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In most mechanical structures, we assume that there are several 
damping mechanisms at work, but they may be difficult to identify 
and even more difficult to model. Because of this difficulty, damp-
ing forces are usually not included in a finite-element analysis 
(FEA) model of a structure. Nevertheless, viscous damping can 
be modeled by assuming that the viscous damping matrix is a 
linear combination of the mass and stiffness matrices. This is 
called proportional damping.

To model proportional viscous damping, two constants of pro-
portionality must be determined, one for the mass and one for the 
stiffness matrix. In this article, a least-squared-error relationship 
between experimental modal frequency and damping and the pro-
portional damping constants of proportionality is developed. This 
formula is then used to calculate the constants of proportionality 
from experimental modal parameters. The modal parameters of an 
FEA model with proportional damping are then compared with 
the original experimental modal parameters.

Viscous Damping
All experimental resonant vibration data is characterized by a 

decaying sinusoidal response when all forces are removed from 
the structure. The overall response is modeled as a summation 
of responses, each one due to a mode of vibration. Each modal 
contribution is itself a decaying sinusoidal waveform. The decay 
envelope for each mode is modeled with a decreasing exponential 
function, and the decay constant in the exponent is called the 
modal damping coefficient. It is also called the half-power point, 
or 3-dB point damping.

It can be safely assumed, at least in earth’s atmosphere, that the 
dominant damping mechanism for most structures is the viscous 
damping of the surrounding air. It is also assumed that viscous 
damping can be modeled using a linear viscous damping term. This 
term, in which the dissipative forces are proportional to surface 
velocities, is used to model the damping forces in the differential 
equations of motion for a structure.

The differential equations for a vibrating structure with viscous 
damping are written as;

  
where:
 [M] = mass matrix (n by n)
 [C] = viscous damping matrix (n by n)
 [K] = stiffness matrix (n by n)
 { ( )}��x t  = accelerations (n vector)
{ ( }�x t  = velocities (n vector)
 {x(t)} = displacements (n vector)
 {f(t)} = external forces (n vector)
 n = number of degrees of freedom of model
Equation 1 is a force balance with internal (inertial, dissipative, 
and restoring) forces on the left-hand side and the external forces 
on the right-hand side. Equation 1 describes the linear, stationary, 
viscously damped, dynamic behavior of a structure. To construct 
an FEA model, the mass [M] and stiffness [K] matrices are synthe-
sized from the geometry and material properties of the structure. 
Furthermore, in most FEA practice today, the damping term is 
assumed to be zero. That is, the damping forces are not modeled. 

Modes of Vibration
The frequency domain version of Eq. 1 is commonly used as 

the basis for determining the modes of vibration of the structure. 
Modes are solutions to the homogeneous form of this equation, 
which is written as:

Each non-trivial solution of this matrix equation consists of a pole 
location, p (also called an eigenvalue) and a mode shape, {f} (also 
called an eigenvector). Each complex pole is made up of both the 
damping decay constant (s) and the damped natural frequency (w).

Proportional Damping Matrix
A proportional damping matrix is assumed to be a linear com-

bination of the mass and stiffness matrices. That is, the viscous 
damping forces are assumed to be proportional to the inertial and 
restoring forces, as represented in the following equation;

where:
a = constant of mass proportionality
b = constant of stiffness proportionality

If the two constants (a and b) can be determined, then all of the 
terms in Eq. 2 are known, and the modes of the damped FEA model 
can be calculated. The question then becomes, How can a and b 
be determined to reflect the damping of a real structure?

Proportional Damping Coeficients
Modal frequency and dampening estimates are routinely deter-

mined from experimental data using modern modal testing and 
analysis methods. Experimental forced vibration data are com-
monly obtained in the form of a set of frequency response functions 
(FRFs). An FRF is a special form of a transfer function. Its numerator 
is the Fourier spectrum of a structural output (acceleration, veloc-
ity, or displacement response), and its denominator is the Fourier 
spectrum of the input (the force that caused the response).

Experimentally derived frequency and damping estimates are 
obtained from one or more FRFs by curve fitting them using an 
analytical model that includes frequency and damping as unknown 
parameters. A set of experimental modal analysis (or EMA) fre-
quency and damping estimates is therefore obtained for all modes 
in the frequency band of the FRF measurements.

The relationship between multiple EMA frequency and damping 
estimates and the coefficients (a and b) can be derived from Eq. 2. 
Substituting Eq. 3 into Eq. 2 and rearranging terms gives:

Notice that Eq. 4 also has the same form as an equation for an 
undamped FEA model. A known property of the mode shapes {f} 
of an undamped structure model is that they are real valued, also 
called normal modes.

Because {f} is real valued, the real and imaginary parts of Eq. 4 
are uncoupled, and therefore can be written as separate equations:
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Putting these equations into the standard form for an un-damped 
structure;

Both of these equations must be satisfied for a proportionally 
damped structure. Solutions to these equations are unique poles (or 
eigenvalues), and the coefficients of the mass matrix can be equated 
to each of the poles. The equation for each pole can be written as:

where;
W2 = (s2 + w2) = an undamped natural frequency squared.

This provides a single equation with two unknowns in it (a and b):

or

Equation 9 can be used together with experimentally derived 
estimates of frequency and damping for two or more modes to 
compute the proportional damping constants, a and b. 

Least-Squared-Error Solution
Given a set of EMA frequencies and damping for n modes (n>=2), 

n equations can be written:

Since there are only two unknowns, this is an overspecified set 
of equations. The least-squared-error solution of these equations 
is written as:

or:

a and b can therefore be calculated using the following equation;

Equation 13 is the desired relationship for calculating the pro-
portional damping matrix coefficients from EMA frequency and 
damping estimates. a and b can then be used to add proportional 
damping to an FEA model.

If the damped FEA model is then solved for its modes, the fol-
lowing question arises: How well do the modal frequencies and 
damping of the damped FEA model match the experimental modal 
parameters from which the damped model was derived? This 
question is addressed in the following examples.

Beam Structure
We will consider the modes of the beam structure shown in 

Figure 1. This beam consists of three aluminum plates fastened 
together with cap screws. The top plate is fastened to the back 
plate with three screws, and the bottom plate is also fastened to 
the back plate with three screws.

Modal Frequency & Damping
The modal frequency and damping for the first 11 (lowest 

frequency) FEA and EMA modes of the beam are listed in Table 
1. The FEA frequencies were obtained as the eigenvalues of an 
undamped FEA model.1 Because the FEA model was undamped, 
the FEA modes have no modal damping. The EMA parameters were 
estimated by curve fitting a set of experimentally derived FRFs. 

Notice that each FEA modal frequency is less than its corre-
sponding EMA frequency, indicating that the FEA model was less 
stiff than the actual beam. However, the modal assurance criterion 
(MAC) values between the FEA and EMA mode shape pairs in-
dicate that most pairs are similar. (Two mode shapes are strongly 
correlated if their MAC value is 0.90 or greater.)

Two Extreme Cases
Two extreme cases are possible with the coefficients a and b; 

namely, a > 0, b = 0 and a = 0, b > 0.
Case 1 (b = 0). If b = 0, then viscous damping is only proportional 

to the mass distribution of the model, and Eq. 8 reduces to:

If the proportional damping matrix coefficients are; a = 2p, b = 0, 
then Eq. 14 states that all modes of the beam will have the same 
modal damping: s = p rad/sec = 0.5 Hz.

The coefficients a = 2p, b = 0 were used to create a proportional 
damping matrix, and the damped FEA model was solved for its 
modes. The expected result (all modes with damping = 0.5 Hz), 
is shown in Table 2.

Case 2 (a = 0). If a = 0, then viscous damping is only proportional 
to the stiffness distribution, and Eq. 8 reduces to:
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Figure 1. Jim Beam structure.

Table 1. Undamped FEA and damped EMA modes.

Mode
FEA

Freq, Hz
FEA

Freq, Hz
EMA 

Freq., Hz
EMA 

Damp.,Hz

Mode 
Shape 
MAC

1 61.405 0.0 96.944 5.6347 0.74

2 143.81 0.0 164.95 3.1125 0.96

3 203.71 0.0 224.57 6.5223 0.96

4 310.62 0.0 347.56 5.1552 0.95

5 414.4 0.0 460.59 11.502 0.93

6 442.6 0.0 492.82 4.6424 0.96

7 583.44 0.0 635.18 14.247 0.94

8 1002.2 0.0 1108.2 4.964 0.90

9 1090.8 0.0 1210.5 7.1292 0.88

10 1168.3 0.0 1322.6 7.2498 0.84

11 1388.2 0.0 1555.1 17.112 0.84
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where z = s/W is the percent of critical damping of a mode.
Eq. 15 indicates that for a given value of b, the percent of critical 
damping of each mode is proportional to its undamped frequency. 
For z = 1% for the first mode (with frequency 61.4 Hz), Eq. 15 
gives b = 0.0000518.

The coefficients a = 0, b = 0.0000518 were used to create a 
proportional damping matrix, and the damped FEA model was 
solved for its modes. The results are shown in Table 3. Notice that 
the 61.4 Hz mode has the expected 1% damping, and also that the 
percent of critical damping increases as the modal frequency of 
the other modes increases.

Using EMA Frequency and Damping
The list of EMA damping values in Table 1 shows a wide range 

of values, between 3.11 and 17.11 Hz. Clearly, neither of the two 
extreme proportional damping cases exists in the actual beam 
structure: b = 0, which gives modes with the same modal damping, 
or a = 0, which give modes with percent of critical damping that 
increases with increasing frequency. 

The EMA frequency and damping estimates for the 11 modes 
in Table 1 were used to calculate a and b using Eq. 13. The least-
squared-error estimates of a and b are: a = 76.6972, b = 8.0835 ¥ 
10–7.

These coefficients were used to create a proportional damping 
matrix using the mass and stiffness matrices of the FEA model. This 
damped FEA model was then solved for its modes, and its modal 
frequency and damping values are listed in Table 4. 

The modal damping values of the damped FEA model do ex-
hibit monotonically increasing values with frequency, indicating 
a stronger proportionality to the stiffness than to the mass. This is 

Table 2. Proportionally damped FEA modes (a = 2p, b = 0).

Mode

Un-
damped

FEA Freq, 
Hz

Un-
damped

FEA 
Damp, Hz

Damped
FEA 

Freq., Hz

Damped 
FEA

Damp., Hz

Mode 
Shape 
MAC

1 61.405 0.0 61.403 0.49975 1.00

2 143.81 0.0 143.81 0.49975 1.00

3 203.71 0.0 203.71 0.49975 1.00

4 310.62 0.0 310.62 0.49975 1.00

5 414.4 0.0 414.4 0.49975 1.00

6 442.6 0.0 442.6 0.49975 1.00

7 583.44 0.0 583.44 0.49975 1.00

8 1002.2 0.0 1002.2 0.49975 1.00

9 1090.8 0.0 1090.8 0.49975 1.00

10 1168.3 0.0 1168.3 0.49975 1.00

11 1388.2 0.0 1388.2 0.49975 1.00

Table 3. Damped FEA modes (a = 0, b = 0.0000518).

Mode

Un-
damped

FEA Freq, 
Hz

Un-
damped

FEA 
Damp, Hz

Damped
FEA 

Freq., Hz

Damped 
FEA

Damp., Hz

Damped 
FEA 

Damp., %

1 61.405 0.0 61.402 0.61361 0.99928

2 143.81 0.0 143.77 3.3657 2.3403

3 203.71 0.0 203.6 6.7533 3.3151

4 310.62 0.0 310.23 15.702 5.0549

5 414.4 0.0 413.46 27.946 6.7437

6 442.6 0.0 441.45 31.879 7.2026

7 583.44 0.0 580.81 55.396 9.4947

8 1002.2 0.0 988.81 163.46 16.31

9 1090.8 0.0 1073.5 193.63 17.751

10 1168.3 0.0 1147 222.11 19.012

11 1388.2 0.0 1352.3 313.61 22.591

Table 4. Damped FEA modes (a = 76.6972, b = 8.0835 e-7).

Mode

Damped
FEA Freq, 

Hz

Damped
FEA 

Damp, Hz
EMA 

Freq., Hz
EMA

Damp., Hz

Mode 
Shape 
MAC

1 61.1 6.1129 96.944 5.6347 0.73

2 143.68 6.1559 164.95 3.1125 0.97

3 203.62 6.2088 224.57 6.5223 0.96

4 310.56 6.3484 347.56 5.1552 0.96

5 414.35 6.5395 460.59 11.502 0.93

6 442.55 6.6008 492.82 4.6424 0.96

7 583.4 6.9678 635.18 14.247 0.94

8 1002.2 8.6542 1108.2 4.964 0.92

9 1090.8 9.125 1210.5 7.1292 0.90

10 1168.2 9.5695 1322.6 7.2498 0.86

11 1388.2 10.997 1555.1 17.112 0.84

Table 5. Damped FEA modes (a = 76.4183, b = 1.0202 e-6).

Mode

Damped
FEA Freq, 

Hz

Damped
FEA 

Damp, Hz
EMA 

Freq., Hz
EMA

Damp., Hz

Mode 
Shape 
MAC

1 61.102 6.0933 96.944 5.6347 0.73

2 143.68 6.1475 164.95 3.1125 0.97

3 203.62 6.2142 224.57 6.5223 0.96

4 310.56 6.3904 347.56 5.1552 0.96

5 414.35 6.6316 460.59 11.502 0.93

6 442.55 6.7091 492.82 4.6424 0.96

7 583.4 7.1723 635.18 14.247 0.94

8 1002.2 9.3007 1108.2 4.964 0.92

9 1090.8 9.8949 1210.5 7.1292 0.90

10 1168.2 10.456 1322.6 7.2498 0.86

11 1388.2 12.258 1555.1 17.112 0.84

similar to extreme Case 2. Even though the FEA damping values 
don’t match the EMA damping values on a mode for mode basis, 
they are in the range of the EMA values. Nevertheless, this is still 
desirable for making the FEA model more useful for modeling the 
dynamics of the real structure.

Using FEA Frequency and EMA Damping
To determine the influence of modal frequency on the a and b 

values, the FEA frequencies were used instead of the EMA fre-
quencies to calculate a and b. For this case, the least-squared-error 
estimates of a and b were: a = 76.4183, b = 1.0202 ¥ 10–6.

These estimates were then used to create a proportional damping 
matrix from the mass and stiffness matrices of the FEA model. The 
modal parameters of this damped FEA model are compared with 
the EMA parameters of the beam in Table 5.

Again, the FEA modal damping values are monotonically 
increasing with frequency, indicating a stronger proportionality 
to the stiffness than to the mass. These FEA damping values are 
closer to the EMA values than when the EMA frequencies were 
used, but there is no significant difference between the two solu-
tions. The mode shape MAC values for this case are identical to 
the case where the EMA frequencies were used.

Conclusions
An equation was derived for calculating the proportional damp-

ing matrix coefficients (a and b) from two or more experimental 
modal frequency amd damping estimates. The equation for calcu-
lating a and b was derived as a least-squared error solution to an 
over-specified set of equations. 

The modal damping values of two differently damped FEA 
models were compared with the EMA damping estimates for the 
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From our example, one can conclude that a proportionally 
damped FEA model doesn’t necessarily yield modes with damping 
that perfectly match experimental damping values. Nevertheless, 
this approach provides a straightforward way to add viscous damp-
ing to any FEA model and solve for modes that contain realistic 
modal damping values.
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structure. Although the FEA modal damping didn’t match well on 
a mode-by-mode basis with all of the EMA estimates, the damping 
values of matching mode pairs were similar in value.

The reason for the disparity in the FEA versus EMA modal 
damping values is that proportional damping is restricted by the 
distribution of mass and stiffness in a structure, while its real-world 
damping mechanisms are not. In the case of the beam structure used 
here, it is quite clear that other significant damping mechanisms 
were present during the modal test, which dissipated energy that 
was not accounted for by the proportional damping model.

In fact, the beam structure was tested while resting on a foam 
rubber pad. The pad clearly had greater damping influence on the 
lower plate of the beam than on the other two plates. Therefore, 
depending on the mode shape components for the lower plate, 
some modes were more strongly influenced by the damping of the 
foam rubber base than others. This alone could account for the wide 
range of modal damping values (3.11 to 17.11 Hz). The authors may be reached at: brian.schwarz@vibtech.com.


