straight line or circle of Z when traced 
in the complex plane.5

Also note that the transfer functions Hij need not be found a 
priori. Instead, the complex constants b, c and d can be solved by 
making three known impedance (ZM) modifications to an analysis 
model or a real structure and measuring the response at a point. 
Once the complex constants b, c and d are determined, the response 
to any impedance (ZM) modification can be determined.

A more detailed development is presented in Reference 3, where 
we demonstrate that the principle can be applied for:

Multiple input forces•	
Both vibratory and acoustic responses•	
Both vibratory and acoustic impedance modifications•	
Both series and parallel impedances•	
For the sake of brevity, we will focus on a few applications in 

this article. (See Reference 3 for a more rigorous explanation.)
As an aside, note that modifying the frequency in Equation 1 

results in a straight line modification of mechanical impedance in 
the complex plane. This equation is the system impedance for a 
single degree of freedom mass, spring and damper combination. 
For viscous damping (proportional to velocity), the mobility will 
trace a circle in the complex plane as frequency is varied for a 
single-degree-of-freedom system.6 Indeed, the so-called modal 
circle6 is a special case of the Moebius transformation.

Operator Equipment Cab with Multiple Inputs
Finite- and boundary-element analyses of an operator equip-

ment cab were conducted using ANSYS and LMS SYSNOISE 

Figure 3. Sound pressure at point q (for a unit force at point p) plotted as a 
function of real and imaginary modifications to mechanical impedance. Real 
part of mechanical impedance is increased along the vertical axis.
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Figure 4. (a) Excited structure and location of modification; (b) mechanical 
impedance replaced by forces.
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Figure. 5 Analysis model of operator equipment cab showing the impedance 
modification; analyses conducted using ANSYS and SYSNOISE.
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respectively, and the results demonstrate how the Moebius trans-
formation might be applied. Figure 5 shows the finite-element 
model of the operator equipment cab. The four input vibrations 
at the four mounts and a mechanical impedance modification to 

Figure 7. Acoustic response plotted in complex plane at 90 and 110 Hz for 
imaginary impedance (mass and/or stiffness) modification.
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Figure 6. Comparison of sound pressure at driver’s ear in operator equipment 
cab with and without impedance modification.
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the floor are indicated. The finite-element model for the cab was 
used to predict the structural vibration by a forced-response analy-
sis. The computed structural vibration was used as the velocity 
boundary condition for a subsequent boundary element analysis. 
The sound pressure response was computed at the location of the 
driver’s ear.

The sound pressure at the driver’s ear for the original unmodified 
design is shown in Figure 6, where peaks may be seen at 90 and 
110 Hz. Our objective was to add a modification to the cab that 
would suppress the sound pressure at 90 Hz while not adversely 
increasing the sound pressure at 110 Hz. An imaginary impedance 
modification was considered (i.e., a modification to the mass and/
or stiffness). Computed Vincent Circles in the complex plane are 
shown in Figure 7 for 90 and 110 Hz. Notice that the 90-Hz circle 
indicates that adding a modification at the selected position can 
suppress the noise. Conversely, the 110-Hz circle indicates an 
impedance modification will not have a significant effect on the 
response at 110 Hz.

Figure 6 shows the effect of adding a mass at the point shown 
in Figure 5. Notice that the sound pressure response is attenuated 
at 90 Hz, while there is little effect at 110 Hz. The added mass 
shifts an anti-resonance to 90 Hz. The results demonstrate how 
the principle can be used to assess the location and effect of im-
pedance modifications. In principle, the approach can be applied 
experimentally as well.

Application to Mufflers and Silencers
The principle is also applicable to acoustic impedance. Refer-

ence 3 details how the Vincent Circle is also applicable to acoustic 
impedances in waveguides. A muffler or silencer system can be 
thought of as a waveguide in which the sound propagates. At lower 
frequencies, the duct cross-sectional dimensions are small com-
pared to the acoustic wavelength. Accordingly, assume that plane 
waves propagate inside the duct system, thereby simplifying the 
analysis. In this case, a duct system can be described as an acoustic 
network and sound propagation in the network is simulated using 
the transfer matrix method popularized by Munjal.7

For example, Figure 8 shows an exhaust system with a variety 
of impedance elements. The approach is valid for both series and 
parallel impedances. Series impedances include the source (Zs), 
termination (ZT), and transfer (Ztr) impedances. The source (Zs) and 
termination (ZT) impedances dictate how much sound is reflected 
back from the source and termination, respectively, while transfer 
impedances (Ztr) are often used to model perforated elements. Par-
allel or branch impedances (ZB) are used to simulate quarter-wave 
tubes and Helmholtz resonators.

An application is shown in Figure 9. Our objective was to modify 
the impedances Z1 and Z2 by changing the lengths of the ducts 
to attenuate noise at both 120 and 300 Hz. Figure 10 shows the 
resulting transmission loss. Though it is straightforward to add a 
quarter-wave tube or Helmholtz resonator to an exhaust system, 
the configuration shown in Figure 9 is more difficult to optimize 
because impedances Z1 and Z2 are in parallel with each other. How-
ever, the Vincent Circle aids in selecting appropriate lengths.

Conclusions
We have demonstrated that the Vincent Circle aids in under-

standing the impact of mechanical and acoustic impedance modi-
fications on a vibroacoustic system. The Principle is applicable to 
both series and parallel impedance modifications.

It is limited to single-degree-of-freedom, lumped-element modi-
fications. Certainly, this is a weakness. For example, a modifica-
tion like changing the thickness of a panel could not be directly 
considered by means of the Vincent Circle as developed in this 
article. In the case of duct acoustics, changing the length of an 
expansion chamber modifies the impedance at two locations, and 
the principle is not directly applicable.

Similarly, application of the Moebius transformation is limited 
to analysis at a single frequency. It is not as useful if the structural 
or acoustic excitations are not tonal in nature, since moving reso-
nant frequencies will be of little benefit. That being the case, the 
method is most applicable when anti-resonances can be assigned 
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Nonetheless, the approach can be applied experimentally in 
principle. In fact, Tehrani, et al.2 successfully utilized the Vincent 
Circle to minimize the structural vibration on a beam. Anti-reso-
nances were identified using the Vincent Circle, and masses were 
added at selected locations. In practice, mechanical impedance is 
most easily controlled by changing the mass. If mass is welded to 
a structure, the change in damping (real part of the impedance) 
should be minimal compared to the change in mass (imaginary 
part of the impedance).

Though it may not be practicable to assign impedance precisely, 
understanding the influence of impedance modifications has intrin-
sic value. For instance, by varying the impedance of a lumped ele-
ment located on a panel, the impact of adding or subtracting mass, 
stiffness, or damping at a particular location can be assessed.

Acoustic impedance modifications in ducts are more easily 
controlled than mechanical impedances. As previously noted, the 
method is amenable to any branch or series impedance modifica-
tion. For the case of a side branch, the impedance can most easily 
be adjusted by changing the length. Likewise, the impedance of a 
Helmholtz resonator can be tuned by the equivalent length, resona-
tor volume, and side branch area.7
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Figure 10. Transfer function between termination and source sound pres-
sures after lengths (acoustic impedances) for waveguide in Figure 9 were 
optimized.

to important excitation frequencies. Fortunately, excitations are 
generally tonal for compressors, internal combustion engines, and 
many other sources of noise and vibration.

One drawback to the approach is that single-degree-of-freedom, 
lumped-element modifications are difficult to implement in prac-
tice, especially in the case of mechanical impedance. For example, 
the addition of a translational spring or damper generally also 
modifies the mechanical impedance in the other translational 
and rotational directions. Even if the impedance modification 
is precisely controlled, the local damping will likely be changed.

Figure 9. Schematic showing waveguide with side branch including acousti-
cal impedances (Z1 and Z2) in parallel.
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Figure 8. Application of the Vincent circle to a waveguide. Vincent circles are shown for real (ZS and Ztr) and imaginary (Zb) impedance modifications.
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