
www.SandV.com DYNAMIC TESTING REFERENCE ISSUE  5

A new MATLAB® tool provides the shock and vibration commu-
nity with the ability to display and analyze data while minimizing
the probability of bookkeeping errors.

Test and analysis operations often result in the generation of
large quantities of experimental and analytical data. Often this
data must be processed in a variety of ways and then plotted and
compared with data from the same test series as well as historical
data. Many times, there is a significant amount of metadata that
accompanies the data of interest that is critical to the understand-
ing of the analysis and comparisons. A Matlab tool was developed
to ease these processes and minimize the probability of analysis
and comparison errors.

One of the key features of this tool is that it couples all of the
available metadata with the measured/computed data set and
provides easy access to that metadata. This tool supports a variety
of specific data analysis methods as well as many standard data
analysis methods. Its prime focus has been on enabling the user to
easily display both the data of interest as well as the descriptive
attributes that give the data meaning.

This tool takes advantage of Matlab’s object oriented constructs
and thus is very simple to use for an individual who is already
familiar with it. Most of the relevant operators have been defined
to operate on these datasets in a meaningful fashion. In addition,
Matlab’s plot routine has also been extended to work directly with
these data objects.

Often times the datasets utilize extremely long record lengths.
This fact often complicates analysis simply due to memory and
speed constraints. The tool was implemented in an optimized
manner in recognition of many of the complications that arise
from this fact.

Introduction
Many years of testing and simulation have resulted in the use of

a wide variety of data collection and storage systems. Each of these
systems is well suited to using the data that it generates. However,
the data storage formats used are generally proprietary and not
well suited to interoperability. Due to the rapidly changing nature
of current data acquisition hardware and software, older systems
rapidly become obsolete and often render data collected by them
difficult or impossible to access. Although many of these systems
are capable of writing their data in commonly used formats, often
times some of the metadata as well as the precision associated with
the original data are lost during the conversion process.

These factors have lead to the development of a toolbox for
addressing experimental and analytical datasets, with time or
frequency as the independent variable. XYData is a toolbox that
was developed in Matlab to address these needs. This new toolbox
was motivated by the need to bring collected data from disparate
data acquisition systems and analyses together into a common
framework. It is important to be able to analyze data from legacy,
current and new acquisition systems together as well as including
data generated by finite-element (FE) or other simulations. It is also
often necessary to include data generated by external organizations.

Another significant motivating factor in the development of
XYData is the management of the metadata associated with a mea-
surement set. It is trivial to store numeric data in a common format
that is easily accessible. However, data without context is often
meaningless. The inclusion of complete metadata becomes critical
when large-channel-count tests and large numbers of datasets with

varying conditions are considered. XYData was designed from its
roots to retain all of the metadata available for any dataset as well
as tightly coupling the metadata to the numerical data. Modern
data acquisition systems are capable of storing a large quantity of
data, both in terms of number of channels as well as sample size.
XYData was designed with this in mind, easily allowing the analyst
to consider partial datasets without the need to waste time load-
ing irrelevant data. XYData is ideally suited to batch processing
large quantities of data through a common set of analysis routines.

A number of considerations lead to Matlab1 as the choice for a
development platform. Matlab is a very common platform in the
academic environment; almost all graduating engineers have some
minimal familiarity with it. Matlab includes object-oriented pro-
gramming constructs and is designed to be very extensible, includ-
ing the ability to develop graphical-user-interface (GUI) elements.
Matlab’s implementation of these features is platform independent
so that the same routines can run on the simplest laptops as well
as the highest performing supercomputers without modification.
One significant drawback posed by Matlab is its significant up-
front and maintenance costs. There is an open-source package
called Octave that implements many of the same programmatic
elements as Matlab. It should be a trivial matter to port XYData to
Octave, eliminating the costs associated with Matlab with, perhaps,
a performance penalty.

Design Philosophy
The design goals of XYData were developed to ease and en-

courage its use as a widespread engineering tool for the analysis
of a wide variety of experimental and analytical data. They can
be summarized by extensibility, ease of use and management of
large datasets.

XYData was specifically developed using object-oriented pro-
gramming (OOP) techniques. The use of OOP allows XYData to
realize an extremely tight coupling of data and metadata. This
coupling is critical to minimizing the probability of data descrip-
tor errors. Appropriate use of OOP principles dictates that access
to a record’s data occurs only through specific interface methods
designed for that purpose. All data is accessed through get and set
functions that are aware of the specific data storage algorithm. As
a result, the underlying structure of the data can be changed and
optimized as the need arises without any detrimental effect on
currently existing algorithms.

Using OOP allows XYData-type variables to be used as any other
Matlab datatype. All of the common arithmetic and array reference
operations are implemented with XYData. As a result, two XYData
objects can be added together as easily as two scalars using the
same operator and syntax. Many of the common functions have
also been implemented in XYData as well, including min, max
and sqrt. Most importantly though, the plot function has been
implemented in XYData in a manner that eliminates the need for
the user to track data and its descriptors separately.

The ability to handle large datasets implies both an efficiency
of storage and I/O operations as well as the ability to select and
manage large numbers of records and their descriptive attributes.
XYData permits loading of partial datasets either through the
loading of a subset of records from the complete dataset or load-
ing partial records. To this end, the loading of only the metadata
is supported so that the choice of which records to load can be
made on the basis of the metadata. Most of the implemented data
analysis methods use highly efficient memory management and
vectorized algorithms, improving analysis speed for large datasets.

A large portion of managing large datasets is ensuring that the
data are properly documented. XYData permits inclusion of an

A Matlab Tool for Experimental and
Analytical Shock and Vibration Data
Morris Berman, U.S. Army Research Laboratory, Adelphi, Maryland

Based on a paper presented at the 82nd Shock and Vibration Symposium,
October 30-November 4, Baltimore, MD, 2011

www.SandV.com6  SOUND & VIBRATION/OCTOBER 2012

arbitrary number of textual descriptive lines as well as the inclu-
sion of arbitrarily named attributes that can contain scalars, arrays,
matrices and cell arrays. This flexibility ensures that the data can
be fully documented and that documentation remains attached to
the relevant record. In addition, each analysis routine adds a tag to
the resulting records that describes the type of analysis and relevant
parameters. Every process acting on a data record leaves a trail in
the resulting record. This way, the user can track how a particular
data record has been modified from the original measured data. In
large experimental efforts, mistakes inevitably occur in data storage
and labeling. XYData implements a means to fix and document
these errors automatically at the time data are loaded.

XYData was designed to leverage a user’s existing knowledge of
Matlab to the fullest extent possible. As previously noted, OOP
has enabled implementation of most Matlab operators and a large
number of common functions. In addition, significant efforts have
been made to automatically account for data inconsistency result-
ing from disparate or unevenly spaced time vectors. For instance,
when adding two records, the abscissas are automatically inter-
polated to common values before the addition operation occurs.
XYData greatly simplifies plotting data and its descriptors. The
user need only call out the records to be plotted and the associ-
ated metadata fields.

Basic Usage
An XYData object is created through the use of the xydata com-

mand. This command can take five different forms that create an
empty record, load existing data directly, create a record given X
and Y vectors, create a sine wave record or launch a GUI for view-
ing and operating on data interactively. The detailed arguments
for each function can be found in the embedded XYData help.
A novel mechanism is used for calling the appropriate XYData
loader routine. All of the XYData functions for loading data begin
with the word “load” followed by the type of data to be loaded.
For instance, the loader for reading SD data is named loadsd.
When xydata is called with a string as its first argument, the path
is searched for a function with the name of that string preceded
by the word load. So, to load SD data for event 1, channel 2, the
user executes xydata(‘sd’,1,2). This implementation permits trivial
implementations of additional data loaders without modifying the
xydata function.

A user simply needs to create a new data loader and ensure that
the name starts with “load.” XYData will automatically recognize
the new loader as long as it is in the path. Each XYData record has
a type associated with it. The types currently available are time,
spectral, waterfall or srs. These types are used to ensure that certain
processes only occur on certain types of data as well as setting
various defaults for plotting.

Once data are loaded, manipulation with the basic arithmetic
operators is fully supported. Addition and subtraction of a scalar
and a XYData object adds or subtracts that scalar to the ordinate
of the XYData. If both arguments are XYData objects, then the
ordinates are added together. If the abscissas differ, a common
abscissa is computed and the ordinates are interpolated on the
new abscissa prior to the addition. Array multiplication (.*) uses
the same logic as addition, and matrix multiplication (*) is only
defined between XYData and a scalar or vector. The exponential
operator is also defined for XYData.

A large number of basic mathematical functions have been imple-
mented for XYData. Matlab’s abs, angle, log, log10, sqrt, cumtrapz,
and detrend functions are implemented to act on XYData objects
just as they would act on an array of real values. Although not a
native Matlab function, centraldiff provides a differentiation opera-
tor. The results are returned with the same abscissa as the input,
with the ordinate being the result of the function. Other functions
such as min and max return a scalar for each XYData record input.
The mean function returns either the scalar mean of each XYData
record or the mean of all input XYData records at each abscissa
point. XYData implements several Matlab functions for sampled
data as well including decimate, resample and downsample.

Another class of functions implemented for XYData enables
simple manipulations of XYData objects. One group of functions act

on the ordinate, and these include clipy, scaley, truncy and yshift.
A complementary group of functions act on the abscissa: scalex,
truncx, truncpt and tshift. The clipy function limits the maximum
ordinate value of its argument. The scale functions multiply the
ordinate or abscissa by a scalar. The shift functions add a scalar to
all values of the ordinate or abscissa, and the trunc functions limit
the maximum and minimum values of the abscissa or ordinate.
Truncpt selects a segment of the abscissa based on the number
of points, not the values of those points. The sum function adds
the ordinates of two or more XYData objects ensuring a common
abscissa. The concat function combines two or more XYData object
sequentially. The abscissa is not checked for consistency.

Several signal processing functions are provided. Movavg and
removedc smooth data and provide a simple method for remov-
ing the initial DC offset often encountered in Wheatstone bridge
devices. The sdof function provides the response of a single-
degree-of-freedom system to the provided input. The envelope
function outputs the peak ordinate at each abscissa point among
the input XYData records, resulting in a “highest” value at each
abscissa among the input records. Two simplified filtering algo-
rithms are currently implemented. Buttfilt implements Matlab’s
built-in Butterworth filter given cut-off frequencies and filter order.
Cfcfilt is used in the same way as buttfilt; however, its arguments
are consistent with the SAE J211 channel frequency class filters.

Unique Functionality
The utility of XYData lies in its unique functionality that closely

couples data and metadata. The user never directly accesses the
underlying data structures in a record; get and set are used to access
all of the data and descriptor elements of a XYData record. This
permits the underlying structure to change over time, resulting in
improved efficiency and speed while still maintaining compatibil-
ity with all the code that has already been written. Get retrieves a
field from one or multiple XYData records and set places a value
into a field of XYData records.

There are certain fields that are available in all XYData records.
Some of these fields are X, Y, desc, event, channel and id. The
user also has the option of creating fields with arbitrary names.
A core field used in XYData is the “descriptive lines.” These are
an arbitrary number of lines of text of arbitrary length. They are
generally used to provide information specific to a channel or test
condition in each record. It is helpful if a given line in a test series
contains the same type of information. For instance descriptive
line 1 might always contain the forcing frequency and descriptive
line 2 might always contain the amplitude for a particular series
of sine wave tests.

Since arbitrary field names can be created, it is important to be
able to determine what fields exist in any given record as well as
being able to list the contents of those fields. There are two methods
to determine the fieldnames. The first method is to get the field
named “fieldlist.” This returns a cell array of all of the field names
available for that record. The second method, the showfields func-
tion, returns a listing of all fields in the record that are non-blank.

Another important function for managing datasets is the listinfo
function. This function provides both a cell array and a tabular list-
ing of the requested fields for all referenced records. For example,
an array of XYData records may exist from a particular test series;
however, the user does not know which record corresponds to
which tested condition. The listinfo function is designed to easily
provide that information.

XYData provides facilities for extracting records based on a com-
plex combination of conditions. It is important to be able to select
data based on conditions and not just on a specific index value into
an array. XYData provides two functions, findrec and findrecnum,
for that purpose. One returns the actual XYData records, and the
other returns the indices of the selected records.

These functions take a series of field-value pairs as their argu-
ments. The “field” argument identifies which field the condition
should be tested against. The “criteria” argument is the test
condition. If multiple field-value pairs are specified, all of them
must be satisfied for a record to be selected. In its simplest form,
the “criteria” argument is just a text string that must match the

www.SandV.com DYNAMIC TESTING REFERENCE ISSUE  7

selected record. A cell array of values can be provided for a given
field. In that case, the series of values are connected by an “or”
operator. For more complex search conditions, the full range of
Matlab’s regular expressions are supported in the contents of the
“criteria” argument.

The showprocess and addprocess functions are provided to en-
able documentation of the operations performed on any particular
record. Each time a record is operated on, the resulting record
contains information about the operation performed. This docu-
mentation is added to the record with the addprocess function. If
a user wishes to understand what processes have been applied to
a particular record, the showprocess function details the chain of
processes for that record.

Plotting
A key function of the XYData toolbox is to facilitate plotting of

experimental and simulation data while minimizing the probability
of labeling errors. The plot command provides this core function-
ality. In its minimal form, it takes a single argument, which is an
array of XYData records. However, its real utility is derived from
its second argument. This argument is a scalar or cell array that
identifies which descriptors should be included in the legend for
each curve. The cell array can contain a scalar number to identify
a particular descriptive line or any field name. If an XYData set
contains three records [XYD1 XYD2 XYD3] and the second de-
scriptive line of each record contains the projectile’s weight, the

command plot ([XYD1 XYD2 XYD3], 2) would plot all three records
on a single axis, and the legend would contain each projectile’s
weight. The user does not need to track the data separate from
its descriptors nor issue a separate Matlab legend command as
would normally be the case. As long as the descriptors are correct
when the data is read into the XYData records (or are corrected
by the included XYData mechanism), there is little possibility of
misapplying legend labels, resulting in more certainty if the data
is inconsistent with expectations.

For comparing large numbers of XYData records, the splot com-
mand can be used to plot multiple axes on a single page, with
each axis containing a single XYData record. As the user wishes to
increase the complexity of the plots, the third argument can con-
tain the full range of property-value pairs acceptable by Matlab’s
native plot command.

In a similar fashion, XYData also implements the plotyy and
loglog Matlab plotting commands. The plotyy command simpli-
fies plotting two different XYData records on the same axis with
disparate ordinate values. For instance, where the ordinate of
one record is on the order of 0.001 and the ordinate of the second
record is on the order of 10,000. The loglog function simply plots
the records on logarithmic X and Y axes. XYData also implements
bode to create a bode plot of complex valued XYData records.

Injury Analysis Methods
XYData has been used extensively in the assessment of human

0 50 100 150 200 250 300
Time, Sec.

0

500

1000

1500

2000

2500

3000

F
re

q
ue

nc
y,

 H
z

0 50 100 150 200 250 300
Time, Sec.

V
o

lta
g

e

Figure 1. Swept sine divided into time slices.

A
cc

el
er

at
io

n,
 g

15

10

5

0

Up

DnV
ol

ta
ge

, C
ha

nn
el

 1

4000

3000

2000

1000

–0

V
ol

ta
ge

, C
ha

nn
el

 2

3200

3000

2800

2600

2400
0 500 1000 1500 2000 2500 3000
 Frequency, Hz.

A
cc

el
er

at
io

n,
 g

15

10

5

0

–5

–10

–15

V
ol

ta
ge

, C
ha

nn
el

 1

3500

2500

1500

500

–500

V
ol

ta
ge

, C
ha

nn
el

 2

3100

2900

2700

2500

0 50 100 150 200 250 300
 Time, Sec.

Figure 2. Swept sine analysis results.

www.SandV.com8  SOUND & VIBRATION/OCTOBER 2012

injury probability from anthropomorphic test device (ATD) data.
As a result several functions are included within XYData that
address injury criteria. The dri function implements the dynamic
response index injury criteria. The DRI represents the compression
of the human body’s core, given a vertical input at the pelvis.2 The
response is modeled as a single-degree-of-freedom system and the
result used in computing the probability of injury.

The iband function provides a measure of the load’s amplitude
versus its duration at that level. This measurement is used in the
computation of other injury criteria. The output of the iband func-
tion is maximum duration or cumulative duration that the XYData
record remains at or above a given amplitude.

Swept-Sine Analysis Methods
The XYData toolbox incorporates significant functionality for

analyzing swept-sine data. Traditionally swept sine tests provide
the response filtered at the excitation frequency. In most cases, this
is sufficient. However, situations arise where the response is a DC
or other time-varying signal, and there is a need to characterize
how that response varies depending on the input frequency. In this
situation, the traditional analysis methods fail.

XYData’s sinswp function is able to provide an analysis of a
signal of interest where the response does not occur at the excita-
tion frequency. The algorithm utilizes a record that comprises a
clean measurement of the input sine wave. This could be the signal
input to the shaker or an unattenuated drive signal provided by the
swept-sine controller. This signal is divided into a series of time
slices determined by the user. Each time slice (red lines on the left
of Figure 1) is then analyzed to determine its average frequency.
This yields a XYData record of time vs. excitation frequency (right
side of Figure 1).

The resulting XYData record of time vs. frequency is then used
to divide the record of interest into the same time slices (green
lines on the left of Figure 2). Each of those time slices is then ana-
lyzed, and a resulting scalar is determined. Generally the analysis
comprises the maximum or minimum value in the time slice. The

resulting scalars are then inserted into another XYData record with
the frequency as the abscissa, resulting in a frequency vs. value of
interest plot (plots on the right of Figure 2).

Frequency Analysis Methods
A variety of frequency analysis techniques are implemented

in the XYData toolbox. The transfer function estimate as well as
cross and power spectral density functions are implemented using
Matlab’s underlying signal analysis routines. However, the cpsd,
psd, tfestimate functions of XYData use the information available in
the abscissa to generate the correct frequency axis associated with
those functions. These functions provide arguments to divide the
XYData record into frames of a fixed number of points or a fixed
duration for an ensemble analysis. A shock response spectrum as
well as a pseudo-velocity shock response spectrum is implemented
in XYData. Both the srs and psrs use Smallwood’s algorithms.3

XYData also includes both plotting and analysis routines to
simplify generating waterfall plots. The psdwfall function gener-
ates a series of PSDs using the psd command. XYData data’s plot
command is aware of these PSDs and will generate an appropri-
ate waterfall plot when they are provided as an argument to plot.

Peak Analysis Methods
The need often arises to identify peaks within a set of data. When

the data are noisy and contain a variety of local and global peaks,
this becomes a complicated problem. XYData implements getpeaks
to address this type of analysis. The essence of the algorithm is
to compare each point to its neighbors and determine if its value
is higher than those neighbors. This algorithm can be executed
with varying the number of points in the neighborhood as well
as executing multiple iterations of the algorithm. The simplest
means to implement this algorithm is through a loop over all the
points in the data record. Unfortunately, for large records, this
method is extremely slow. XYData implements a very efficient
vectorized method that is able to handle very large data records
with high speed.

Figure 3 illustrates the peak-finding algorithm implemented in
XYData with various parameters. A sample set of data is shown
with the solid dark blue curve. Although only 12 ms of the data
is shown, the entire data set consists of 20 seconds of data. It is
the same in Plots 3a and 3b. In Plot 3a, the number of points in
the neighborhood is varied, and a single iteration of getpeaks is
executed. The legend indicates the number of points considered
and the computational time needed. A larger neighborhood results
in the identification of fewer localized peaks. In Plot 3b, the number
of points in the neighborhood is fixed at 2, but the number of itera-
tions is varied. Depending on the nature of a particular dataset, it
may be more beneficial to vary the size of the neighborhood or the
number of iterations. These two controls allow the user to tailor
the algorithm to provide the most efficient analysis for the data
under consideration.

Temporal Moment Analysis Methods
XYData includes an implementation of D.O. Smallwood’s tem-

poral moment algorithms.4 The first five moments are computed.
In addition, the band-limited temporal moments can also be com-
puted by XYData. Temporal moments provide another means for
extracting signal features from data. These algorithms can be used
to provide additional information to augment the weaknesses in
other signal analysis methods

Input/Output Capabilities
One of XYData’s strong suits is its ability to interface to a variety

of data sources. Loading algorithms currently exist to load data
generated by finite-element programs, oscilloscopes, ASCII data,
several data acquisition systems and photographic motion analysis
programs. To facilitate the two-way flow of information, data can
also be output as finite-element analysis program load curves,
ASCII data and reference spectra for control systems.

A graphical user interface (GUI) was also developed to provide
the user a quick method of reading in data and displaying the
metadata sorted in a variety of ways. The data is then easily plotted

(a)

(b)

A
m

pl
itu

de

0.17

0.16

0.15

0.14

0.13

0.12

0.11

0.10

0.09

0.08

Repeat for
multiple iterations

9.02 9.022 9.024 9.026 9.028 9.30 9.302
 Time, Sec.

Data
2 pts, 1 iter, 15 ms
10 pts, 5 iter, 29 ms
2 pts, 10 iter, 33 ms
150 pts, 15 iter, 28 ms

Data
2 pts, 1 iter, 13 ms
10 pts, 1 iter, 85 ms
2 pts, 1 iter, 376 ms
150 pts, 1 iter, 1218 ms

A
m

pl
itu

de
0.16

0.15

0.14

0.13

0.12

0.11

0.10

0.09

0.08

Neighborhood
of points

Figure 3. Peak finding; (a) varying neighborhood and (b) varying iterations.

www.SandV.com DYNAMIC TESTING REFERENCE ISSUE  9

with some analysis capabilities available. This facilitates the user
comparing a large number of data records in a meaningful manner
from a variety of different data sources. From this type of “bird’s-
eye” view of the data, the analyst can then determine which more
detailed analyses should be executed on which records.

Future Expansion
Although several years of development have gone into XYData,

there is still a significant amount of functionality that should be
added to it. The framework of the toolbox is well established, and
there is plenty of opportunity to implement various algorithms.
Additionally, the toolbox will always benefit from the addition of
new data loaders.

The addition of the GUI to the XYData toolbox is relatively
recent. The primary focus on the GUI had been the presentation
of the metadata in useful and convenient format that allowed
arbitrary sorting of the data. With that implemented, additional
analysis capabilities should be incorporated into the GUI so that the The author can be reached at: morris.berman@us.army.mil.

casual user need not develop M-files to execute various analyses.
The third major area of expansion for XYData is to port it to

open-source software. At this point, Octave seems to be the most
likely candidate, since it is highly compatible with Matlab and
incorporates OOP capabilities. Although executing XYData in
another application may result in a performance decrement, there
is a definite benefit to eliminating the reliance on proprietary com-
mercial software.

References
	1.	Using Matlab Version 6, The Mathworks, Natick, MA, 2002.
	2.	MIL-DTL-9479E, Detail Specification Seat System, Upward Ejection,

Aircraft, General Specification for, September 17, 1999.
	3.	Smallwood, D. O.,“An Improved Recursive Formula for Calculating Shock

Response Spectra,” Shock and Vibration Bulletin: Proceedings of the 51st
Symposium on Shock and Vibration, San Diego, CA, 1980.

	4.	Smallwood, D. O., Short Course Notes, Sandia National Laboratories, Jan
1990.

