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ABRAVIBE – A Toolbox for Teaching 
and Learning Vibration Analysis

A Matlab® toolbox has been developed as a tool for teaching and 
learning vibration engineering and vibration analysis. This free, 
open software will also run under GNU Octave, if an entirely free 
software platform is wanted, with a few functional limitations. The 
toolbox functionality includes simulation of mechanical models as 
well as advanced analysis such as time-series analysis, spectral 
analysis, frequency response and correlation function estimation, 
modal parameter extraction, and rotating machinery analysis 
(order tracking). In this article, an overview of the functionality 
is given and recommended use in teaching is discussed. 

Vibration engineering and, even more, vibration analysis are 
topics often grasped only with great difficulty by many students. 
So powerful tools that can aid a student’s learning process are im-
portant. This article presents a toolbox for Matlab and GNU Octave, 
which was developed as an accompanying toolbox for the book 
“Noise and Vibration Analysis – Signal Analysis and Experimental 
Procedures.”1 The purposes of the toolbox are at least threefold:
•	 Aid teachers in setting up realistic and illustrative examples of 

the many intriguing things in mechanical vibrations in general 
and experimental vibration analysis in particular,

•	 Help the students’ understanding of mechanical vibrations and 
analysis of it by being able to go through each step in calcula-
tions etc., in an open fashion.

•	 A tool for students, researchers, and engineers in industry to 
use for analysis of vibrations in an open software environment. 
For this purpose, the toolbox includes functionality similar to 
a typical high-end commercial software system (except the data 
acquisition part), and many extra functions not usually available 
in commercial systems.
All these purposes are supported by many examples supplied 

with the toolbox, ordered into separate folders for each chapter 
of the book. The principle of the toolbox is to allow transparency 
for the student/user into all the steps in the analysis so that every 
single step can be investigated to ensure understanding. The tool-
box contains high-level commands for standard tasks needed in 
this field, and each and every function is open, so that the student 
can open and investigate it.

All functionality can start with recorded or simulated time data, 
the latter of which I find to be easier for students to comprehend if 
they themselves, for example, can go through all the typical steps 
of analysis such as converting data to spectra, then perhaps to 
frequency response functions, and then extracting the operating 
deflection shapes for animation. A teacher using the ABRAVIBE2 
toolbox can very easily set up examples to illustrate various aspects 
of vibration. In assignments, the teacher can also set up example 
scripts at a level so that the students can accomplish requested 
results in a reasonable time, in time-limited lab assignments. 
Undergraduate students can thus get more “canned” demonstra-
tions, while graduate students can be asked to develop more of 
the tasks themselves.

As an overview, ABRAVIBE includes, among other things, 
functionality to:
•	 Store data with header information in a standardized format, 

which allows for easy implementation of operating deflection 
shape analysis and experimental modal analysis.

•	 Import and export data in universal file format allows import 
from and export to most commercial measurement systems in 
this field.

•	 Generate data in the form of frequency response functions (FRFs) 
or modal parameters from known mechanical systems described 
by mass and stiffness matrices and either damping matrices or 
modal damping.

•	 Generate simulated time data for the forced response of mechani-
cal systems, which can be used for understanding mechanical 
vibrations and for investigating signal analysis techniques on 
data with known parameters.

•	 Define signal analysis operations such as filtering, acoustic 
analysis (1/n octaves, sound level meter integration), etc.

•	 Compute statistical functions such as probability density func-
tions, skewness and kurtosis, frame statistics and hypothesis 
tests for stationarity tests and data quality assessment.

•	 Estimate spectra of time signals by linear (rms) spectra, spectral 
densities, or transient spectra (energy spectral density), with time 
windowing, averaging, etc., by the same algorithms implemented 
in commercial software, and some more sophisticated methods 
not yet available commercially.

•	 Estimate frequency response functions and coherence functions, 
either from impact testing (using the enhanced method described 
in References 1and 3), or from shaker testing, with single input 
as well as multiple inputs.

•	 Perform order-tracking functions such as rpm maps, synchronous 
resampling, order maps etc.

•	 Extract modal parameters using well-known modal analysis 
methods, simple SDOF as well as the time domain polyrefer-
ence MDOF method.

•	 Animation of operating deflection shapes and modal analysis 
results.
All theory that follows is, of course, described in Reference 1. 

To simplify the notation below, all toolbox command variables 
will be written in bold type in the general text, while Matlab code 
examples will be in the Courier font.

Data Storage Format
The basis for much of the functionality of the toolbox is the way 

data are stored. First, data from measurements can be stored in a 
standardized data format that contains information about measure-
ment DOFs etc., to facilitate easy implementation of experimental 
modal analysis, for example. Data can be imported from measure-
ment systems in the universal file format or by writing a function 
that stores the data in the ABRAVIBE file format. The principles 
of this data storage format are:
•	 Each function is stored in a separate file to allow processing 

of as much data as possible without memory limitations. For 
example. a function can be a time history, a spectrum, or a fre-
quency response function (FRF).

•	 Each file consists of two variables: Data, containing the function 
data in a column, and Header, which is a structure containing 
flexible header information; this means that only as much in-
formation as needed must be included. New header fields can 
be added when needed.

•	 There are high-level commands for reading data into the toolbox 
for analysis. An example of such a command is the data2hmtrx, 
which converts single files of FRF data into one FRF matrix 
and a number of variables with information about the DOFs 
measured. An example of this function is shown in the section 
titled “Experimental Modal Analysis.” 
Another important functionality is the ability to store data 

into matrices containing multiple-input/multiple-output (MIMO) 
data. For this purpose, three-dimensional matrices are used in a 
standardized fashion, H(f,d,r), where
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•	 The first index f is frequency
•	 The second index d is a response location
•	 The third index r is a reference location

This means that if, for example, a structure is measured in 35 re-
sponse points using two shaker positions, the resulting FRF matrix 
H if analyzed with 1025 frequencies, would be a 1025-by-35-by-2 
matrix. Information about which DOF is located at which address 
in this matrix can be stored in separate variables.

Mechanical System Simulation
Teaching vibrations and structural dynamics often starts with 

the single-degree-of-freedom (SDOF) system. This system is ana-
lyzed for steady-state harmonic response, transient response, etc. 
It is then shown that multiple-degree-of-freedom (MDOF) systems 
behave as what can be referred to as an extended case of the SDOF 
system. In the ABRAVIBE toolbox, to aid the understanding of 
this, the frequency response (FRF) or impulse response (IRF) of a 
mechanical system with any number of DOFs (within reasonable 
limits) can be computed with high-level commands.

So if the system matrices [M], [C], and [K] are all known, the 
FRF between a number of input (force) positions and a number 
of response locations can be computed by the command H=mck2
frf(f,M,C,K,indof,outdof,type), where indof is a vector with each 
input DOF and outdof is a vector of the output DOFs and type is a 
variable to produce the FRFs in the form of receptance, mobility, 
or accelerance. With this single command, an entire FRF matrix 
or a subset of it can thus be computed in one call. Similarly, if 
only the mass and stiffness matrices are known, modal (viscous) 
damping can instead be added to the command H=mkz2frf(f,M,
K,z,indof,outdof,type), where z now is a vector with the modal 
damping of each mode.

Teaching mechanical vibrations often includes a description 
of (analytical) modal analysis, where modal parameters (natural 
frequencies, damping ratios, and mode shapes) are computed from 
the system matrices. Furthermore, analyses of the modal solutions 
are often divided into undamped, proportionally damped, and 
generally damped systems. In the toolbox, this is supported by the 
command mck2modal. This is a complex command that can be 
used in various ways to reflect the form of damping. Called with 
only mass and stiffness matrices, it computes the eigenfrequen-
cies and normal modes by the syntax [fr,V]=mck2modal(M,K). If 
the damping matrix is known, the command then uses the syntax 
[p,V]=mck2modal(M,C,K), giving the complex poles p and either 
the real-valued normal modes if the damping is proportional 
or the complex-valued mode shapes using a state-space system 
formulation if the damping is non-proportional. This is done for 
pedagogical reasons, of course, since the state-space formulation 
could indeed be used in both of the latter cases.

Finally, for completion, the toolbox also contains commands to 
convert from modal parameters to FRFs. There are also commands 
to convert from different modal scaling principles, particularly 
unity modal mass and unity modal A.1

Time-Domain Forced Response
A crucial part of teaching vibrations is to illustrate the transient 

versus harmonic forced response as well as the response to random 
loads. For vibration analysis, it is many times very important to 
be able to check an algorithm or method using data with known 
parameters. For both these purposes, the time-domain forced re-
sponse algorithm implemented in the toolbox is very important. 
The algorithm is based on a ramp-invariant method of designing 
digital filters4,5 and has some very important advantages:
•	 It is much faster and much more accurate than standard methods 

such as Runge-Kutta variants.4

•	 It uses a modal superposition formulation, which means it can 
use either mass, damping, and stiffness matrices, or mass and 
stiffness matrices and modal damping, or modal parameters as 
input; this makes it very flexible.
The syntax of the command, which is called timefresp, depends 

on which of the input parameters are known. An example is y=
timefresp(x,fs,M,C,K,indof,outdof,OutType), where x is the force 
time history or time histories if more than one force, and indof 
and outdof are vectors, allowing all requested information to be 
computed in one call to the command. To illustrate the use, let us 
define a mechanical SDOF system with natural frequency fr=100 
Hz, damping zr=0.05, excited by a half sine force in [N]:

 
where the pulse time T = 11 ms. The code to generate the output 
is found in Example 1, and the result is plotted in Figure 1. A 
more advanced illustration of the use is found in the section titled 
“Frequency Response Estimation.”

Example 1. Code to generate time-forced response of a SDOF 
system to a transient (half sine) force signal; result is plotted in 
Figure 1.

wn=2*pi*100; z=0.05; % Natural frequency in [rad/s] 
and damping ratio
m=1; k=m*wn^2; c=2*z*sqrt(m*k); % mass, stiffness, 
and (viscous) damping
T=11e-3; % Pulse time
fs=1e4; % Sampling frequency in Hz 
t=(0:1/fs:.2)’; % Time axis in column
F=makepulse(length(t),fs,T,’halfsine’);
F=100*F/max(F); % Scaled force
u=timefresp(F,fs,m,c,k,1,1,’d’); % Transient re-
sponse in displacement [m]

Time-Series Analysis
Signal analysis is an important part of vibration analysis because 

most students taking a class in vibration analysis are mechanical 
or civil engineers who lack a background in signal analysis. The 
ABRAVIBE toolbox contains commands for in-depth illustration 
of time-series analysis. There are illustrations of convolution as 
well as the sampling theorem, which we will not cover here due to 
lack of space. Among more advanced functionality are digital filter 
examples for acoustic 1/n octave filtering and A and C weighting. 
In addition, the toolbox includes an RMS (root mean square) inte-
gration algorithm that can be used to simulate a sound level meter 
(SLM) or for vibration comfort analysis with the command arms.

Another important functionality is implemented for integration 
and differentiation of signals in the time domain. Despite what is 
commonly thought, these two fundamental applications are not so 
readily implemented, and common well-known algorithms such 
as the trapezoidal rule taught in numerical analysis classes are not 
suitable for vibration analysis with high dynamic range. Instead, the 
ABRAVIBE toolbox contains state-of-the art digital filter methods 
for both integration and differentiation with very high accuracy. 
Finally we should mention the function psd2time, which can be 
used to produce Gaussian noise with a specified spectral density.

Statistics and Data Quality Assessment
Statistical functions are used frequently in vibration analysis 
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Figure 1. Plot for Example 1; SDOF response to a half-sine input force.
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particularly when dealing with field measurement data. There is 
functionality for assessing the statistical properties of signals, test-
ing for stationarity, and for quality assessment of measured signals. 
The latter will be taken as an example here, since it includes most 
of the other functions.

Data quality analysis is essentially based on using a set of statisti-
cal measures such as RMS value, min and max values, skewness, 
and kurtosis, and to compare these values with known values for 
signals of good quality, what we can call “normal” values. The 
analysis is typically done using two time scales: the entire time 
signal, and a shorter time interval. The entire time signal gives over-
all statistical values, which may indicate important errors. Shorter 
intervals such as one-second intervals, for example, may instead 
reveal time-restricted errors due to intermittent errors resulting 
from things like cable issues, electrical spikes, etc.

To illustrate an example of a data quality assessment analysis, we 
use eight channels of data from a measurement on a truck supplied 
with the toolbox. The main code for data quality analysis of these 
data are shown in Example 2. The first few lines show a structured 
way of assessing all files in the data directory and then looping 
through all files, which is facilitated by the naming convention of 
the file names, where the data are stored in files with file names 
Truck1.mat, Truck2.mat, or Truck8.mat in this example.

For each channel, the standard deviation is computed as a func-
tion of time for 100 frames and plotted, and the reverse-arrange-
ments test is run for each channel. The results of the frame statistics 
plot are shown in Figure 2. Next, the high-level command statchkf 
is used to produce a list of the most common statistical variables 
and also to log data to two files: a text file called TruckStats.log and 
a Matlab file Truckstats.mat. The former is typed into Matlab to 
produce the results in Table I. The latter is again opened and used 
to produce a plot of the kurtosis of all channels normalized to the 
kurtosis of Channel 3, which is plotted in Figure 3. The normaliza-
tion to one of the channels is a good “trick” to more easily see if 
there is a discrepancy from what is normal.

Example 2. Data quality assessment of truck data. Some plot 
commands are omitted here for the sake of brevity.

D=’..\Data\TruckData\’;
DirStruct=dir(strcat(D,’Truck*’));
NoChannels=length(DirStruct); % Define number of 
channels
% First, run a frame statistics analysis of all 
channels, based on standard deviation
for n = 1:NoChannels

FileName=strcat(D,DirStruct(n).name) % Create 
file name ‘Truck1.mat’ etc.
load(FileName)
N=floor(length(Data)/100); % Use 100 frames in 
total
subplot(NoChannels/2,2,n)
F(:,n)=framestat(Data,N,’std’,1); % This com-
mand produces the plot, see Fig. 2
s(n)=teststat(F(:,n),0.02,’reverse’); % s con-
tains Boolean variables true/false

end
% We then compute a reverse arrangements test on 
channel 3 only (for space reasons) 
% Next, we run some standard statistics and log 
to a file
statchkf(Prefix,1,8,’TruckStats’); % Prefix is entire 
directory structure...
type TruckStats.log % This lists the results in 
MATLAB
% Next, we plot the overall kurtosis of all chan-
nels, from the analysis just made
load TruckStats % This file contains the variables 
used
Kurtosis=Kurtosis/Kurtosis(3) % Normalize kurtosis 
to channel 3
bar(Kurtosis) % Results of this are shown in Fig. 3

Spectral Analysis
Spectra are perhaps the most commonly used functions for 

vibration analysis. Therefore, the ABRAVIBE toolbox includes 
a number of high-level commands to produce spectra of multi-
channel recorded or synthesized data. Spectrum types include 
linear spectrum (also called RMS spectrum) and phase spectrum 
for periodic signals. For random signals, spectral densities can 
be computed using the very common Welch method and also 
the smoothed periodogram method. For transients, the transient 
spectrum and the energy spectral density functions are available. 
All functions for random signals can also be computed for cross-
spectral densities.

Welch’s method for computing spectral densities is well known 
and is the method implemented so far in virtually all commercial 
software. It is used in Example 3. Before introducing this example, 
however, a few words about the alternative to Welch, the smoothed 
periodogram method, should be mentioned. As described in Ref-
erences 1 and 6, this method has some advantages over Welch’s 

Table 1. Statistical parameters from output of data quality test, Example 2.

File # Max. Min. Mean Crest
Std. 
Dev. Var. Skew Kurt.

 1 51 -69 1.2 18 3.7 13 0.15 11

 2 6.4 -7.2 -0.0035 17 0.42 0.18 0.05 7

 3 17 -14 0.2 9.5 1.8 3.3 0.042 4.3

 4 4.3 -4.8 -0.014 9.8 0.49 0.24 -0.021 5

 5 25 -19 0.047 7.5 3.3 11 0.18 3

 6 11 -7.2 0.027 8.4 1.3 1.6 0.7 6.1

 7 9.9 -8.1 -0.51 6.8 1.4 1.8 0.25 4.6

 8 18 -14 0.28 8 2.2 4.8 0.0062 4
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Figure 2. Results of frame statistics in Example 2; standard deviation of each 
channel is plotted versus frame number.
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method that can make it interesting:
•	 It can be used with a logarithmic frequency axis, which gives 

lower random error at higher frequencies where usually a lower 
frequency resolution is acceptable.

•	 It is very practical in cases where unwanted, periodic compo-
nents present in the noise are to be removed.6

In any of these cases, the commands apsdsp and acsdsp from 
the ABRAVIBE toolbox can be used. Both commands operate 
similarly to the Welch commands apsdw and acsdw, which are 
used in Example 3.

To illustrate the power of the ABRAVIBE toolbox for generat-
ing synthetic data and then performing spectral analysis, we will 
generate data from a model of a Plexiglas plate.7 This also illus-
trates the advanced synthesis models available in the toolbox. The 
code for this pedagogic example was developed in the ABRAVIBE 
toolbox, and also the free open CALFEM8 toolbox, which is avail-
able in the ABRAVIBE toolbox. The example is used throughout 
the ABRAVIBE toolbox and is very similar to the IES plate. It is a 
small, rectangular plate made of Plexiglas (PMMA) and with two 
first modes at very close natural frequencies. The advantages of 
using such a simple structure are many:
•	 The structure geometry is trivial, so the student can focus on 

the topic.
•	 The structure is easily measured with high-quality impact testing 

or shaker testing in relatively short time, which allows for high-
quality experimental modal analysis (EMA) to be incorporated.

•	 The plate can be modeled relatively simply using inexpensive 
shell elements.7

•	 More than the first 10 modes of the plate can be readily described 
with a simple 5-by-7 grid, either for EMA or for reduced mode 
shapes for synthesis.
In Example 3, we assume that we have access to the eigenfre-

quencies and the analytical (normal) mode shapes reduced to the 
experimental grid size of 5-by-7 DOFs (see Figure 4). How to obtain 
such modes is described in Reference 7 and is also available in the 
toolbox. We will now show how to use this modal model by adding 
some modal damping of 2% to each mode and then compute time 
data corresponding to a two-input shaker test using pure random 
excitation. For this purpose we call the command timefresp with 
the syntax using poles and mode shapes as input. We divide the 
example into two parts, Example 3a to create data, and Example 
3b to produce the entire cross-spectral matrix.

Example 3a. Create synthesized time data from a Plexiglas plate 
using a 5-by-7 grid. The example assumes that eigenfrequencies 
are in the vector fr and normal modes in variable V. At the time 
of writing, this takes approx. 14 seconds on the author’s laptop. 
This includes double-differentiating all signals to acceleration.

% Part 1 – create data and store in files
indofs=[1 9]; % Force DOFs
outdofs=[1:35]; % Response DOFs
poles=fz2poles(fr,0.02); % Add 2% damping to all 
eigenfrequencies, to produce complex poles
fs=round(3*max(fr)); % Set a suitable integer sam-
pling frequency
N=100*1024; % Use 100K samples
Forces=randn(N,length(indofs)); % Create 2 indepen-

dent Gaussian forces
Header=makehead(1,Forces(:,1),1/fs); % Create Nomi-
nal Header
Prefix=’PlexiTimeData’;
Data=Forces(:,1); % Next few lines saves the first 
force
Header.Dof=indofs(1);
Header.Dir=’Z+’;
Header.Unit=’N’;
Header.Title=’Simulation using Plexi FE model re-
sults, and 2 inputs in dofs 1,and 9’;
FileName=strcat(Prefix,int2str(1));
save(FileName,’Data’,’Header’); % Save the first 
force in file PlexiTimeData1
Data=Forces(:,2); % Next few lines saves the sec-
ond force
Header.Dof=indofs(2);
Header.Dir=’Z+’;
Header.Unit=’N’;
Header.Title=’Simulation using Plexi FE model re-
sults, and 2 inputs in dofs 1,and 9’;
FileName=strcat(Prefix,int2str(2));
save(FileName,’Data’,’Header’); % Save the second 
force in file PlexiTimeData2
% Next, save all responses in following files
for n=1:length(GEOMETRY.node)

Data=timefresp(Forces,fs,poles,V,indofs,n,’a’);
Header.Dof=outdofs(n);
Header.Dir=’Z+’;
Header.Unit=’m/s^2’;
Header.Title=’Simulation using Plexi FE model 
results, and 2 inputs in dofs 1, and 9’;
FileName=strcat(Prefix,int2str(n+2));
save(FileName,’Data’,’Header’);

end

In Example 3b we will now first read the reference data (force 
time signals) in and compute the input autospectral matrix Gxx. 
Then we will loop through all response channels and compute 
cross-spectral densities between the two references and the re-
sponse channel the 3D-matrix Gyx and store the output autospec-
tral densities in 2D channels in the matrix Gyy. If we have R(=2) 
responses and D(=35) responses, this analysis thus produces the 
matrices:
•	 Gxx – N/2+1-by-R-by-R, input autospectral matrix
•	 Gyx – N/2+1-by-D-by-R, input-output cross-spectral matrix
•	 Gyy – N/2+1-by-D, output autospectral matrix (no need for cross-

spectral densities between outputs)
Example 3b. Processing all time data from the 2-in/35-output 

synthesized “measurement” into auto and cross-spectral density 
matrices for MIMO spectrum analysis. On the author’s computer, 
at the time of writing, this takes approx. 1 sec.

NoRefs=2; % Number of references (in first files)
NoResps=35; % Number of responses (in consec. files)
Prefix=’PlexiSynt2Forces’;
% Put forces into columns in RefSignal
for n=1:NoRefs

FileName=strcat(Prefix,int2str(n));
load(FileName);
RefSignal(:,n)=Data;

end
fs=1/Header.xIncrement;
% Loop through response channels
for n=1:NoResps

FileName=strcat(Prefix,int2str(FileNo(n+2)));
load(FileName);
RespSignal(:,n)=Data;

end
% Compute all 2-in/35-out auto and cross-spectral 
densities
[Gxx,Gyx,Gyy,f]=time2xmtrx(RefSignal,RespSignal,fs
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Figure 4. Grid used for reduced mode shapes and for EMA of Plexiglas plate.
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,N); % 50% overlap, Hanning window
Note that there are a lot of details in the chapter examples about 

how to optimize the spectral analysis FFT settings, such as the 
block size for minimizing bias error, etc. Note also that there is 
functionality for many more types of excitation signals, including 
impact testing, pseudo random noise and burst random. Example 
3b is just that – an example. It should also be pointed out that 
the method described could also incorporate known error signals 
(extraneous noise) either on the input or output signals to analyze 
bias effects when estimating FRFs. Numerous such examples are 
available among the chapter examples that deal with FRF estima-
tion (Chapters 13 and 14 in Reference 1).

Frequency Response Estimation
The next natural step after producing auto and cross-spectral 

density matrices is to compute the MIMO frequency responses 
and multiple coherence functions. This can be done immediately 
after the steps in Example 3b, by using the command [H,Cm,Cin]
=xmtrx2frf(Gxx,Gyx,Gyy), which computes all FRFs in the matrix 
H, size N/2+1-by-D-by-R, the multiple coherence matrix Cm, size 
N/2+1-by-D, and the input coherence matrix with ordinary coher-
ence between all inputs, in Cin, size N/2+1-by-R-by-R.There is also 
functionality in the toolbox for estimating FRFs from impact test 
data. This is done using an enhanced method based on recorded 
time signals including all impacts.3

Experimental Modal Analysis (EMA)
There is functionality for a variety of EMA operations in the 

ABRAVIBE toolbox. The command frf2msdof includes several 
algorithms for obtaining modal parameters using SDOF approxima-
tions. The command frf2ptime uses MDOF estimation methods to 
estimate poles and sometimes modal participation factors (MPFs) 
using either Prony’s method (for one FRF at the time9), the least 
squares time domain method (LSCE)10, or by the polyreference 
time domain method.11 Mode shapes can then be computed using 
the command frfp2modes, which includes a multireference least 
squares frequency domain estimation of residues (mode shapes). Fi-
nally animation of the estimated mode shapes can be accomplished 
by using a GUI-based tool called animate. This functionality was 
supplied externally (see Acknowledgements).

To aid the analysis, there is a high-level command that reads 
in all data and sorts it into variables using the command data2h-
mtrx. It also rearranges data coming from an impact test with 
roving impacts so that it looks as if it came from a shaker test to 
avoid having to deal with both matrix dimensions. There is also a 
command for mode indication functions amif which can produce 
various MIFs – the normal MIF and the multivariate MIF. There are 
also two commands to deal with modal assurance criterion (MAC) 
matrices, amac to compute MAC matrices (either auto or cross), 
and plotmac to plot the matrix in Manhattan display (see Figure 4).

To illustrate an EMA example, we will use data from an impact 
test on the Plexiglas plate mentioned previously. Of course, we 
could use the FRF matrix computed earlier, but that would not 
allow us to see how actual measurement data are used for EMA. 
In Example 4, there is some code illustrating a multiple-reference 
analysis using the polyreference time-domain method. First the 
data are read in and sorted using the data2hmtrx command. There-
after the poles and modal participation factors are computed and 
selected in a stabilization diagram (see Figure 5).

After selecting the poles in this diagram, the residues are esti-
mated using the least-squares frequency domain method using the 
poles and MPFs from the polyreference method. The command 
frfp2modes also plots each synthesized result (as in Figure 6) to-
gether with the corresponding measured function if so is requested. 
After the mode shapes are computed, a MAC matrix is computed 
and plotted, as shown in Figure 7. All that remains is to save the 
modal parameters to a file for subsequent animation, which will 
not be shown here.

Example 4. Experimental modal analysis (EMA) example using 
data from a 2-reference impact test on a Plexiglas plate.

Prefix=’PlateH’;
[H,f,Rdof,Rdir,Fdof,Fdir,FillMtrx]=data2hmtrx(Pre
fix,1,105);
[p,L,fLimits] = frf2ptime(H,f,400,20,’mvmif’,’p
td’); % Estimate poles and MPFs
idx=find(f>=fLimits(1) & f<=fLimits(2));
V=frfp2modes(H(idx,:,:),f(idx),p,L,0.5,Fdof);
% Estimate mode shapes
MAC=amac(V); % Compute MAC matrix
plotmac(MAC);

Order Tracking
The final topic covers analysis of rotating machinery using order 

tracking. The ABRAVIBE toolbox includes some fundamental func-



www.SandV.com SOUND & VIBRATION/NOVEMBER 2013 17

tionality for producing RPM time profiles from a tachometer signal. 
Using the RPM time profile, RPM maps can then be computed and 
order tracks can be extracted. There is also function for resampling 
the time signals and from the resampled signals extracting order 
maps and order tracks.

Summary
We have presented a free toolbox for Matlab or GNU Octave, 

the ABRAVIBE toolbox, and discussed the toolbox functionality 
for noise and vibration analysis, with emphasis on teaching vibra-
tion analysis and structural dynamics. It was pointed out how the 
transparency of the open software makes it possible for the student 
to study the steps involved in the analysis in detail by opening and 
inspecting the program routines. The flexible nature of the toolbox 
also enables teachers to customize examples based on the level of 
the students and the time at hand.
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Software Availability
The ABRAVIBE toolbox is available for free download from 

www.abravibe.com. Matlab® is available in a free trial version 
and under various purchase agreements from www.mathworks.
com. The GNU Octave software is available for free download 
from www.gnu.org/software/octave/. H. A. Gaberson wrote a paper 
“Free Pseudovelocity Shock Data Analysis Software Using GNU 
Octave” that includes detailed instructions for downloading and 
installing GNU Octave and a tutorial on pseudovelocity shock 
analysis. Gaberson relates, “This paper will give you a big start in 
doing shock data analysis on your own. It shows how I downloaded 
and installed GNU Octave 3.2.4 into my Microsoft Windows XP 
Pro laptop computer, and then shows how to do some of the basic The author may be reached at: abra@iti.sdu.dk.

shock data analysis calculations and plotting. Once you can do 
analysis for yourself, you gain understanding of data analysis. It 
will give you a start and enough confidence to see that you can 
learn it.” This paper is available on request from sv@mindspring.
com. A ZIP file of his “m” scripts is also available from S&V.
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