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Octave is a licensed free signal processing package that can do 
basic machinery diagnostics FFT-based operations. There is also a 
companion front end called GUI Octave that makes the computer 
screen look familiar. This article will give those interested a big 
start in doing digital signal processing on their own. I’ve always 
felt less than helpful giving presentations on how to do a signal 
analysis operation, knowing that only if the user has a $2000 
program can he use the material. This changes the game entirely. 
You download Octave and GUI Octave, and with those programs 
you have a powerful package. This article shows you how to use 
it. Once you get started doing these things, you gain considerable 
understanding of data analysis.

I have been fascinated with digitized shock and vibration signals 
since 1969. It’s just extremely interesting, and makes a lot of the 
seemingly useless math come alive and solves problems. I’ve been 
using the expensive digital signal arithmetic program, Matlab®, 
since the early ’90s. I had learned a little Fortran in graduate school 
and started using it to calculate shock spectra in the early ’70s. Now 
I understand certain aspects of the FFT very well. Fourier series 
went in one ear and out the other all through graduate school, and 
maybe I began to figure it out in a plates and shells course where, 
thank heaven, they taught me to read Timoshenko’s “Plates and 
Shells.” Trying to keep up with the Joneses, I had to learn FFT in 
the early ’70s, but there wasn’t anything in it for shock work at 
that time. Later, in the late ’80s, I was tasked to dig into diagnostic 
machinery vibrations, and the FFT became indispensable. What 
I can do now in recent years is try and show what interested me 
and give some ideas for people to try. I’m sure the calculation pos-
sibilities will continue to offer useful opportunities. 

I think the obstacle of the high cost of Matlab for routine signal 
arithmetic may prevent many potential innovators from learning 
the ideas, and they are not very difficult. The free program Octave 
may be enough to do it, so here I want to show some basic machin-
ery diagnostic calculations with Matlab1 and Octave2 so you can 
try them out. Maybe I can attract a subgroup to develop this further, 
and then we can make it easier for all to learn. Knowing how to do 
the calculation yourself develops an intimate relationship with the 
signal arithmetic. You can call it math, but I want you to see that 
we’re talking about just a few concepts: add, subtract, multiply, 
divide, and raise to powers; on long lists of numbers, while keeping 
track of where we are. So let’s start doing some simple vibration 
diagnostic digital signal analysis.

I think what you have to do is to learn how to calculate some-
thing, go to the program that I used to calculate it and then convince 
yourself that I am doing it right. A potentially difficult job is to 
download Octave and GUI Octave and get them to work together.

So here I’m going to pretend we have a means to get a copy of 
the digitized data, and I’m going to try and explain how you can do 
the signal analyzer functions on your laptop with Octave, a GNU-
licensed signal analysis program. I’m hoping this is understandable 
enough so that you can try out everything I discuss.

Vibration monitoring is the most widely used machinery di-
agnostics technology. Machinery problems usually occur within 
the rotating members. Dynamic forces from the rotating members 
communicate to the machine foundation through the bearings. 
Thus bearing housing vibrations are logically a good source of 
diagnostic vibrations. 

Most vibration-based machinery condition monitoring means 
a frequency or spectrum analysis of bearing housing vibration to 

permit evaluation of changes. Machinery vibration spectra are 
an FFT (fast Fourier transform) that show that the vibrations are 
composed of frequencies that are typically multiples of the shaft 
rotational speed (RPM.) A simplified explanation of the analysis 
might be that when a trend of abnormal growth of constituent fre-
quencies is observed, a machinery problem exists. The pattern of 
frequency growth usually indicates the type of problem; the level of 
the signals more or less indicates the time remaining before failure. 
Problems with unbalance, alignment, looseness, drive belts, bent 
shafts, and rubbing have known documented spectral patterns. 
Ball bearings have four known characteristic frequencies. If there 
are gears, there is a tooth mesh frequency, and with vanes there 
is a vane-passing frequency. Sidebands appear at multiples of the 
shaft rotational speed on either side of gear mesh and bearing fault 
frequencies. Harmonic peaks appear at multiples of shaft speed 
and bearing frequencies. 

Many excellent references to the practical technology are avail-
able and listed in the Vibration Institute Publications Catalog at 
www.vibinst.org.

Digitizing and Aliasing
To process vibration signals in a computer, they must be digi-

tized. Just prior to digitizing, the analog transducer signal must 
be analog filtered to avoid aliasing. Shannon’s sampling theorem3 
states that a signal is adequately sampled if it is sampled at a rate at 
least twice the highest frequency present in the signal. By frequency 
content he means that the Fourier transform is zero beyond the 
maximum frequency present, and this condition is essential in his 
proof. A signal that is adequately sampled is completely defined 
for all points even those between the samples; one and only one 
function can pass through those points and be band limited. A 
signal digitized without analog antialiasing has been essentially 
destroyed. Any little spike or spurious high-frequency squiggle 
might be selected by the digitizer as a value and totally corrupt 
the digitized signal. Insist on antialiasing. 

Loading Data
Matlab expects and accepts numerical data in ASCII format to 

be a matrix of numbers. Equal numbers of rows and columns. Thus 
a column of 1000 numbers is fine. If the file name has any exten-
sion other than “*.mat,” Matlab expects it to be a table or matrix 
consisting of an equal number of rows and columns.

The “%” causes everything on the remainder of that line to be 
ignored. So if your data file has a lot of important info in the header 
section, you can leave all that in by preceding or beginning each 
line by a “%.” Now I’ll show a portion of a diary of the computer 
screen where I have loaded a file called pnscrng.ch2 into Matlab 
and inspected the data.

1 load pnscrng.ch2
2 who
3  Name    Size    Bytes  Class
4  pnscrng 10241x2 163856 double array
5 Grand total is 20482 elements using 163856 bytes
6 xxdd=pnscrng(:,2);
7 tt=pnscrng(:,1);
8 %pnscrng.ch2 is a file I recorded on 940502
9 %File had 2 large columns, the first is prob-

ably time
10 fs=10240/(tt(10241)-tt(1))
11 fs = 5120
12 %This is typical and is probably correct.
13 %Column 2 is acceleration.

sigma=sqrt(1/(N-1)* 
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This loaded the file. The ‘who’ command 
showed what file was loaded.
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14 plot(tt,xxdd),grid
15 xlabel(‘Time, seconds’)
16 ylabel(‘Acceleration, g’)
17 title(‘Pnscrng Acceleration 5 May 1994’)
18 axis([.58 .61 -.08 .08])
19 axis([.585 .59 -.08 .08])

On line 4, the “who” command shows I loaded pnscrng, which 
has 10,241 rows and 2 columns of data values On line 6, I named 
the acceleration xxdd and guessed that it’s every row and the sec-
ond column. In this case, the colon means every row. Similarly in 
line 7, I name the time tt and set it equal to every row and the first 
column of pnscrng. On line 10, I calculate the sampling rate. There 
are 10240 spaces between the first sample and the last sample. I 
take the number of spaces and divide it by the time between the 
first sample and the last sample. On line 14, I plot the data with a 
grid as shown in Figure 1. Lines 15, 16, and 17 add axis labels and 
a title. Line 18 expands the time axis for better detail as shown in 
Figure 2. Line 19 expands the time axis even further to show the 
coarseness of sampled data.

Figure 3 is a blow-up of a portion of the pnscrng time history. 
It is amazing to see the coarseness of the digitizing sampled data 
that has been anti-aliased to 2.56 times the highest frequency pres-
ent. However this is enough for the fft to be able to evaluate the 
magnitudes and phase of the spectrum.

Peak, RMS, Overall, Crest Factor, Kurtosis
The vibration signal itself can be evaluated by statistical mea-

sures such as its RMS level (root mean square, or square root of 
the mean of the squared values.) This overall measure is the basis 
of many vibration shutdown switches or alarm lights. The value of 
RMS velocity over the frequency range of 10 to 1,000 Hz is used as 
a measure of vibration severity in ISO Standards 2372 and 3945. 
The peak value of a pure sine wave is 1.414 times its RMS level, 
and this factor is used too often to convert between RMS and peak 
levels. The crest value, which is the ratio of the absolute peak to 
RMS level, is frequently reported as indicative of impacting in the 
signal. Kurtosis4 is given by Equation 1:

	

Here the standard deviation or RMS value is given by Equation 2:

	

Sometimes a “–3” is added to Equation 1 to make the value zero 
for a normal distribution. Both crest factor and kurtosis measure 
the “peakiness” of a signal.5 A very nice study on the use of these 
measures is given by Pachaud, et al.6 Now lets take a look at a 
short program to calculate the RMS value, the crest factor, and the 
kurtosis of a data file called nsa1300.

%kurtosis.m Do kurtosis anal on file nsa1300
load nsa1300;
x=g21300;
xx=x(1:2048);
N=length(xx);
xx=xx(:)’;%assure x is a row
xx=xx-mean(xx);
sigma=sqrt(1/(N-1)*(xx)*(xx)’);
kurt=(1/N*sum((xx/sigma).^4))
rms=sqrt((xx*xx’)/N)
crest=max(abs(xx))/rms

Now let’s examine what the program is doing line by line

load nsa1300;
x=g21300;
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Figure 1. First plot of data file pnscrng.ch2, as received.
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Figure 2. Plot of file pnscrng.ch2 with time expanded as shown.
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Figure 3. Plot of file pnscrng.ch2 with time further expanded to show coarse-
ness of sampling at 2.56 times the highest frequency present.
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xx=x(1:2048);

N=length(xx);

xx=xx(:)’;%assure x is a row

Loads file nsa1300.mat (with no extension,
*.mat is assumed). File contains list of 
numbers called g21300, set x equal to 
that list

Make xx a row of the first 
2048 numbers in x

Make N equal the number 
of values in xx

xx=xx(:) makes xx a column;
the ' transposes it to a row
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  sigma=sqrt(1/(N-1)*(xx)*(xx)’);

kurt=(1/N*sum((xx/sigma).^4))

rms=sqrt((xx*xx’)/N)

crest=max(abs(xx))/rms

Spectrums
A spectrum of a vibration signal is a graph that indicates con-

tent as a function of frequency. Generally spectra are formed from 
averaged windowed discrete Fourier transform magnitudes of 
vibration time histories. They are normally computed in a signal 
analyzer using a fast Fourier transform (FFT) computer algorithm 
on a digitized (equally spaced samples, sampled at a sampling rate, 
fs segment of the vibration time signal. As a result of the FFT, the 
transform is a complex function of frequency; complex because 
each frequency component has a magnitude and phase.

It’s convenient to use complex numbers for a quantity that has 
amplitude and phase. Normally the magnitude is plotted as a func-
tion of frequency as the spectrum; phase is also computed and can 
be plotted when needed. The FFT is actually a Fourier series of a 
segment of a vibration signal. This is good because the FFT will 
indicate frequency content as the actual sine wave components 
that make up the signal. Add them all up and you have the original 
signal. But the FFT considers everything in the segment periodic. 
This causes errors in evaluating components that do not have an 
integral number of periods in the segment.

Also assuming the segment periodic implies a discontinuity, 
where the assumed periodic segments join, end to beginning. The 
errors are called leakage errors. To diminish these errors, the time 
segments are “windowed” with bell-shaped functions (Hanning, 
Kaiser-Bessel, flattop or other.)7,8 This means that the segment 
values are term by term multiplied by the window function, which 
goes to zero at its ends. This in turn reduces the signal amplitude 
and must be compensated for by multiplying the spectra values 
by a window factor. This also effectively wastes part of the data, 
because the ends are attenuated (see Figure 4). 

Figure 5 shows how we put this into practice. On the top line is 
a segment of a signal to be analyzed. The five lines below it show 
five segments of signal, 50% overlapped. To the right, approxi-
mately over time = 0.05, are the same five segments windowed 
with or multiplied by a Hanning window. These five windowed 
segments are ready for FFT and averaging. The rightmost column 
is spectrums of the individual windowed data segments. The 
number of values in the digitized time segment to be transformed 
is equal to a power of two, which gives a huge computational ef-
ficiency. Typically, 1,024 samples are used to yield 400 frequency 
values or lines. The bandwidth is the frequency range over which 
the data are analyzed. 

From the sampling theorem you would expect values all the 
way to fs/2, and indeed these are computed. But since the analog 
antialiasing filter can’t abruptly stop frequency content at half the 
sampling rate, the higher frequency values will be inaccurate. The 
number of frequency lines (values, bins) resulting from the FFT is 
related to the number of time history values by 2.56. The 400-line 
spectrum requires 1024 points, 800 lines require 2048, etc. The 
sampling rate must also be 2.56 times the highest frequency to be 
accurately analyzed. A spectrum with a 1,000-Hz upper frequency 
was obtained from a time history sampled at 2,560 samples per 
second. In general, many spectra are taken and averaged together 
to yield the spectrum to be stored or analyzed.

The y-axis or ordinate of the spectrum is the amplitude, and 
frequency is plotted on the x-axis. The ordinate or y axis can be 
plotted linearly, logarithmically, or in decibel notation. Decibels 
are a ratio of the log of the amplitude to the log of a typically 
very small reference amplitude. Logarithmic plotting makes the 

low amplitude values visible. Sometimes the frequency is plot-
ted logarithmically, and advocates of this refer to it as a constant 
percentage bandwidth presentation. 

Inner Product and Transpose
The inner product is a helpful concept for understanding vibra-

tion signal processing, and it’s an easy calculation for a computer 
using high-level signal analysis software. Your data collectors and 
signal analyzers are doing it all the time. We can only analyze a 
digitized version of our vibration signal (which will be a long list 
of numerical values) because we have digital computers. A very 
frequent calculation we perform on our data is to form an inner 
product of it with an analyzing function. This is really a term-by-
term multiplication and then an adding of those products. The 
matrix multiplication rule for a row times a column is as follows. 
Let’s define x and y as in Equation 3:

The inner product of x and y, or x times y, is (and the usual in-
ner product symbol is these corner brackets) given by Equation 3a:
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Figure 4. Application of Hanning window to a segment of data; (a) segment 
of data; (b) plot of the Hanning window; both window and signal have same 
number of values. For each time instant; (c) signal value is multiplied by 
the window value.

Figure 5. Spectrum development is shown by taking segments, windowing 
them and then applying FFT. We generally average the third column of 
spectra, but we can sometimes cascade them and make a waterfall plot. And 
sometime we calculate hundreds of them and plot them almost touching 
each other for a mesh or 3D plot. One other format I like is the contour plot, 
where instead of showing the 3D mesh, we show a top-down picture with 
contours indicating the various levels or elevations.

RMS value is square root of 
mean of sum of squares of xx.

Crest factor is max absolute
value of xx divided by RMS.

xx*xx' the inner product of 
the row times a column is 
the sum of the squares.
Divide that sum ny (N-1) 
and take the square root. 
That’s the number sigma.

Kurtosis is the sum of all the 
xx’s divided by sigma and 
raised to the fourth power; 
then the sum is divided by N.
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It’s a term-by-term multiply and add of the two equal element 
lists of numbers. We call each list of numbers a vector. Our vibra-
tion signal could be a 40,000-point list of digitized acceleration 
values. We will analyze it with another 40,000-point analyzing list 
of numbers (an analyzing function) by forming an inner product of 
our signal with the analyzing function. Matlab and Octave will do 
an inner product if you say x*y, and x is a row and y is a column 
and they both have the same number of elements. 

Transpose is a manipulation we need. The transpose of a row 
is a column, and the transpose of a column is a row. Transpose 
is denoted in Matlab and Octave with a prime or apostrophe as 
shown on Equation 4:

Although we won’t use matrices, which are rectangular arrays 
of numbers, transposes are used here as well. If we had a 3 x 3 
matrix called r:

Each row becomes a column. The matrix is flipped about its upper 
left lower right diagonal. However its best use for us is to make a 
row a column and vice versa. We denote the transpose of x as x¢. If 
x is a row, x¢ is a column (and vice versa). If x is a row of numbers, 
and you give Matlab and Octave the instruction x*x¢, which is 
the inner product of x and x¢, it will give you back the sum of the 
squares of x. There is a time associated with each of those x values if 
they are digitized vibration signal values; lets call t the list of times 
corresponding to each of those x values. Again t could be a row or 
a column; it’s up to us to say which. If t was a column, t¢ would 
be a row. For example,    the FFT can be expressed as Equation 5:

If n is a column of numbers from 1-1024, then e–i2pkn/N is also a 
column, because it has a value for each value of n. Each value of 
the FFT can be viewed as an inner product of, for example, 1024 
values of our signal as a row, with 1024 values of e–i2pkn/N as a 
column. In the FFT, we accomplish one of these inner products for 
each bin or frequency. It’s actually even worse than this, because 
we do it several times to get many averages.

Relation of DFT Xs to a Spectrum, Harmonic Content	
Symbols:

k	 frequency index
n	 time index
fs	 sampling rate
N	 number of sample in the shock
xn	 data value
Xk	 DFT value
ak, bk	 Fourier series coefficients
You can configure (arrange) FFT results to be a Fourier series 

analysis of the data segment considered periodic. There is a 
duality between time and frequency of signals; we can precisely 
specify a signal segment in terms of either time or frequency. As 
an example, a 1024 value list of a digitized vibration signal can 
exactly be expressed as a 1024 list of frequency values. The two 
lists say exactly the same thing with the same precision. The DFT 
or FFT is the calculating procedure we use to transform one to 
the other. This will be a spectrum of the sine waves composition 
of the segment. The DFT so configured actually tells you the sine 
wave composition of the data segment analyzed. To get started, 
I’ve copied the pertinent portions of the ‘help fft’ response from 
my Matlab R12 below.

“>> help fft

 FFT Discrete Fourier transform.
 FFT(X) is the discrete Fourier transform (DFT) 

of vector X.... 
 ...For length N input vector x, the DFT is a 

length N vector X,
 with elements
        N
 X(k) = sum x(n)*exp(-j*2*pi*(k-1)*(n-1)/N), 1 <= 

k <= N.	 (6)	 n=1
 
The inverse DFT (computed by IFFT) is given by

              N
 x(n) = (1/N) sum X(k)*exp( j*2*pi*(k-1)*(n-1)/N), 

1 <= n <= N.	  (7) k=1		

 
 The relationship between the DFT and the Fourier 

coefficients a and b in

                 N/2
 x(n) = a0 + sum a(k)*cos(2*pi*k*t(n)/

(N*dt))+b(k)*sin(2*pi*k*t(n)/(N*dt))  (8)		
                        k=1
 is

 a0 = X(1)/N, a(k) = 2*real(X(k+1))/N, b(k) = 
-2*imag(X(k+1))/N,(9a,9b,9c) 		

where x is a length N discrete signal sampled at 
times t with spacing dt. ...” 

Notice, since the sum in Eq. 8 is from one to N/2, the above is 
exact if the file length is even; throw away one point if necessary. 
I have never run into anyone using N odd, and I try to not FFT an 
odd length segment.

In their first equation they are saying the FFT exactly calculates 
a set of N Xk’s from the N valued data set xn according to Equa-
tion 10a:

Their Equation 7 states that the data can be exactly recovered from 
the Xk according to Equation 10b, the discrete Fourier synthesis:

	

And they further say that if you want the set of (N/2 + 1) Fourier 
coefficients ak, and bk, for that data segment considered periodic, 
they are given by Equations 11a, 11b and 11c:

	

Where the ak, and bk, are defined in Equation 11d:

This t(n)/dt is clumsy and is equal to the time index, n, so write 
this as Equation 11e:

The frequency of each Xk, ak, and bk is kfs/N. To show this, remem-
ber a single frequency constant vibration is a sine (or cosine) wave 
that we write as Equation 12a:

The quantity in parenthesis in Equation 12a is called the argument 
of the sine. The quantity in the argument between the 2p and the 
t is the frequency in cycles per unit time. We want the frequency 
associated with the arguments in terms such as the complex ex-
ponential relation to sines and cosines in Equation 12b. (See Ref. 
4, p474, Circular Functions in Terms of Exponentials.)
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These DFT values are the amplitudes
and phases of the sine waves that when
added together build the exact shock.
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Multiply the quantity 2pkn/N, of Eq. 12b, by hfs (where h is the 
time per sample), which equals 1, and group the terms as in Equa-
tion 12c:

Compare this with cos 2pf ft. In digitized terms, nh corresponds to 
the time, and kfs/N, corresponds to the frequency. So a sine wave 
with an argument 2pkn/N, has a frequency of kfs/N.

Now I must relate Xk of the DFT to content or the spectrum. The 
content is the magnitude of the Fourier series coefficients. We say 
this periodic segment, x(n), can be exactly built from its Fourier 
series coefficients ak and bk , as stated in Eq. 11d, which says the 
segment is composed of a DC term and N/2 sine waves. That’s all 
it takes to go back to the data you started with. Each value of k 
specifies one sine wave. We can write the kth harmonic sine wave 
as Equation 13:

Its frequency is kfs/N. We can also write the kth harmonic in terms 
of amplitude and phase as in Equation 13a:

Here Ak is the amplitude, our content, and fk is the phase. The 
phase is the angle in radians to the first positive peak. We can get 
the relation of the amplitude and phase to the ak and bk by using 
the formula for the cosine of the difference between two angles, 
which gives us Equation 14a:

Comparing the coefficients of cosine and the sine in the right side 
of Eq. 13 and the second right side of Eq. 14a, we see that Equations 
14b and 14c must be true.

By squaring Equations 14b and 14c and adding we see that the 
amplitude is given by Equation 14d:

Dividing Equation 14c by 14b, we obtain the phase as Equation 14e:

Using the values of a and b from Eq: 11b and 11c, we get Equa-
tion 14f:

		

After simplifying, Equation 14f becomes Equation 14g:

We evaluate Ak of Eq. 14d by substituting Eqs. 11b and 11c into 
the radical in Eq. 14d in Equation 15a:

After simplifying, this becomes Equation 15b:

Calculate the Spectrum
Maybe this section should be called MOPFD for “Matlab/Octave 

Programming for Dummies.” The trouble with the dummies books 
is that they’re often not written by dummies. I won’t apologize for 
my programming weakness, because that’s what you need. Only a 
dummy can teach a dummy. Over 50 years ago when I was a teach-
ing assistant and graduate student working for Professor Crandall at 
MIT, he told me that “You have to be a little bit dumb to teach.” That 
stunned me, and I thought it was at best an unimportant thought, 
maybe to confuse me. I remembered it and gradually got the idea, 
but I don’t think I fully understood it for 40 years. I do now. You 
have to be able to guess what the dummy can’t understand, and then 
help. If you can’t understand what the dummy can’t understand, 
you can’t help him. So you are lucky to be trying to learn Matlab/
Octave programming from a dummy. I’ll proceed.

1	 %fft Hanning window with k averages
2
3	 fs=2560;%*****set
4	 k=6; %***** the number of spectra we will 

compute
5	 m=4096; %***** the size of the fft we will 

be computing
6	 index=(1:m)’;x=x(:);%assure x and index a 

column
7	 p=m/2+1; % number of frequency values com-

puted
8	 KMU=4/(m*k); % this has the N/2, and 2x for 

the Hanning window; tested 21504
9	 w=hanningc(m);%I corrected Matlab’s Hanning 

window.
10	 skip=2048; %***** m-noverlap; or the number 

of points we skip for ea spectrum
11	 % N = m + (k-1)*skip 
12	 XX=zeros(p,1); %this is the vector we fill 

with fft values
13	 for l=1:k
14		  xw=w.*(x(index));
15		  index=index+skip; %advance index by 

skip 
16		  Xx=abs(fft(xw));
17		  X=KMU*Xx(1:p);%must half X(1) and 

X(p)
18		  X(1)=X(1)/2;X(p)=X(p)/2;
19		  XX=XX+X;
20	 end
21	 d=(1:m/2+1);
22	 f=(d-1)*fs/m;
23
24	 g=max(XX);
25	 plot(f,XX),grid
26	 title([‘Maximum vel level is ‘,num2str(g)])
27	 xlabel(‘Frequency, Hz’);
Now for some line-by-line comments:

 1.	 %fft Hanning window with k averages [the beginning “%” 
means the whole line is a comment. The computer ignores 
everything on the line following a “%.” It explains what the 
program does.]

 3.	 fs=2560;%*****set [Here is where I insert the sample rate 
in samples per second. The “;” at the end prevents the value 
from being printed on the screen.]

 6.	 index=(1:m)’;x=x(:);%assure x and index a column [Creates 
index as a row of numbers from 1 to m. “(1:m)” makes a row 
from 1 to m. Then transposes it to a column with “(1:m)’” the 
apostrophe transposes it to a column. The “;” ends the line 
and indicates the start of a new line. So we actually have two 
lines on this line 6. “x=x(:);” The “(:)” makes x a column. It’s 
one of the uses of the colon. Importantly the “;” indicates the 
line end, but also prevents printing the list on the screen.]

 7.	 p=m/2+1; [Creates a number “p”, the number of frequency 
values computed.]

 8.	 KMU=4/(m*k); % this has the N/2, and 2x for the Hanning 
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label for the y axis would be printed with ylabel(‘Amplitude’). 
The single quote marks are needed whenever text is being 
printed.]

Conclusions
That’s it. I’ve presented a first lesson in doing vibration diagnos-

tics on a general-purpose signal analysis program with Matlab and 
Octave. It’s disappointing how little I can get done in one article. 
I hope it’s a tempting start and I can entice some of you to try it. 
Cost is no longer an excuse.

I wasn’t able to give a nice recipe for downloading Octave and 
GUI Octave, because I’m still not certain which version to work 
with. The latest version of GUI Octave is 1.5.4 and can be down-
loaded. Version 4.6.1 is the latest Octave version, and I am strug-
gling to download that. I was advised to test Version 3.4.2. Even 
though being a dummy has advantages for teaching, it’s trouble-
some for learning the material you teach. Many manuals for Octave 
can be found by searching the internet for GNU Octave. Colleges 
are being forced to use Octave due to the high cost of Matlab, so 
there is a great deal a material available. I even found a video of a 
math teacher showing his class how to download Octave.

But here I have tried to talk you into taking some time and 
downloading Octave and trying out some simple good machinery 
diagnostic data. I hope I showed you how to input the data, plot it 
up and see what you have. I’ve gone into detail on how we arrange 
the FFT results into the spectrum. I went over all the steps on how 
to do an averaged spectrum of the data. I wanted to get in the STFT 
(short-time Fourier transform) and the waterfall and couldn’t fit it 
in. They are relatively simple extensions to the spectrum concept, 
so a first step is to learn how to do your own spectrum.

Maybe all I got done was to take apart and explain the spectrum 
calculation. If so, do that. I’ve tried to give you a start. It goes into 
the simplest yet most important of our operations, the spectrum. 
We calculate it with the FFT, which is easy for the computer to do. 
When you get comfortable with signal analysis, go over my past 
articles and papers and try those methods.
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window; tested 21504 [Creates the constant KMU taking into 
account the fft length m, and the number af averages k. Again 
the “;” at the end prevents it from being printed on the screen.]

 9.	 w=hanningc(m);[This creates a column of the Hanning window 
values m long.]

10.	 skip=2048; %***** m-noverlap; or the number of points we 
skip for ea spectrum; [On line 5 I made the fft length 4096, so 
if we skip 2048 values for each average we will be doing 50% 
overlap.]

11.	 % N = m + (k-1)*skip [The line is a comment. I’m reminding 
me that when you set m, and k, and skip, you need at least 
N values of data. The program expects you have a list of data 
values in the workspace named x. We’ve had to load the data 
and name it x.]

12.	 XX=zeros(p,1); %this is the vector we fill with fft values [makes 
a column of p rows and one column of zeros that the program 
will fill with spectrum values.]

13.	 for l=1:k [this starts a ‘for’ loop that will execute lines 14 to 
18 k times.]

14.	 xw=w.*(x(index)); [This takes each value of w and multiplies 
it by corresponding value of x for each value of index. It is a 
term by term multiply which is indicated by the “.*” Without 
the dot it would be a vector multiply like a row times a column 
or a row times a row. A row times a row is an outer product, 
a square matrix.] 

15.	 index=index+skip; %advance index by skip [Index started as 
a column of numbers from 1 to m. Now we add skip to each 
of those numbers so the second time through index runs from 
1+skip to m+skip. This is how we advance through the data.]

16.	 Xx=abs(fft(xw)); [Here we use calculate absolute value of the 
fft of the current xw. Xx is now a column of m real transform 
values.]

17.	 X=KMU*Xx(1:p);%must half X(1) and X(p) [We multiply the 
first 1 through p values of Xx by the constant KMU.]

18.	 X(1)=X(1)/2;X(p)=X(p)/2;[This divides the first and last value 
of X by 2.]

19.	 XX=XX+X; [This adds the newly calculated values of X to XX 
to build up the averages. KMU is divided by the number of 
averages so each average is correctly apportioned.]

20.	 end [This ends the for loop and XX now contains our spectrum 
values.]

21.	 d=(1:m/2+1);[This makes a row of numbers from 1 to p, the 
number of spectrum values calculated.]

22.	 f=(d-1)*fs/m; [The calculates the frequencies in Hz for each 
spectrum value calculated.]

24.	 g=max(XX);[This makes g equal to the maximum value of the 
spectrum.]

25.	 plot(f,XX),grid [This plots the spectrum linearly with a grid. If 
we wanted a semilog plot we would use semilog y(f,XX),grid.]

26.	 title([‘Maximum vel level is ‘,num2str(g)]) [This is not much of 
a title but it illustrates how we can put the maximum spectrum 
value in the title. “num2str(g)” makes the maximum spectrum 
value, g, a string that can be printed along with text.]

27.	 xlabel(‘Frequency, Hz’);[This prints a label for the x axis. A The author may be reached at: hagaberson@att.net.


