
www.SandV.com8  SOUND & VIBRATION/NOVEMBER 2012

Complex Modes is one of those topics that every vibration 
practitioner understands – just not fully. We all “know” that 
complex modes exhibit two shape functions that vibrate at a 
single frequency in phase quadrature. Experimentalists recognize 
complex modes from the “galloping nodes” in an animated display. 
Analysts understand them as result of the “non-proportional” 
distribution of damping. Most of us have found some aspect of 
the complex mode phenomenon, its analysis or measurement just 
a little mysterious.  

I will confess burning a disproportionate number of the many 
calories I have consumed in pursuit of a strong “gut feel” for com-
plex modes. This article is intended as a brief reference document 
for anyone suffering from the same hunger. When I first entered 
professional engineering practice in 1966, vibration analysts and 
test practitioners were focused on finding a structure’s normal 
modes. Our analytic tools were dominated by matrix methods 
applied to “lumped mass” models. Testing techniques employed 
slowly swept sine excitation and tracking filter analysis. No one 
bandied the term “complex mode” about, animated mode shape 
displays were eons in the future (we hand plotted our mode shapes) 
and mode shapes with nodal points that “travel” would have been 
viewed as the result of experimental or numerical error.

About a decade later, fast Fourier transform (FFT) signal analysis, 
impulse testing and (later) complex modes dominated everyone’s 
interest and lexicon. Around this time, interest in developing new 
structural modeling methods evaporated in favor of refining and 
extending finite-element (FE) analysis, the new technical darling 
fed by ever-increasing computer power and the disbursed avail-
ability of such power. Complex modes came to become a really 
“big deal” in experimental practice in the mid ’70s. They have yet 
to be as thoroughly accepted by the analytic modeling community. 
This probably has much to do with the focus (or lack of focus) of 
today’s FE marketing executives. I believe it will be beneficial to 
practitioners old and new to review the evolution of complex-mode 
modeling and test analysis.

On the Analytic Side – Normal Modes
Much of my early business life was spent in the study of systems 

described by “lumped mass” models. In that era, matrix notation 
was the modern language of vibration analysis. I learned to speak 
matrix (possibly an Australian dialect in a heavy Scottish accent 
with strong Brooklyn overtones) fluently while working for Sikor-
sky Aircraft Corporation. As a lowly BSME “fresh-out” surrounded 
by seasoned PhDs, it was incumbent upon me to catch up quickly 
to avoid being tossed all of the “dog work.” My coworkers became 
good friends and excellent mentors. The majority of problems we 
studied were eventually described by a system of second-order, 
linear differential, forced-motion equations of the form:

 
	
By far the most difficult task was solving such equations for natu-
ral frequencies and mode shapes. In the mid ’60s, it was common 
practice to ignore damping altogether when solving such eigen-
value/eigenvector problems. We often tried to pass off the notion 
of ignoring damping as seeking a conservative solution, since 
any damping found in the actual structure would help diminish 
undesired vibration. In any event, many problems in the form of 
Equation 2 were solved for undamped natural frequencies and 
normal-mode shapes.

This was accomplished by applying the following three constraints 
to Equation 2:

This simplified the problem to the form:

Inverting the stiffness matrix, K, allowed the equations to be placed 
in the standard “l-matrix” or eigenvalue/eigenvector format (Eq. 
4). The scalar, l, was termed an eigenvalue, while the vector, {f}, 
was called an eigenvector. [K–1]was called an influence coefficient 
matrix and [D] the dynamic matrix. Influence coefficients were 
often actually measured in the laboratory by applying known 
forces and measuring the resulting displacement patterns. This 
was practical; directly measuring a stiffness matrix, by applying 
known displacement patterns and measuring the forces necessary 
to maintain them, was not.

Eigen is from the German for particular. To appreciate the par-
ticularity sought, consider what Equation 4 says geometrically. 
The left side of Eq. 4 multiplies a vector by a scalar. This operation 
merely extends or contracts the vector length; it does not change the 
vector’s orientation. In contrast, the right side of Eq. 4 multiplies the 
same vector by a matrix. Such multiplication potentially changes 
both the length and direction of the vector. Therefore, an eigen-
vector, {fn}, of these equations is a vector that does not change its 
direction when premultiplied by [D]. However such multiplication 
extends the vector’s length by a factor of ln. In general, a system 
of N equations will have N unique eigenvalue/eigenvector pairs. 
Each eigenvalue is the reciprocal of a squared natural frequency 
in radians/second. Each corresponding eigenvector models the 
associated mode shape.

The N mode shapes may be assembled to form a coordinate trans-
form matrix by “stacking” the found eigenvectors side-by-side as 
shown in Eq. 5. This transformation describes any arbitrarily de-
formed shape of the structure as a linear combination of the mode 
shapes. Substituting Eq. 5 in Eq. 3 results in Eq. 6a: 

Premultiplying Eq. 6a by the transpose of the transformation com-
pletes a similarity transformation, with the result shown in Eq. 6b. 
The resulting diagonal matrices are referred to as the generalized 
mass and generalized stiffness matrices (sometimes termed modal 
mass and modal stiffness). The vector, {Q}, is called a generalized 
force. The {q} vector is often termed a modal participation vector:

The similarity transformation of Equations 6a and 6b disclose an 
important property of the modal vectors: they exhibit generalized 
orthogonality with respect to the mass and stiffness matrices. That 
is, they diagonalize both matrices, thereby uncoupling all N equa-
tions from one another:

In general, each of the N diagonal Mn elements is different. The 
actual numerical value of each Mn is determined by how the {fn} 
vectors were normalized. Scaling methods, such as setting the 
largest vector element or the top-most element or the vector length 
to 1 will each result in a different set of Mn values. One very at-
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tractive option is to choose the length of the {f n} vectors so that 
the generalized mass matrix becomes an identity matrix. Modal 
vectors normalized in this manner are said to be orthonormalized. 
The corresponding generalized stiffness matrix then contains the 
corresponding squared circular natural frequencies on the diagonal 
and zeros everywhere else.

Note that the generalized orthogonality is guaranteed because 
of known mathematical properties of the [M] and [K] matrices. In 
specific, both are symmetrical, reflecting reciprocity or structural 
isotropy. Further, the [K] matrix is known to be positive-definite, 
indicating that the modeled structure is determinate; that is, it 
won’t topple over. Note also that the solution vectors do not gener-
ally exhibit ordinary orthogonality to one another. That is:

Normal or real modes can uncouple the damped equations of mo-
tion (Eq. 1) but only in a very limited case. Such damped structural 
models uncoupled by normal modes are said to be proportionately 
damped, meaning the damping matrix, [C], can be expressed as a 
linear combination of the mass and stiffness matrices as asserted 
by Equation 9a:

 

So, when the damping matrix of a proportionately damped system 
is subjected to similarity transformation using the normal modes, 
[f], a diagonal generalized or modal damping matrix results, as 
asserted by Equation 9b. Since proportionality is never guaranteed, 
this is not a general solution to Equation 1:

On the Analytic Side – Complex Modes
A general solution to the damped vibration problem is pos-

sible, but it requires recasting the equations in a different manner. 
First, the velocities at each degree of freedom (DOF) are treated 
as a separate, state-variable vector, {n}. Second, differentiation is 
restricted to first order only. This amounts to changing Eq. 1 to Eq. 
10a. Third, a second equation (Eq. 10b) reflecting a momentum 
balance between �x{ }  and {n}, is solved simultaneously:

	

The combined equations to be simultaneously solved are presented 
in Eq. 11. In essence, we have traded solving N second-order dif-
ferential equations for 2N first-order equations. The combined 
matrices are each of size 2N ¥ 2N.

Equation 11 is solved for frequency, damping and (complex) mode 
shape by assuming the external forces to be zero (a), and defining 
the state variable vectors in terms of complex exponential func-
tions of time (b) and (c):

Equation 12a presents the result of applying these three actions 
to Eq. 11:

Premultiplying Eq. 12a by the inverse of the right-hand matrix 
and rearranging terms results in Eq. 12b, which is clearly of the 
same l{f} = [D]{f} form as Eq. 4. So, solution by the same general 
mathematical methods is possible:

Note that all of the matrix elements in Eq. 12b are real valued. 
Only the eigenvector elements and the eigenvalue are complex 
quantities.

Analytically, Solving for Frequency, Damping and Shape
I have discussed the formulation of characteristic real-mode (Eq. 

4) and complex-mode (Eq. 12b) eigenvalue/eigenvector equations, 
and the properties of the resulting frequency values and shape 
vectors. But I have not discussed the methods of solving for the 
eigenproperties; this choice was deliberate. There are many com-
peting algorithms available to solve such problems, and it is not 
my intent to champion any one of them. However, some general 
comments regarding solution methods seem appropriate.

The eigenvalues of l{f} = [D]{f} are the roots of the characteristic 
polynomial that results from evaluating the determinant (Eq. 13), 
where [I] denotes the identity matrix. For an N ¥ N real-mode for-
mulation, N distinct real eigenvalues result. For a complex-mode 
formulation, the same [M] and [K] matrices lead to a [D] matrix of 
2N ¥ 2N and N pairs of conjugate complex eigenvalues.

Once the eigenvalues are known, the corresponding eigenvectors 
may be evaluated one at a time. This is accomplished by substitut-
ing one of the known l (say ln) into Eq. 14, assuming the value for 
one element (say fn= 1) of the {fn} vector and algebraically solving 
for the remaining N–1 elements of {fn}. This process is repeated 
until all of the eigenvectors have been obtained.

Since solving for the roots of a high-order polynomial is a daunt-
ing numeric task, alternative algorithms have evolved over the 
years. One of the most popular and successful methods is called 
matrix iteration. It uses an old standard in higher mathematics: 
guessing the answer. Start by guessing a trial vector, {Tn

k}, to ap-
proximate sought modal vector, {fn}. Normalize {Tn

k} to become 
{Tn

k} by dividing all of its elements by the largest element in the 
vector. Recursively execute Equation 15 until the trial vector and 
its normalizing eigenvalue stabilize. Retain these stabilized values 
as {fn} and ln respectively.

Iteration of the [D] matrix will always converge on the largest ei-
genvalue, regardless of the vector shape chosen as the initial guess. 
Since (in the real mode case), 21 /n nl w=  , this guarantees that the 
lowest frequency or first mode will be converged upon. To converge 
upon higher modes, the orthogonality properties demonstrated in 
Eq. 7 are employed. After the first mode is known, the elements 
of the {f1} eigenvector and elements of the original mass matrix, 
[M], are combined to form a sweeping matrix, [S1]. The recursion 
equation is modified to Equation 16, and the second mode is sought:

The [S1] matrix causes each trial vector to be purified of {f1} 
content. That is, vector content in {Tn} proportional to {f1} is ef-
fectively subtracted out, forcing the iteration to converge on the 
second mode. After each successful convergence to a mode, a new 
[Sn] matrix is developed using elements of all found eigenvectors 
and the iteration is implemented again to obtain{fn+1} .

For reference, it is also possible to recast the recursion in terms 
of the inverse dynamic matrix, [D–1] = [M–1][K]. In this case, the 
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Applying Eq. 22 to Eq. 11 as a similarity transformation results in 
the uncoupled equations abbreviated here:.

Applying the LaPlace transform with all initial conditions equal 
to zero results in:

The matrix inversion of Eq. 25 is trivial, since all the off-diagonal 
elements are equal to zero:

Applying a single force to a DOF produces a generalized force that 
excites all of the modes (and their conjugates) in accordance with :

The response displacement at DOF b is given by:

Combining Equations 25-27 provides the displacement/force FRF 
between DOFs a and b:

Substitute the following six definitions for the complex variables 
in Eq. 28:

recursion will converge to the smallest eigenvalue or highest 
frequency. This can be of value, since the errors in frequency and 
shape increase with each mode found.

Experimental Side – Normal Modes
Experimental modal analysis is very much about curve fitting 

measurements. In particular, measured motion/force frequency 
response functions (FRFs) are matched to theoretical FRFs de-
rived from a real or complex-mode model. The desired resonance 
frequencies, damping and mode shapes are computed from the 
results of hundreds of curve fits. There are dozens of modern 
curve fitters applied to this problem, and each has its champion. 
It is not my purpose to determine the best of these; I just want 
to explain the parameters of the theoretical models matched by 
proper curve fitting.

For an undamped structure or one with proportional damping, 
performing modal vector similarity transformation on the Equa-
tion 1 results in N uncoupled equations in the form of Equation 
17a. The resulting generalized mass, damping and stiffness are all 
diagonal matrices:

Assuming all initial conditions are zero and applying the LaPlace 
Transform to these results produces:

Since the matrix in Equation 17b is diagonal, inverting it is trivial, 
and we can state:

If a single force is applied to the structure (say at DOF, xa), the 
generalized force vector, {Q}, can be written as Equation 19. This 
equation shows that exciting a single degree of freedom excites all 
N modes in the structural model simultaneously: 

The resulting motion at a single DOF (say, xb) is contained in the 
more general result (Eq. 5). This allows us to write Equation 20, 
and note that xb contains contributions from all N modes.

Thus the FRF, Ha,b(S), may be stated as:

Experimental Side – Complex Modes
A similar derivation for Ha,b(S) may be made from the complex-

mode formulation of Equation 11. Note that for a system with N 
degrees of freedom, the solution to Equations 11 is comprised of 
2N eigenvalues and eigenvectors. Each eigenvalue is associated 
with a complex vector of length 2N. These 2N roots and 2N vec-
tors are actually found in complex-conjugate pairs. This four-fold 
increase in information is at first confusing, until we remember 
that each complex modal vector reflects N velocity and N displace-
ment DOFs. Since the original physical vi and xi variables are 
real-valued functions of time, a complex vector and its conjugate 
are simultaneously required to reconstruct them.

The complex-mode solution vectors may be assembled into a 
transformation matrix as was done in Equation 5 for the real mode 
formulation. Specifically:
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Resulting in:

This result may be simplified by placing the two terms of Eq. 29 
over a common denominator as in Equation 30:

Note that synthesizing an FRF from a complex-mode model 
only requires the N ¥ N terms of the lower-left quarter of the modal 
transformation matrix given by Equation 22. For this reason, com-
mercial modal analysis software does not retain the rest of the 
vector elements required in an analytic model. These additional 
terms are redundant; they may be constructed from the N roots 
and N vectors retained. 

Normal Modes in a Complex-Mode Model
Clearly, real-mode solutions must be a subset of possible complex 

modes. But how are they represented in a complex-mode model? 
Comparing Equation 30 with 21 provides the answer. Equation 
30 must collapse to 21 when a system’s modes are solely normal.
Expand the denominator of Eq. 30 and compare it to the denomi-
nator of Eq. 21:

The two statements are identical if we define the damping fre-
quency in radians/second:

and the undamped natural frequency in radians/second:

that is the damped natural frequency in radians/second is:

Therefore, the denominator terms of the two summations are 
identical. Now compare the numerators:

Equation 34 imposes two constraints on the complex mode formu-
lation when real modes are the sole content. Equation 35a assures 
that there is no “S proportional” term in the numerator, while Eq. 
35b assures equality of the real-valued numerator:

	

Since the vector elements of ya,n and yb,n must remain indepen-
dent entities, these constraints are uniquely satisfied by Equations 
36a and 36b.

This is a rather surprising conclusion. Intuition suggests that a 
real mode contained in a complex modal vector should exhibit 
the form: {kfi,n + j0}. Instead, {kfi,n – jkfi,n} is required. Therefore, 
a real-mode vector in a complex-mode model has elements with 
a –45° phase angle, not 0°.

Unusual Reality Check
I was introduced to the analog computer during my junior year 

in college; it was love at first sight. Professor Thomas Warner used 
an Electronic Associates TR-20 to light a fire in my soul. Several 
years later, with my first professional job astern, I came to work 
for Tom Harris in the Analog Computer facility of the Noise and 
Vibration Laboratory at General Motors Proving Ground. It was a 
wonderful experience in all ways. Harris and the analog computer 
became the trusted close friends of a lifetime. He taught me many 
things, perhaps the most important being that authoring a good 
analog simulation demonstrated mastery of a problem’s underlying 
physics. Complex modes gave me a special problem in that regard 
– I could not conjure a circuit to model complex-mode behavior, 
nor could I find anyone else who had done so either. I searched 
diligently and dutifully for that circuit for many years, to no avail.
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Figure 1. Analog computer simulation of base-constrained single-DOF 
spring, mass, damper system in terms of (a) physical impedance parameters, 
(b) undamped natural frequency and damping factor, (c) damped natural 
frequency and damping frequency. 
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Figure 2. Symmetric analog of real-mode solution with damped natural 
frequency and damping frequency completely separated. Center circuit 
provides model’s dynamics (Equation 18)) for a single mode, while left and 
right summations implement Equations 19 and 20, respectively.
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Like anyone else who had ever used an analog computer, I 
could “patch” a three-amplifier lumped-mass, spring-mass-damper 
circuit quickly, be it an SDOF system such as that in Figure 1, or 
many lumps coupled in a variety of different ways. I was familiar 
with viewing such circuits in terms of physical parameters, un-
damped natural frequencies and damping factors or in terms of the 
system’s roots or “poles” described by damped natural frequencies 
and damping frequencies. I had created patch panels describing 
structural dynamics in terms of test-measured, normal-mode pa-
rameters, including one that attempted to optimize a transmission 
tail-shaft vibration absorber for the then brand new Chevrolet Vega 
station wagon that suffered from terrible acoustic “boom periods.”

I never expected the analog computer to “map” a physical pa-
rameter circuit into a modal parameter circuit – those old beasts 
just didn’t do that sort of task. What they did do, and quite bril-
liantly, was to let you “milk” a dynamic model with any “what if” 
question you could conjure. I simply wanted to patch a structure’s 
description in terms of complex modes and play with it until I 
understood its behavior. Normal mode analogs were well under-
stood but infrequently used. Complex modes were not intuitively 
understood, and no one claimed to have a complex-mode analog 
model one could study. I was long separated from the GM analog 
simulation lab when I accidentally stumbled on the circuit I had 
sought for so long. The first clue came from a cocktail-napkin error, 
with the damping strangely distributed across both integrators. This 
led to the normal-mode model of Figure 2. What was unique about 
the circuit was the fact that the coefficients of the dynamic loop 
were in terms of the damped natural frequency and the damping 
frequency, separately.

My epiphany moment came later when I realized the circuit 
of Figure 2 could be further generalized by adding another input 
and extracting a second output. Some painful algebra later, it was 
evident that an analog model could be cast in terms of complex-
mode behavior. The circuit of Figure 3 was born, and my faith in 
complex modes was established. 

The timing of that finding was fortuitous. As a vice president of 
Nicolet Scientific Corporation, I was leading that firm’s effort to 
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demonstrated through comparison of FRF synthesis that both 
experimental and analytic models contain exactly the same infor-
mation. An interesting fallout of this comparison is the format of 
real-mode vectors in a complex-mode model. The vectors in this 
case are complex valued, of the form {kfi,n – jkfi,n}, exhibiting –45° 
phase at every element.

The authors of Reference 1 first conceived the complex-mode 
formulation of Equation 11. They were also the originators of matrix 
iteration. Both of these matters are more clearly described in Refer-
ence 2. Reference 3 first disclosed the proper form of real-mode 
vectors contained in a complex-mode model, while Reference 4 
explains why a complex-mode model may be superior for predict-
ing the effects of structural modifications. The analog circuit of 
Figure 3 was first described in Reference 5. Reference 6 provides 
a brief but solid introduction to analog computational methods.
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develop its first modal analysis system, the Model 6601. We were 
knee deep in curve-fitting algorithm development and badly needed 
“structures” with known real and complex modes to measure and 
analyze. An analog simulator proved to be the ideal answer. I 
designed the NSC Modal Simulator of Figure 4, incorporating the 
complex-mode circuit of Figure 3. We built this in about 1978, and 
it served the project well. Building a circuit that was controlled by 
the mathematics we were studying allowed us to interact with the 
mathematics in both cerebral and intuitive ways. Every member of 
the team gained new personal understanding of the complex-mode 
phenomena. This simulator was subsequently used in developing 
the Nicolet 6602 and 5885 modal systems as well as Schlumberger 
Technology’s Model 1202 modal analyzer before coming back into 
my possession.

Conclusions
We have reviewed the classical derivation of normal modes and 

complex modes from a series of second-order ordinary differential 
equations with constant coefficients written in matrix notation. 
Further, we have examined the synthesis of frequency response 
functions, such as those used in curve-fitting measurements made 
in experimental modal analysis. These studies make clear the 
redundancies contained in a complex-mode model. The matrices 
that state the complex-mode problem contains solely real values. 
However, describing an N mode by N degree-of-freedom problem 
requires matrices of 2N ¥ 2N dimension, quadrupling the number of 
problem coefficients. The solution provides 2N modes, each includ-
ing a modal vector of length 2N populated by complex elements. 
However, half the modes are redundant, being the conjugates of 
N unique modes found. Within the unique modal vectors, half of 
the elements are redundant; being the unique displacement shape 
coefficients multiplied by the eigenvector’s associated complex 
eigenvalue or pole.

Commercial systems performing experimental modal analysis 
only retain one quarter of the complex-mode coefficients found in 
an analytic modal analysis. The N modes retained are all unique; 
there are no matching conjugates. The retained complex eigen-
vector elements are solely the system’s N modal displacements; 
the N modal velocities are not included in these vectors. It was 

Figure 4. Analog modal simulator built for internal research at Nicolet 
Scientific Corp. in the late 1970s. Each mode was programmed by soldering 
selected precision resistors in place. Programming “rules” were printed on 
the component side of a two-layer PC. Card on left holds a real-mode shape; 
one on right defines complex mode. Each card contained coefficients for 5 
degrees of freedom. Simulated frequency response function could contain 
as many modes as there were cards plugged into frame. BNCs and rotary 
switches at left allowed simultaneous excitation up to three DOFs and 
simultaneous displacement measurement at same or three other DOFs. 
Results were analyzed using the Nicolet 660 series FFT analyzer, a highly 
capable two-channel instrument.

The author can be reached at:  george@langslair.com.

Figure 3. Adding second input to the inner loop allows it to solve complex-
mode dynamics of Equation 25. Doubling the number of terms summed to 
form inputs and outputs completes generalized force summation of Equation 
26 and modal participation transformation of Equation 27.
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