
www.SandV.com12 SOUND & VIBRATION/NOVEMBER 2013

ABRAVIBE – A Toolbox for Teaching
and Learning Vibration Analysis

A Matlab® toolbox has been developed as a tool for teaching and
learning vibration engineering and vibration analysis. This free,
open software will also run under GNU Octave, if an entirely free
software platform is wanted, with a few functional limitations. The
toolbox functionality includes simulation of mechanical models as
well as advanced analysis such as time-series analysis, spectral
analysis, frequency response and correlation function estimation,
modal parameter extraction, and rotating machinery analysis
(order tracking). In this article, an overview of the functionality
is given and recommended use in teaching is discussed.

Vibration engineering and, even more, vibration analysis are
topics often grasped only with great difficulty by many students.
So powerful tools that can aid a student’s learning process are im-
portant. This article presents a toolbox for Matlab and GNU Octave,
which was developed as an accompanying toolbox for the book
“Noise and Vibration Analysis – Signal Analysis and Experimental
Procedures.”1 The purposes of the toolbox are at least threefold:
•	 Aid teachers in setting up realistic and illustrative examples of

the many intriguing things in mechanical vibrations in general
and experimental vibration analysis in particular,

•	 Help the students’ understanding of mechanical vibrations and
analysis of it by being able to go through each step in calcula-
tions etc., in an open fashion.

•	 A tool for students, researchers, and engineers in industry to
use for analysis of vibrations in an open software environment.
For this purpose, the toolbox includes functionality similar to
a typical high-end commercial software system (except the data
acquisition part), and many extra functions not usually available
in commercial systems.
All these purposes are supported by many examples supplied

with the toolbox, ordered into separate folders for each chapter
of the book. The principle of the toolbox is to allow transparency
for the student/user into all the steps in the analysis so that every
single step can be investigated to ensure understanding. The tool-
box contains high-level commands for standard tasks needed in
this field, and each and every function is open, so that the student
can open and investigate it.

All functionality can start with recorded or simulated time data,
the latter of which I find to be easier for students to comprehend if
they themselves, for example, can go through all the typical steps
of analysis such as converting data to spectra, then perhaps to
frequency response functions, and then extracting the operating
deflection shapes for animation. A teacher using the ABRAVIBE2
toolbox can very easily set up examples to illustrate various aspects
of vibration. In assignments, the teacher can also set up example
scripts at a level so that the students can accomplish requested
results in a reasonable time, in time-limited lab assignments.
Undergraduate students can thus get more “canned” demonstra-
tions, while graduate students can be asked to develop more of
the tasks themselves.

As an overview, ABRAVIBE includes, among other things,
functionality to:
•	 Store data with header information in a standardized format,

which allows for easy implementation of operating deflection
shape analysis and experimental modal analysis.

•	 Import and export data in universal file format allows import
from and export to most commercial measurement systems in
this field.

•	 Generate data in the form of frequency response functions (FRFs)
or modal parameters from known mechanical systems described
by mass and stiffness matrices and either damping matrices or
modal damping.

•	 Generate simulated time data for the forced response of mechani-
cal systems, which can be used for understanding mechanical
vibrations and for investigating signal analysis techniques on
data with known parameters.

•	 Define signal analysis operations such as filtering, acoustic
analysis (1/n octaves, sound level meter integration), etc.

•	 Compute statistical functions such as probability density func-
tions, skewness and kurtosis, frame statistics and hypothesis
tests for stationarity tests and data quality assessment.

•	 Estimate spectra of time signals by linear (rms) spectra, spectral
densities, or transient spectra (energy spectral density), with time
windowing, averaging, etc., by the same algorithms implemented
in commercial software, and some more sophisticated methods
not yet available commercially.

•	 Estimate frequency response functions and coherence functions,
either from impact testing (using the enhanced method described
in References 1and 3), or from shaker testing, with single input
as well as multiple inputs.

•	 Perform order-tracking functions such as rpm maps, synchronous
resampling, order maps etc.

•	 Extract modal parameters using well-known modal analysis
methods, simple SDOF as well as the time domain polyrefer-
ence MDOF method.

•	 Animation of operating deflection shapes and modal analysis
results.
All theory that follows is, of course, described in Reference 1.

To simplify the notation below, all toolbox command variables
will be written in bold type in the general text, while Matlab code
examples will be in the Courier font.

Data Storage Format
The basis for much of the functionality of the toolbox is the way

data are stored. First, data from measurements can be stored in a
standardized data format that contains information about measure-
ment DOFs etc., to facilitate easy implementation of experimental
modal analysis, for example. Data can be imported from measure-
ment systems in the universal file format or by writing a function
that stores the data in the ABRAVIBE file format. The principles
of this data storage format are:
•	 Each function is stored in a separate file to allow processing

of as much data as possible without memory limitations. For
example. a function can be a time history, a spectrum, or a fre-
quency response function (FRF).

•	 Each file consists of two variables: Data, containing the function
data in a column, and Header, which is a structure containing
flexible header information; this means that only as much in-
formation as needed must be included. New header fields can
be added when needed.

•	 There are high-level commands for reading data into the toolbox
for analysis. An example of such a command is the data2hmtrx,
which converts single files of FRF data into one FRF matrix
and a number of variables with information about the DOFs
measured. An example of this function is shown in the section
titled “Experimental Modal Analysis.”
Another important functionality is the ability to store data

into matrices containing multiple-input/multiple-output (MIMO)
data. For this purpose, three-dimensional matrices are used in a
standardized fashion, H(f,d,r), where

Anders Brandt, University of Southern Denmark, Odense, Denmark

Based on the paper, “ The ABRAVIBE Toolbox for Teaching Vibration Analy-
sis and Structural Dynamics,” presented at the 31st International Modal
Analysis Conference (IMAC), Garden Grove, CA, 2013.

www.SandV.com SOUND & VIBRATION/NOVEMBER 2013 13

•	 The first index f is frequency
•	 The second index d is a response location
•	 The third index r is a reference location

This means that if, for example, a structure is measured in 35 re-
sponse points using two shaker positions, the resulting FRF matrix
H if analyzed with 1025 frequencies, would be a 1025-by-35-by-2
matrix. Information about which DOF is located at which address
in this matrix can be stored in separate variables.

Mechanical System Simulation
Teaching vibrations and structural dynamics often starts with

the single-degree-of-freedom (SDOF) system. This system is ana-
lyzed for steady-state harmonic response, transient response, etc.
It is then shown that multiple-degree-of-freedom (MDOF) systems
behave as what can be referred to as an extended case of the SDOF
system. In the ABRAVIBE toolbox, to aid the understanding of
this, the frequency response (FRF) or impulse response (IRF) of a
mechanical system with any number of DOFs (within reasonable
limits) can be computed with high-level commands.

So if the system matrices [M], [C], and [K] are all known, the
FRF between a number of input (force) positions and a number
of response locations can be computed by the command H=mck2
frf(f,M,C,K,indof,outdof,type), where indof is a vector with each
input DOF and outdof is a vector of the output DOFs and type is a
variable to produce the FRFs in the form of receptance, mobility,
or accelerance. With this single command, an entire FRF matrix
or a subset of it can thus be computed in one call. Similarly, if
only the mass and stiffness matrices are known, modal (viscous)
damping can instead be added to the command H=mkz2frf(f,M,
K,z,indof,outdof,type), where z now is a vector with the modal
damping of each mode.

Teaching mechanical vibrations often includes a description
of (analytical) modal analysis, where modal parameters (natural
frequencies, damping ratios, and mode shapes) are computed from
the system matrices. Furthermore, analyses of the modal solutions
are often divided into undamped, proportionally damped, and
generally damped systems. In the toolbox, this is supported by the
command mck2modal. This is a complex command that can be
used in various ways to reflect the form of damping. Called with
only mass and stiffness matrices, it computes the eigenfrequen-
cies and normal modes by the syntax [fr,V]=mck2modal(M,K). If
the damping matrix is known, the command then uses the syntax
[p,V]=mck2modal(M,C,K), giving the complex poles p and either
the real-valued normal modes if the damping is proportional
or the complex-valued mode shapes using a state-space system
formulation if the damping is non-proportional. This is done for
pedagogical reasons, of course, since the state-space formulation
could indeed be used in both of the latter cases.

Finally, for completion, the toolbox also contains commands to
convert from modal parameters to FRFs. There are also commands
to convert from different modal scaling principles, particularly
unity modal mass and unity modal A.1

Time-Domain Forced Response
A crucial part of teaching vibrations is to illustrate the transient

versus harmonic forced response as well as the response to random
loads. For vibration analysis, it is many times very important to
be able to check an algorithm or method using data with known
parameters. For both these purposes, the time-domain forced re-
sponse algorithm implemented in the toolbox is very important.
The algorithm is based on a ramp-invariant method of designing
digital filters4,5 and has some very important advantages:
•	 It is much faster and much more accurate than standard methods

such as Runge-Kutta variants.4

•	 It uses a modal superposition formulation, which means it can
use either mass, damping, and stiffness matrices, or mass and
stiffness matrices and modal damping, or modal parameters as
input; this makes it very flexible.
The syntax of the command, which is called timefresp, depends

on which of the input parameters are known. An example is y=
timefresp(x,fs,M,C,K,indof,outdof,OutType), where x is the force
time history or time histories if more than one force, and indof
and outdof are vectors, allowing all requested information to be
computed in one call to the command. To illustrate the use, let us
define a mechanical SDOF system with natural frequency fr=100
Hz, damping zr=0.05, excited by a half sine force in [N]:

where the pulse time T = 11 ms. The code to generate the output
is found in Example 1, and the result is plotted in Figure 1. A
more advanced illustration of the use is found in the section titled
“Frequency Response Estimation.”

Example 1. Code to generate time-forced response of a SDOF
system to a transient (half sine) force signal; result is plotted in
Figure 1.

wn=2*pi*100; z=0.05; % Natural frequency in [rad/s]
and damping ratio
m=1; k=m*wn^2; c=2*z*sqrt(m*k); % mass, stiffness,
and (viscous) damping
T=11e-3; % Pulse time
fs=1e4; % Sampling frequency in Hz
t=(0:1/fs:.2)’; % Time axis in column
F=makepulse(length(t),fs,T,’halfsine’);
F=100*F/max(F); % Scaled force
u=timefresp(F,fs,m,c,k,1,1,’d’); % Transient re-
sponse in displacement [m]

Time-Series Analysis
Signal analysis is an important part of vibration analysis because

most students taking a class in vibration analysis are mechanical
or civil engineers who lack a background in signal analysis. The
ABRAVIBE toolbox contains commands for in-depth illustration
of time-series analysis. There are illustrations of convolution as
well as the sampling theorem, which we will not cover here due to
lack of space. Among more advanced functionality are digital filter
examples for acoustic 1/n octave filtering and A and C weighting.
In addition, the toolbox includes an RMS (root mean square) inte-
gration algorithm that can be used to simulate a sound level meter
(SLM) or for vibration comfort analysis with the command arms.

Another important functionality is implemented for integration
and differentiation of signals in the time domain. Despite what is
commonly thought, these two fundamental applications are not so
readily implemented, and common well-known algorithms such
as the trapezoidal rule taught in numerical analysis classes are not
suitable for vibration analysis with high dynamic range. Instead, the
ABRAVIBE toolbox contains state-of-the art digital filter methods
for both integration and differentiation with very high accuracy.
Finally we should mention the function psd2time, which can be
used to produce Gaussian noise with a specified spectral density.

Statistics and Data Quality Assessment
Statistical functions are used frequently in vibration analysis

(1)F t
t

T
t T

t T

()
sin ,

,

=
Ê
ËÁ

ˆ
¯̃

£ £

>

Ï

Ì
Ô

Ó
Ô

100 0

0

p

0 0.05 0.1 0.15 0. 2
Time, Sec.

−3

−2

−1

0

1

2

3

4

5

6
x 10–4

D
is

pl
ac

em
en

t,
m

Figure 1. Plot for Example 1; SDOF response to a half-sine input force.

www.SandV.com14 SOUND & VIBRATION/NOVEMBER 2013

particularly when dealing with field measurement data. There is
functionality for assessing the statistical properties of signals, test-
ing for stationarity, and for quality assessment of measured signals.
The latter will be taken as an example here, since it includes most
of the other functions.

Data quality analysis is essentially based on using a set of statisti-
cal measures such as RMS value, min and max values, skewness,
and kurtosis, and to compare these values with known values for
signals of good quality, what we can call “normal” values. The
analysis is typically done using two time scales: the entire time
signal, and a shorter time interval. The entire time signal gives over-
all statistical values, which may indicate important errors. Shorter
intervals such as one-second intervals, for example, may instead
reveal time-restricted errors due to intermittent errors resulting
from things like cable issues, electrical spikes, etc.

To illustrate an example of a data quality assessment analysis, we
use eight channels of data from a measurement on a truck supplied
with the toolbox. The main code for data quality analysis of these
data are shown in Example 2. The first few lines show a structured
way of assessing all files in the data directory and then looping
through all files, which is facilitated by the naming convention of
the file names, where the data are stored in files with file names
Truck1.mat, Truck2.mat, or Truck8.mat in this example.

For each channel, the standard deviation is computed as a func-
tion of time for 100 frames and plotted, and the reverse-arrange-
ments test is run for each channel. The results of the frame statistics
plot are shown in Figure 2. Next, the high-level command statchkf
is used to produce a list of the most common statistical variables
and also to log data to two files: a text file called TruckStats.log and
a Matlab file Truckstats.mat. The former is typed into Matlab to
produce the results in Table I. The latter is again opened and used
to produce a plot of the kurtosis of all channels normalized to the
kurtosis of Channel 3, which is plotted in Figure 3. The normaliza-
tion to one of the channels is a good “trick” to more easily see if
there is a discrepancy from what is normal.

Example 2. Data quality assessment of truck data. Some plot
commands are omitted here for the sake of brevity.

D=’..\Data\TruckData\’;
DirStruct=dir(strcat(D,’Truck*’));
NoChannels=length(DirStruct); % Define number of
channels
% First, run a frame statistics analysis of all
channels, based on standard deviation
for n = 1:NoChannels

FileName=strcat(D,DirStruct(n).name) % Create
file name ‘Truck1.mat’ etc.
load(FileName)
N=floor(length(Data)/100); % Use 100 frames in
total
subplot(NoChannels/2,2,n)
F(:,n)=framestat(Data,N,’std’,1); % This com-
mand produces the plot, see Fig. 2
s(n)=teststat(F(:,n),0.02,’reverse’); % s con-
tains Boolean variables true/false

end
% We then compute a reverse arrangements test on
channel 3 only (for space reasons)
% Next, we run some standard statistics and log
to a file
statchkf(Prefix,1,8,’TruckStats’); % Prefix is entire
directory structure...
type TruckStats.log % This lists the results in
MATLAB
% Next, we plot the overall kurtosis of all chan-
nels, from the analysis just made
load TruckStats % This file contains the variables
used
Kurtosis=Kurtosis/Kurtosis(3) % Normalize kurtosis
to channel 3
bar(Kurtosis) % Results of this are shown in Fig. 3

Spectral Analysis
Spectra are perhaps the most commonly used functions for

vibration analysis. Therefore, the ABRAVIBE toolbox includes
a number of high-level commands to produce spectra of multi-
channel recorded or synthesized data. Spectrum types include
linear spectrum (also called RMS spectrum) and phase spectrum
for periodic signals. For random signals, spectral densities can
be computed using the very common Welch method and also
the smoothed periodogram method. For transients, the transient
spectrum and the energy spectral density functions are available.
All functions for random signals can also be computed for cross-
spectral densities.

Welch’s method for computing spectral densities is well known
and is the method implemented so far in virtually all commercial
software. It is used in Example 3. Before introducing this example,
however, a few words about the alternative to Welch, the smoothed
periodogram method, should be mentioned. As described in Ref-
erences 1 and 6, this method has some advantages over Welch’s

Table 1. Statistical parameters from output of data quality test, Example 2.

File # Max. Min. Mean Crest
Std.
Dev. Var. Skew Kurt.

 1 51 -69 1.2 18 3.7 13 0.15 11

 2 6.4 -7.2 -0.0035 17 0.42 0.18 0.05 7

 3 17 -14 0.2 9.5 1.8 3.3 0.042 4.3

 4 4.3 -4.8 -0.014 9.8 0.49 0.24 -0.021 5

 5 25 -19 0.047 7.5 3.3 11 0.18 3

 6 11 -7.2 0.027 8.4 1.3 1.6 0.7 6.1

 7 9.9 -8.1 -0.51 6.8 1.4 1.8 0.25 4.6

 8 18 -14 0.28 8 2.2 4.8 0.0062 4

Channel 2

0

1

2

Channel 6

0

2

4

Channel 8

0 20 40 60 80 100
0

5

Channel 4

0

1

2

0

10

20
Channel 1

Channel 3

0

5

Channel 5

0

5

Channel 7

0 20 40 60 80 100
0

2

4

S
ta

nd
ar

d
D

ev
ia

tio
n

Frame Number

Figure 2. Results of frame statistics in Example 2; standard deviation of each
channel is plotted versus frame number.

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

File Number

K
ur

to
si

s

Figure 3. Kurtosis of each channel in Example 2 normalized to the kurtosis
of channel 3; assuming the kurtosis of channel 3 is good, plot reveals suspi-
cious kurtosis in at least channels 1, 2, 5 and 6.

www.SandV.com SOUND & VIBRATION/NOVEMBER 2013 15

method that can make it interesting:
•	 It can be used with a logarithmic frequency axis, which gives

lower random error at higher frequencies where usually a lower
frequency resolution is acceptable.

•	 It is very practical in cases where unwanted, periodic compo-
nents present in the noise are to be removed.6

In any of these cases, the commands apsdsp and acsdsp from
the ABRAVIBE toolbox can be used. Both commands operate
similarly to the Welch commands apsdw and acsdw, which are
used in Example 3.

To illustrate the power of the ABRAVIBE toolbox for generat-
ing synthetic data and then performing spectral analysis, we will
generate data from a model of a Plexiglas plate.7 This also illus-
trates the advanced synthesis models available in the toolbox. The
code for this pedagogic example was developed in the ABRAVIBE
toolbox, and also the free open CALFEM8 toolbox, which is avail-
able in the ABRAVIBE toolbox. The example is used throughout
the ABRAVIBE toolbox and is very similar to the IES plate. It is a
small, rectangular plate made of Plexiglas (PMMA) and with two
first modes at very close natural frequencies. The advantages of
using such a simple structure are many:
•	 The structure geometry is trivial, so the student can focus on

the topic.
•	 The structure is easily measured with high-quality impact testing

or shaker testing in relatively short time, which allows for high-
quality experimental modal analysis (EMA) to be incorporated.

•	 The plate can be modeled relatively simply using inexpensive
shell elements.7

•	 More than the first 10 modes of the plate can be readily described
with a simple 5-by-7 grid, either for EMA or for reduced mode
shapes for synthesis.
In Example 3, we assume that we have access to the eigenfre-

quencies and the analytical (normal) mode shapes reduced to the
experimental grid size of 5-by-7 DOFs (see Figure 4). How to obtain
such modes is described in Reference 7 and is also available in the
toolbox. We will now show how to use this modal model by adding
some modal damping of 2% to each mode and then compute time
data corresponding to a two-input shaker test using pure random
excitation. For this purpose we call the command timefresp with
the syntax using poles and mode shapes as input. We divide the
example into two parts, Example 3a to create data, and Example
3b to produce the entire cross-spectral matrix.

Example 3a. Create synthesized time data from a Plexiglas plate
using a 5-by-7 grid. The example assumes that eigenfrequencies
are in the vector fr and normal modes in variable V. At the time
of writing, this takes approx. 14 seconds on the author’s laptop.
This includes double-differentiating all signals to acceleration.

% Part 1 – create data and store in files
indofs=[1 9]; % Force DOFs
outdofs=[1:35]; % Response DOFs
poles=fz2poles(fr,0.02); % Add 2% damping to all
eigenfrequencies, to produce complex poles
fs=round(3*max(fr)); % Set a suitable integer sam-
pling frequency
N=100*1024; % Use 100K samples
Forces=randn(N,length(indofs)); % Create 2 indepen-

dent Gaussian forces
Header=makehead(1,Forces(:,1),1/fs); % Create Nomi-
nal Header
Prefix=’PlexiTimeData’;
Data=Forces(:,1); % Next few lines saves the first
force
Header.Dof=indofs(1);
Header.Dir=’Z+’;
Header.Unit=’N’;
Header.Title=’Simulation using Plexi FE model re-
sults, and 2 inputs in dofs 1,and 9’;
FileName=strcat(Prefix,int2str(1));
save(FileName,’Data’,’Header’); % Save the first
force in file PlexiTimeData1
Data=Forces(:,2); % Next few lines saves the sec-
ond force
Header.Dof=indofs(2);
Header.Dir=’Z+’;
Header.Unit=’N’;
Header.Title=’Simulation using Plexi FE model re-
sults, and 2 inputs in dofs 1,and 9’;
FileName=strcat(Prefix,int2str(2));
save(FileName,’Data’,’Header’); % Save the second
force in file PlexiTimeData2
% Next, save all responses in following files
for n=1:length(GEOMETRY.node)

Data=timefresp(Forces,fs,poles,V,indofs,n,’a’);
Header.Dof=outdofs(n);
Header.Dir=’Z+’;
Header.Unit=’m/s^2’;
Header.Title=’Simulation using Plexi FE model
results, and 2 inputs in dofs 1, and 9’;
FileName=strcat(Prefix,int2str(n+2));
save(FileName,’Data’,’Header’);

end

In Example 3b we will now first read the reference data (force
time signals) in and compute the input autospectral matrix Gxx.
Then we will loop through all response channels and compute
cross-spectral densities between the two references and the re-
sponse channel the 3D-matrix Gyx and store the output autospec-
tral densities in 2D channels in the matrix Gyy. If we have R(=2)
responses and D(=35) responses, this analysis thus produces the
matrices:
•	 Gxx – N/2+1-by-R-by-R, input autospectral matrix
•	 Gyx – N/2+1-by-D-by-R, input-output cross-spectral matrix
•	 Gyy – N/2+1-by-D, output autospectral matrix (no need for cross-

spectral densities between outputs)
Example 3b. Processing all time data from the 2-in/35-output

synthesized “measurement” into auto and cross-spectral density
matrices for MIMO spectrum analysis. On the author’s computer,
at the time of writing, this takes approx. 1 sec.

NoRefs=2; % Number of references (in first files)
NoResps=35; % Number of responses (in consec. files)
Prefix=’PlexiSynt2Forces’;
% Put forces into columns in RefSignal
for n=1:NoRefs

FileName=strcat(Prefix,int2str(n));
load(FileName);
RefSignal(:,n)=Data;

end
fs=1/Header.xIncrement;
% Loop through response channels
for n=1:NoResps

FileName=strcat(Prefix,int2str(FileNo(n+2)));
load(FileName);
RespSignal(:,n)=Data;

end
% Compute all 2-in/35-out auto and cross-spectral
densities
[Gxx,Gyx,Gyy,f]=time2xmtrx(RefSignal,RespSignal,fs

1

8

15

22

29

7

14

21

28

35

Figure 4. Grid used for reduced mode shapes and for EMA of Plexiglas plate.

www.SandV.com16 SOUND & VIBRATION/NOVEMBER 2013

145.4 147.9
332.4

409.5
421.7

519.0
608.7

745.7
829.6

145.4
147.9

332.4
409.5

421.7
519.0

608.7
745.7

829.6

0

0. 5

1

1. 5

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1.0

MAC ValueMode Number

Mode Number

Figure 7. MAC matrix of mode shapes from least-squares frequency domain
estimation using poles and modal participation factors from polyreference
time-domain estimation for Example 4.

A
cc

e
le

ra
tio

n
,

(m
/s

2
)/

N

10–2

100

102

Frequency, Hz
100 200 300 400 500 600 700 800 900

10–2

100

102

Measured Synthesized

(a)

(b)

Figure 6. Measured and synthesized FRFs from estimation of residues (mode
shapes) for DOF 35.

200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40

Frequency, Hz

N
um

be
r

of
 P

ol
es

Select poles

Then <RETURN>

Figure 5. Stabilization diagram of polyreference time domain estimation
for Example 4.

,N); % 50% overlap, Hanning window
Note that there are a lot of details in the chapter examples about

how to optimize the spectral analysis FFT settings, such as the
block size for minimizing bias error, etc. Note also that there is
functionality for many more types of excitation signals, including
impact testing, pseudo random noise and burst random. Example
3b is just that – an example. It should also be pointed out that
the method described could also incorporate known error signals
(extraneous noise) either on the input or output signals to analyze
bias effects when estimating FRFs. Numerous such examples are
available among the chapter examples that deal with FRF estima-
tion (Chapters 13 and 14 in Reference 1).

Frequency Response Estimation
The next natural step after producing auto and cross-spectral

density matrices is to compute the MIMO frequency responses
and multiple coherence functions. This can be done immediately
after the steps in Example 3b, by using the command [H,Cm,Cin]
=xmtrx2frf(Gxx,Gyx,Gyy), which computes all FRFs in the matrix
H, size N/2+1-by-D-by-R, the multiple coherence matrix Cm, size
N/2+1-by-D, and the input coherence matrix with ordinary coher-
ence between all inputs, in Cin, size N/2+1-by-R-by-R.There is also
functionality in the toolbox for estimating FRFs from impact test
data. This is done using an enhanced method based on recorded
time signals including all impacts.3

Experimental Modal Analysis (EMA)
There is functionality for a variety of EMA operations in the

ABRAVIBE toolbox. The command frf2msdof includes several
algorithms for obtaining modal parameters using SDOF approxima-
tions. The command frf2ptime uses MDOF estimation methods to
estimate poles and sometimes modal participation factors (MPFs)
using either Prony’s method (for one FRF at the time9), the least
squares time domain method (LSCE)10, or by the polyreference
time domain method.11 Mode shapes can then be computed using
the command frfp2modes, which includes a multireference least
squares frequency domain estimation of residues (mode shapes). Fi-
nally animation of the estimated mode shapes can be accomplished
by using a GUI-based tool called animate. This functionality was
supplied externally (see Acknowledgements).

To aid the analysis, there is a high-level command that reads
in all data and sorts it into variables using the command data2h-
mtrx. It also rearranges data coming from an impact test with
roving impacts so that it looks as if it came from a shaker test to
avoid having to deal with both matrix dimensions. There is also a
command for mode indication functions amif which can produce
various MIFs – the normal MIF and the multivariate MIF. There are
also two commands to deal with modal assurance criterion (MAC)
matrices, amac to compute MAC matrices (either auto or cross),
and plotmac to plot the matrix in Manhattan display (see Figure 4).

To illustrate an EMA example, we will use data from an impact
test on the Plexiglas plate mentioned previously. Of course, we
could use the FRF matrix computed earlier, but that would not
allow us to see how actual measurement data are used for EMA.
In Example 4, there is some code illustrating a multiple-reference
analysis using the polyreference time-domain method. First the
data are read in and sorted using the data2hmtrx command. There-
after the poles and modal participation factors are computed and
selected in a stabilization diagram (see Figure 5).

After selecting the poles in this diagram, the residues are esti-
mated using the least-squares frequency domain method using the
poles and MPFs from the polyreference method. The command
frfp2modes also plots each synthesized result (as in Figure 6) to-
gether with the corresponding measured function if so is requested.
After the mode shapes are computed, a MAC matrix is computed
and plotted, as shown in Figure 7. All that remains is to save the
modal parameters to a file for subsequent animation, which will
not be shown here.

Example 4. Experimental modal analysis (EMA) example using
data from a 2-reference impact test on a Plexiglas plate.

Prefix=’PlateH’;
[H,f,Rdof,Rdir,Fdof,Fdir,FillMtrx]=data2hmtrx(Pre
fix,1,105);
[p,L,fLimits] = frf2ptime(H,f,400,20,’mvmif’,’p
td’); % Estimate poles and MPFs
idx=find(f>=fLimits(1) & f<=fLimits(2));
V=frfp2modes(H(idx,:,:),f(idx),p,L,0.5,Fdof);
% Estimate mode shapes
MAC=amac(V); % Compute MAC matrix
plotmac(MAC);

Order Tracking
The final topic covers analysis of rotating machinery using order

tracking. The ABRAVIBE toolbox includes some fundamental func-

www.SandV.com SOUND & VIBRATION/NOVEMBER 2013 17

tionality for producing RPM time profiles from a tachometer signal.
Using the RPM time profile, RPM maps can then be computed and
order tracks can be extracted. There is also function for resampling
the time signals and from the resampled signals extracting order
maps and order tracks.

Summary
We have presented a free toolbox for Matlab or GNU Octave,

the ABRAVIBE toolbox, and discussed the toolbox functionality
for noise and vibration analysis, with emphasis on teaching vibra-
tion analysis and structural dynamics. It was pointed out how the
transparency of the open software makes it possible for the student
to study the steps involved in the analysis in detail by opening and
inspecting the program routines. The flexible nature of the toolbox
also enables teachers to customize examples based on the level of
the students and the time at hand.

Acknowledgements
The author would like to express his gratitude to the original

authors, Dan Lazor and Dave Brown, University of Cincinnati, for
allowing incorporating and distributing the animate GUI-based
animation software with the ABRAVIBE toolbox.

Software Availability
The ABRAVIBE toolbox is available for free download from

www.abravibe.com. Matlab® is available in a free trial version
and under various purchase agreements from www.mathworks.
com. The GNU Octave software is available for free download
from www.gnu.org/software/octave/. H. A. Gaberson wrote a paper
“Free Pseudovelocity Shock Data Analysis Software Using GNU
Octave” that includes detailed instructions for downloading and
installing GNU Octave and a tutorial on pseudovelocity shock
analysis. Gaberson relates, “This paper will give you a big start in
doing shock data analysis on your own. It shows how I downloaded
and installed GNU Octave 3.2.4 into my Microsoft Windows XP
Pro laptop computer, and then shows how to do some of the basic The author may be reached at: abra@iti.sdu.dk.

shock data analysis calculations and plotting. Once you can do
analysis for yourself, you gain understanding of data analysis. It
will give you a start and enough confidence to see that you can
learn it.” This paper is available on request from sv@mindspring.
com. A ZIP file of his “m” scripts is also available from S&V.

References
 1. Brandt, A., Noise and Vibration Analysis – Signal Analysis and Experi-

mental Procedures, John Wiley and Sons, 2011.
 2. Brandt, A., ABRAVIBE, A Matlab/Octave toolbox for Noise and Vibration

Analysis and Teaching, Revision 1.1, 2011, Available from http://www.
mathworks.com/matlabcentral/linkexchange/.

 3. Brandt, A., and Brincker, R., “Impact Excitation Processing for Improved
Frequency Response Quality,” Proc. 28th International Modal Analysis
Conference, Jacksonville, FL, 2010.

 4. Brandt, A., and Ahlin, K., “A Digital Filter Method for Forced Response
Computation,” Proc. 21st International Modal Analysis Conference,
Kissimmee, FL, 2003.

 5. Ahlin, K., Magnevall, M., and Josefsson, A., “Simulation of Forced
Response in Linear and Nonlinear Mechanical Systems Using Digital
Filters,” Proc. International Conference on Noise and Vibration Engi-
neering (ISMA), Catholic University, Leuven, Belgium, 2006.

 6. Brandt, A., and Linderholt, A., “A Periodogram-Based Method for
Removing Harmonics in Operational Modal Analysis,” Proc. of the
International Conference on Noise and Vibration Engineering (ISMA),
2012.

 7. Sturesson, P. O., Brandt, A., and Ristinmaa, M., “Structural Dynamics
Teaching Example – A Linear Test Analysis Case Using Open Software,”
Proc. 31st International Modal Analysis Conference (IMAC), Garden
Grove, CA, 2013.

 8. Austrell, P. E., Dahlblom, O., Lindemann, J., Olsson, A., Olsson, K. G.,
Persson, K., Petersson, H., Ristinmaa, M., Sandberg, G., and Wernberg
P. A., Calfem – A Finite Element Toolbox, Version 3.4, Studentlitteratur
AB, 2004.

 9. Proakis, J. G. and Manolakis, D. G., Digital Signal Processing: Principles,
Algorithms, and Applications, Prentice Hall, 2006.

 10. Brown, D., Allemang, R., Zimmerman, R., and Mergeay, M., “Parameter
Estimation Techniques for Modal Analysis,” SAE Tech. Papers, 1979.

 11. Vold, H, Kundrat, J., Rocklin, T. G., and Russell, R., “A Multiple-Input
Modal Estimation Algorithm for Mini-Computers,” SAE Tech. Papers,
1982.

