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Statistical Properties of the  
Random PSD

Control and conduct of a random vibration test is all about prob-
abilities. What is the  chance  of any single PSD spectral line being 
less than X? More than Y? What percentage of the test time will the 
amplitude at any frequency be between X and Y? Well established 
statistical calculations answer these important questions. In this 
article we present various procedures for determining the statisti-
cal properties of random waveforms. Probability and confidence 
interval tables are introduced for common degrees of freedom.

The power spectral density (PSD) of a Gaussian random wave-
form can be computed using the fast-Fourier transform (FFT). 
The FFT is a linear transform. If it is given a Gaussian input, the 
output at each frequency line is a complex number with a Gaussian 
real part and a Gaussian imaginary part. These are squared and 
added together to get the PSD magnitude, a Chi-square distributed 
random variable with 2 degrees-of-freedom (DOF). To compute an 
averaged random PSD, F frames of time data are measured, an FFT 
of each frame is taken and the squared magnitudes are averaged 
together. As a result, the averaged PSD of a Gaussian waveform 
is a Chi-square distributed random variable with (2F) DOF. This 
is where the DOF averaging specification for a random vibration 
test comes from.

In a practical sense, this means we can directly compute confi-
dence intervals and probabilities from the equations defining the 
Chi-squared distribution. The Chi-squared distribution with n 
degrees-of-freedom has a probability density function and cumula-
tive distribution function as follows.

where G(a) is the gamma function, and P(x,a) is the regularized 
lower incomplete gamma function.

Tolerance bands
Using this relationship and given a DOF value, we can tabulate 

the probability of exceeding a given dB level from the mean. If we 
note that the mean of a Chi-squared random variable is equal to 
the DOF, n, then using Matlab notation:

Pr[x<dB] = gammainc(10^(dB/10)*DOF/2,DOF/2,’lower’)    for dB<0

Pr[x>dB] = gammainc(10^(dB/10)*DOF/2,DOF/2,’upper’)    for dB>0

Compounded Probability
The probability calculations give the probability for a single 

line being outside the tolerance band. A typical random test is 
composed of a broad band of frequencies, with 200, 400, 800 or 
more lines distributed over that band, and we are interested in 
knowing the probability of any one of those lines going outside 
of the tolerance or abort bands. To account for this we assume the 
lines are independent, and compute the probability for having all 
lines within the specified tolerance band. This is done by com-
puting the probability of a single line being within the tolerance 
range, and then combining this probability together with all other 
lines. Mathematically this is done by multiplying the probabili-
ties together. So, for a given number of lines, we can tabulate the 
probability of meeting the tolerance using the formula pl where 
p is the probability of a single line being in-tolerance and l is the 
number of lines.

This calculation tells us what DOF parameter is required to 
achieve and maintain a stated tolerance with reasonable prob-
ability. Since the waveform is random, we can never achieve a full 
100%, but some cases get very close.

Confidence intervals
This calculation can be reversed, and we can also compute the 

dB levels given a probability value. This is typically expressed as 
a 90%, 99% or 99.9% confidence interval. The 90% confidence 
interval gives the range of dB values that cover the central 90% 
of the probability curve. In other words, there is a 5% probability 
of being less than the lower bound, and a 5% probability of being 

Table 1. Probability, in percent, of PSD value exceeding tolerance dB for a given DOF.

DOF =	 80	 100	 120	 140	 160	 180	 200	 220	 240	 260	 280	 300

+3.0 dB	 0.000	 0.000	 0.000	 0.000	 0.000	 0.000	 0.000	 0.000	 0.000	 0.000	 0.000	 0.000
+2.0 dB	 0.068	 0.018	 0.005	 0.001	 0.000	 0.000	 0.000	 0.000	 0.000	 0.000	 0.000	 0.000
+1.5 dB	 0.892	 0.418	 0.199	 0.095	 0.046	 0.022	 0.011	 0.005	 0.003	 0.001	 0.001	 0.000
+1.0 dB	 5.867	 4.099	 2.892	 2.056	 1.470	 1.055	 0.761	 0.550	 0.399	 0.290	 0.211	 0.154
+0.5 dB	 21.342	 19.032	 17.058	 15.350	 13.856	 12.541	 11.375	 10.337	 9.409	 8.576	 7.827	 7.152

–0.5 dB	 25.424	 22.628	 20.283	 18.276	 16.534	 15.006	 13.655	 12.452	 11.377	 10.411	 9.541	 8.755
–1.0 dB	 8.870	 6.426	 4.708	 3.478	 2.586	 1.932	 1.450	 1.091	 0.824	 0.623	 0.473	 0.359
–1.5 dB	 2.214	 1.188	 0.647	 0.356	 0.197	 0.110	 0.062	 0.035	 0.020	 0.011	 0.006	 0.004
–2.0 dB	 0.402	 0.146	 0.054	 0.020	 0.008	 0.003	 0.001	 0.000	 0.000	 0.000	 0.000	 0.000
–3.0 dB	 0.006	 0.001	 0.000	 0.000	 0.000	 0.000	 0.000	 0.000	 0.000	 0.000	 0.000	 0.000

Figure 1. Confidence interval vs. degrees of freedom.
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Table 2. Probability, in percent, of all lines within tolerance band, 800 lines.

DOF =	 80	 100	 120	 140	 160	 180	 200	 220	 240	 260	 280	 300

±3.0 dB	 95.60	 99.41	 99.92	 99.99	 100.00	 100.00	 100.00	 100.00	 100.00	 100.00	 100.00	 100.00
±2.0 dB	 2.32	 26.92	 62.49	 84.21	 93.83	 97.64	 99.10	 99.66	 99.87	 99.95	 99.98	 99.99
±1.5 dB	 0.00	 0.00	 0.11	 2.69	 14.28	 34.71	 56.01	 72.64	 83.76	 90.60	 94.62	 96.94

Table 3. Probability, in percent, of all lines within tolerance band, 400 lines.

DOF =	 80	 100	 120	 140	 160	 180	 200	 220	 240	 260	 280	 300

±3.0 dB	 97.78	 99.70	 99.96	 99.99	 100.00	 100.00	 100.00	 100.00	 100.00	 100.00	 100.00	 100.00
±2.0 dB	 15.23	 51.89	 79.05	 91.77	 96.86	 98.81	 99.55	 99.83	 99.93	 99.97	 99.99	 100.00
±1.5 dB	 0.00	 0.15	 3.35	 16.41	 37.79	 58.92	 74.84	 85.23	 91.52	 95.18	 97.27	 98.46

Table 4. Confidence interval, in dB, of a PSD value for a given DOF.

DOF =	 80	 100	 120	 140	 160	 180	 200	 220	 240	 260	 280	 300

99.9%	 2.05	 1.85	 1.70	 1.59	 1.49	 1.41	 1.34	 1.28	 1.23	 1.19	 1.15	 1.11
99%	 1.63	 1.47	 1.35	 1.25	 1.18	 1.11	 1.06	 1.01	 0.97	 0.94	 0.90	 0.87
90%	 1.05	 0.95	 0.87	 0.81	 0.76	 0.72	 0.68	 0.65	 0.62	 0.60	 0.58	 0.56

90%	 –1.22	 –1.08	 –0.98	 –0.91	 –0.84	 –0.79	 –0.75	 –0.71	 –0.68	 –0.65	 –0.63	 –0.61
99%	 –1.94	 –1.72	 –1.56	 –1.43	 –1.33	 –1.25	 –1.18	 –1.13	 –1.08	 –1.03	 –0.99	 –0.96
99.9%	 –2.52	 –2.23	 –2.01	 –1.85	 –1.72	 –1.62	 –1.53	 –1.45	 –1.39	 –1.33	 –1.28	 –1.23

greater than the upper bound, and 90% probability of being within 
the stated bounds. These confidence intervals can be tabulated and 
plotted as a function of DOF.

Windowing and Overlap
These calculations, with DOF equal to two times the number 

of frames, assume independent frames of data. When overlapping 
frames and window functions are used, the frames are no longer 
independent, and the effective DOF of the average will not be 
simply a multiple of the number of frames. The effective DOF can 
be estimated numerically by simulating data with the specified 

overlap and window function applied, computing the statistics of 
the resulting PDF, and comparing those statistics to a Chi-squared 
distribution with a known DOF. 

As a rule of thumb, for 50% overlap and with a window func-
tion, you still achieve a DOF of nearly two times the number of 
frames averaged together. For 75% overlap, you achieve a DOF of 
about one times the number of frames. For a given time interval, 
the practical result of this is that you can double the effective DOF 
by using 50% overlap.
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