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EDITORIAL
Begone Cursed Alias!

Strether Smith, Contributing Editor

One of my all-time-favorite ads appeared 
in S&V in late 1989 and is shown in Figure 
1. The headline is the grabber and certainly 
suggests that it would be a good idea to rid 
your life of aliases. However, inspection of 
the fine print will show that the ad did not 
tell us what aliases were or why we should 
care. The Precision Filters (PFI) folks (and 
I) thought it was obvious. We were wrong!

I started teaching digital data acquisition 
short courses about the same time. My main 
emphasis was the same as the ad: It is criti-
cal to reduce aliasing errors to an acceptable 
level. There were a variety of tools available 
(including the PFI devices advertised), and 
I naively thought that system developers, 
vendors, and users would employ these 
tools (and others developed since) by de-
fault. The problem would be solved once 
and for all, and I could remove that section 
from my courses. Wrong again!

The fact is, there are still a large number 
of data acquisition vendors in the dynamic 
measurement business selling systems 
that don’t provide adequate alias protec-
tion. Perhaps worse, there are far too many 
instances where the results from good sys-
tems are compromised by improper setup 
because the users do not understand the 
consequences of inadequate alias protec-
tion. So I will, once again, try to put myself 
out of business.

So, What is Aliasing? In the 1940s, a 
bunch of smart guys were working at Bell 
Labs developing the technology that is the 
basis of today’s telephones. One of the prod-
ucts of their studies was the fundamental 
rule of discrete data collection: Shannon’s 
Theorem1 and paraphrased here from 
Wikipedia:2

Exact reconstruction of a continuous-
time, base-band signal from its samples 
is possible if the signal is band limited 
and the sampling frequency is greater 
than twice the signal bandwidth.
This is an amazing insight. It says that we 

know everything there is to know about the 
signal if we just sample at twice the band-
width of the signal. Simple, straightforward, 
great, except it is impossible to satisfy. No 
real signal is truly band limited, so there 
will always be signal components whose 
frequencies are higher than the Nyquist 
frequency (one half of the sample rate S). 
Shannon’s theorem is always violated, and 
digitizing our data will always result in er-
rors. These errors are called aliasing.

Reference 3 includes an extensive discus-
sion of the aliasing phenomenon. For the 
purposes of this discussion, it is adequate 
to recognize one of the “features” of Shan-
non’s theorem: We can only “see” data 
that have frequencies between zero and 

the Nyquist frequency (termed the “base-
band” frequency range). So, what happens 
to the energy at higher frequencies? It has 
to go somewhere. What happens is that all 
of the energy above the Nyquist frequency 
piles itself on top of the (correct) energy in 
the base band. This “pile” of energy is an 
error. If there is significant energy above S/2, 
it will significantly corrupt the data in the 
base-band measurement range.

Therefore, our objective is to be sure 
that energy above the Nyquist frequency 
(out of band) is small enough so that it 
does not cause unacceptable errors in our 
measurement.

This is really a Catch 22. We can only see 
data up to the Nyquist frequency. So, how 
can we tell whether the out-of-band energy 
is adequately small? Unless we do a sepa-
rate experiment with a wider bandwidth, 
we can’t tell.

So there is really only one solution: Guar-
antee yourself that energy above the Nyquist 
frequency is adequately suppressed. We 
will come back to this after we look at 
what happens if we don’t pay attention to 
the rules.

Significantly Aliased Data. Figure 2 
shows the full time history and Fourier 
spectrum of a shock test acquired at one 
million samples/second. The spectrum has 
several notable features:
•	 It rolls off significantly at high frequency 

and is very small at the Nyquist frequency 

(500 kHz.) (More about this later).
•	 There is lots of energy between 10 and 

30 kHz.
•	 The resonance of the accelerometer can 

be seen near 90 kHz.
What if we were only interested in data 

up to a frequency of 4 kHz? If we follow 
Shannon’s theorem (but incorrectly use the 
desired bandwidth instead of real frequency 
range), we might sample at 10 kSamples/
sec. If we don’t do any low-pass filtering, 
the result is shown in Figure 3.
•	 In the spectrum, the acquired spectrum 

is much higher (for most frequencies) 
than the truth. The RMS value of the 
acquired signal is a factor of 2.6 higher 
than the truth. The energy does not roll 
off significantly at the Nyquist frequency.

•	 In the time history, the response is very 
high and is not well correlated with the 
true history.

Figure 1. Begone Cursed Alias ad from 1989 S&V 
Magazine.

Figure 2. Data acquired at 1 MS/S.

Figure 3. Data acquired at 10 KS/S.
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Fourier spectrum is significantly attenuated 
at the Nyquist frequency, the data are prob-
ably OK. For example, we should insert a 
sharp, analog, low-pass filter at 45% of the 
sample rate in the signal path before digitiz-
ing. Then the spectrum of the Figure 3 data 
would look like Figure 6, and the resulting 
data set would be acceptable. The assump-
tion is that if the spectrum is adequately 
attenuated at the Nyquist frequency, it will 
not come back up at higher frequency. Un-
fortunately, there are instrumentation errors 
that can produce high-frequency signals,3,4 
so this is not a 100% test. It is necessary but 
not sufficient.

This criterion can also produce a case of 
false rejection. Some of the modern sigma-
delta systems have a filter whose cutoff fre-
quency is at the Nyquist frequency. In this 
case, the data are OK when the spectrum 
is not rolled off at S/2, but the validity of 
the system (and the data produced) must 
be proven by the method to be discussed.

So there are two ways to satisfy the 
Nyquist frequency attenuation criterion: 
Sample really fast (as shown in Figure 2) 
or use a significant low-pass filter with a 
cutoff at or below the Nyquist frequency 
(as shown in Figure 6).

The only safe method is to use a sharp 
low-pass filter, because we cannot be certain 
what the data bandwidth will be.

Is a Candidate System (or the one I 
already have) Adequately Protected? We 
should look for critical specifications in the 
system technical description:
•	 Search for the word “filter.” If it’s not 

there, the system is probably not an ac-
ceptable choice. At best, the system must 
be proven by the test to be described.

•	 If they have filtering, look for one or more 
of the following phrases:

Note that the erroneous time histories and 
spectra don’t look unreasonable. There is no 
clue yet that the data set is corrupt. The er-
rors are due to the energy above the Nyquist 
frequency superimposing (aliasing) itself on 
the baseband energy as shown in Figure 4.

Figure 5 shows a rough emulation of a 
recent testing disaster that was caused by 
aliasing. The lab was using a high-speed 
data acquisition system that, in a single-
channel mode, was capable of acquiring 
the data from a typical test without filters 
(similar to the data shown in Figure 2). 
However, for the “problem” tests, the system 
was used in a multi-channel mode (sharing 
the sample rate between several channels), 
and the bandwidth of the signal was also 
increased. The result was that the data 
were seriously aliased. The figure shows 
the effect on the Figure 2 data when the 
acquisition rate is 15.6 kSamples/sec and 
is analyzed as a shock response spectrum 
(SRS). The aliased data falsely indicated 
that the test was passed (response exceeded 
the requirement) when, in fact, it was not.

Can We Tell Whether a Data Set is Sig-
nificantly Aliased? What are the clues that 
the data shown in Figure 3 was aliased? The 
time history and spectrum look reasonable 
at first glance.

There is only one alias criteria I know of, 
and it does not work all of the time. If the 

Figure 4 Signal aliasing.

Figure 5 Acceptance false pass due to aliasing.

Figure 6. Evidence of low-pass filter protection.

– 8-pole Butterworth or Bessel low-pass 
filter. (Butterworth is preferred for alias 
protection, but Bessel is OK when used 
properly. Fewer poles can be used but 
high sample rates are required to pro-
vide adequate alias protection. In addi-
tion, analytical post-process filtering is 
necessary to remove distorted/aliased 
energy in frequencies above the cutoff.)

– Oversampling digital filter following an
appropriate analog filter.

– Sigma-delta (or delta-sigma) filtering
following an appropriate analog filter.

Specifying filtering is only the first step. 
The specification has to be verified, char-
acterized and proven. This can only be ac-
complished with a test. An easy experiment 
to perform is a sine sweep. The following 
describes a process that uses an analysis 
program that can be obtained (free) from 
the author:
1.	Set up the data acquisition system with 

the highest sample rate you expect to use.
2.	If the filter is adjustable, set its cutoff to 

an appropriate value (probably less than 
one-half of the sample rate).

3.	Perform a linear-frequency sine sweep 
from S/10 to 2 ¥ S. Make an ASCII file and 
load it into the program. A good result is 
shown in Figure 7. The plots show:
a.	Upper left: time history.
b.	Lower left: frequency calculated from 

time history. It goes up (as expected) 
to a point (the Nyquist frequency), 
and then goes down (aliased). It turns 
to trash when the sine signal gets too 
small.

c.	Upper right: cross plot of magnitude vs. 
frequency with wide dynamic range. 
You want the fold-back energy to be 
small. In this case, it is 80 dB below 
200 Hz (nominal system bandwidth 

Figure 7. Sine-sweep system characterization.
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the hook. Many good systems with program-
mable filters allow the cutoff frequencies 
and characteristics to be set inappropriately, 
or worse – disabled. Improper filter setup is 
as bad (or worse) than no filters at all.

Conclusions. As noted in the introduc-
tion, methods to reduce aliasing to accept-
able levels in shock and vibration tests have 
been available since the 1980s. Despite this, 
severely aliased data still surfaces far too 
often. Why?
•	 Systems that are marketed to the dynamic 

measurements community do not have 
adequate alias protection. Caveat emptor!

•	 Test lab personnel don’t understand 
the aliasing phenomenon. If you don’t 
understand the problem, it is far more 
comfortable to ignore it.

•	 It is not obvious that aliased data are cor-
rupt. Aliased data look real.
The only reliable strategy for a digital data 

acquisition system is to use a “significant” 

for this sample rate.)
d.	Lower right: vertically-expanded cross 

plot. You want it to be close to 1 (or 
whatever the gain is) to the system 
bandwidth.

	 This test shows that the system will pro-
vide data that is relatively undistorted 
and alias protected up to 200 Hz (40% 
of the sample rate).

4. Repeat the test with the lowest sample 
rate/filter setting that you intend to use. 
(Some oversampling/sigma-delta systems 
use a different filter algorithm for low 
sample rates).
Satisfactory performance on this test does 

not necessarily mean the system is good 
in all aspects. However, poor performance 
means that data from the system are highly 
suspect and that they must be enhanced by 
the addition of adequate low-pass filtering 
functions.

That still does not get us completely off 
The author can be contacted at: strether.smith@
comcast.net.

low-pass-filter, alias-protection strategy. If 
you don’t, Murphy’s law decrees that sooner 
or later you will get burned.5
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