
www.SandV.com SOUND & VIBRATION/NOVEMBER 2013 7

Measuring natural frequencies and mode shapes of an exist-
ing structure or calculating them from a mathematical model 
of that structure is a complex business involving curve-fitters, 
root-solvers and other advanced mathematical tools. Sometimes 
the underlying purpose and utility of modal analysis seems a 
little lost in the details of the methods employed. This makes the 
topic a difficult one to learn, because the mathematics can be a 
bit intimidating – and, let’s face it, some technical authors seem 
to take perverse pleasure in intimidating their readers. Here’s a 
learning aid that may allow you to grasp the power and purpose 
of modal analysis without having to bathe deeply in the associ-
ated mathematics. This simple graphic model helps explain what 
modal analysis is and does. 

Figure 1 illustrates this conceptual model. It consists of a per-
fectly rigid, massless arm of ± unit length centrally pivoted from 
a rigid base structure that does not move. Pinned to one end of 
this arm is a mass Mn supported by a spring of stiffness Kn and 
viscous damper of rate Cn. That is, the model is a simple single-
degree-of-freedom (SDOF) spring-mass-damper system (a Frahm1 

model) constrained to move a rigid link in proportion to its motion. 
Motion Xa at a point on the link fa,n distant from the pivot pin will 
be in proportion to the mass’s displacement and fa,n. If a force Fb 
is applied to the arm, it will result in displacement of the mass 
and extension of the spring. The degree of influence exhibited by 
such a force is clearly proportional to its distance fb,n from the 
stationary pivot pin. 

If a sinusoidal Fb is applied, the resulting Xa motion will also be 
sinusoidal, and we can plot the motion/force ratio as a function of 
the forcing frequency f. Let’s choose to measure the motion with 
an accelerometer, just as we would likely do in a real vibration 
test. The resulting Frequency Response Function (FRF) is shown 
in Figure 2. At low frequency, (the absolute value of) of this 
��x F fa b/ ( )  curve rises in proportion to frequency-squared. The slope 
then rapidly increases until a peak value is achieved at frequency
f K Mn n n= ( / ) /1 2p . Above this frequency, the magnitude first 

decreases rapidly and then asymptotically approaches a plateau 
value (termed the /residue) of fa,nfb,n/Mn. The preceding peak value 
is  ( / ) / /K M Cn n n n= 1 2x times greater than this (mass reciprocal 
unit) plateau magnitude. These observations are distinctly similar 
to those of a classic SDOF (base-constrained) spring-mass-damper 
system with a natural frequency of fn and damping of 100xn per-
cent. Note that the natural frequency is determined by the ratio of 
stiffness to mass, while the damping factor is determined by the 
ratio of damping to both stiffness and mass.

Now let’s shift our attention to the results of a modal analysis. 
Figure 3 illustrates typical modal results from a physical vibra-
tion test of a structure (in this case a simple beam pinned at both 
ends) or a dynamic simulation of the structure using a finite-
element (FE) model. A series of vibrating mode shapes (dynamic 
deformation patterns) are found, each with an associated natural 
frequency (Hz) and viscous damping factor (%). These physical 
characteristics are important, because they allow the complex 
dynamic behavior of the structure to be understood in terms of 
relatively few parameters and equations. Modal analysis is a true 
data reduction process. The backbone of this reduction is the set 
of unique mode shapes – these exhibit properties that allow us 
to express any dynamic deformation pattern of the structure as a 
weighted sum of component deformations, each component being 
one of the structure’s mode shapes.

In theory, a structure exhibits an infinite number of modes vary-
ing in associated natural frequency from zero Hertz to infinity. As 
a matter of practicality, only a finite number of these modes are 
required to describe the dynamic behavior over a defined observa-
tion bandwidth. This is a key point – only those modes with natural 
frequencies within (and closely proximate to) the desired analysis 

bandwidth need be included in a study. While an acoustic model 
may require modal components with natural frequencies to 20,000 
Hz, matters of stress and excursion (as in a bridge analysis) may 
only require modes of 10s of Hertz and less. Such low-frequency 
models use only a few modes but still provide information encom-
passing every portion of the structure. 

The mode shapes represent “snapshots” of the characteristic 
vibration patterns captured at their motional extremes. Each shape 
depicts deflection at a series of degrees of freedom (DOF) where 
measurement or calculation is focused. The DOFs illustrated in 
Figure 3 are vertical (Z direction) displacements at each grid point 
on the beam. As shown, some of these grid points do not move in 
a particular mode. Such stationary points are called nodal points 
or simply nodes. Each mode will have one or more points that 
move more than any other; these are called antinodes. The mode 
shapes shown in Figure 3 are actually relative motions. Each mode 
is scaled independently so that its antinode moves exactly a refer-
ence distance (normally +1.0) from its static equilibrium position.

So the extreme motion of the ath DOF in the nth mode (fa,n) is a 
number between ±1.0, and it can be represented by the correspond-
ing position on the arm of the model shown in Figure1. The arm’s 
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Figure 1: Conceptual model of a single mode shape normalized to its 
antinode.

Figure 2: Normalized acceleration/force magnitude from any two points 
on modal model’s arm.
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central pivot represents a node, while the end to which the mass 
is affixed represents an antinode. A DOF that moves in-phase with 
the antinode has a corresponding location on the right side of the 
pivot. A DOF that moves in phase opposition has a corresponding 
position to the left of the pivot.

For the modal model to be correct, the proper values of Mn, Kn 
and Cn must be chosen. This need discloses a common sin of omis-
sion in many modal reports, including Figure 3. The information 
presented is incomplete, because it lacks an inertial reference for 
each mode. The natural frequencies, damping factors and mode 
shapes presented in Figure 3 are all relative numbers. Without a 
modal mass for each mode, the information presented is insuffi-
cient for typical problem-solving applications such as modification 
analysis or substructure coupling.

Any experimental force/motion measurement will yield a 
natural frequency and viscose damping factor leading to the ra-
tios Kn/Mn, and Cn/ Mn. However, to accurately identify Mn, it is 
necessary to include a driving-point measurement in the data set. 
A driving-point measurement is one where the force is applied 
and the motion is monitored at the same DOF. With respect to our 
pivoted arm model, this simply means fa,n=fb,n so that both force 
and acceleration measurements are at the same arm radius. In this 
case, the acceleration/force frequency response function (FRF) 
has a high-frequency plateau of fa n nM, /2 , which we can define as 
the reciprocal of the effective mass for mode n at DOF a. Curve-
fitting allows detection of an effective mass (Meffective =Mn a/ f2 ) at 
any measurement site. If that site is the mode’s antinode, Meffective 
will be the minimum detectable effective mass Mn which we will 
call the modal mass.

Note that other mode shape normalization or scalings may be 
encountered in the literature. The “set the biggest fa,n element to 
unity” approach presented here is simple, easily understood, is 
used in all shape display algorithms and has been with us since 
modes were first found by matrix iteration. But it is very appropri-
ate to mention orthonormalized mode shapes, since they are used 
frequently by systems that integrate structural change analysis 
(by eigenvector modification) with experimental modal analysis. 
Modes that are orthonormalized do not necessarily have any ele-
ment equal exactly to one. Instead, each shape is normalized to 
a peak amplitude that forces the corresponding modal mass to 

be equal to 1.0. The corresponding change in our lever-modified 
Frahm model is that all of the Mns now become unit masses, and 
the lever for each mode becomes a unique length equal to the 
modal coefficient at the antinode fa,n for that mode. So when 
someone insists that his model report is complete because the 
shapes are orthonormalized so that the modal masses are all 1.0, 
correct him – the model is not complete unless he reports the 
modal coefficient at the antinode (the lever length) for each mode. 
We’ll save discussion of what dimensions the modal masses (unit 
or otherwise) should have for another day. But, if you live in the 
U.S., the odds are your measurements have led to modal masses 
in mass-pounds (lb/g) by default. European and Asian analysts are 
more apt to report kilograms. A point worth remembering in this 
age of international cooperation and shared design responsibility.

So it is clearly possible to scale a lever-arm modal model to each 
measurable mode detected from a structure or its mathematical 
analog. With the M, K and C values established for n modes, how do 
we assemble a model reflecting the motion/force FRF relationship 
between any two DOFs? Simply put – with idealized hydraulics, 
as shown in Figure 4.

A two hydraulic system, each employing incompressible fluid 
and perfect piston/cylinders, each with equal area pistons, are 
used to connect N different modal models. One system (blue 
fluid) transmits the force Fb applied to a single DOF to all N 
modal models in the simulation. The other (red fluid) sums 
the N motional responses Xa,n of each model to form the total 
response Xa. The force Fb applied to the input DOF a produces 
a pressure of Fb/Ap in the blue system, where Ap is the piston 

Figure 3: First 6 modes of beam pinned at both ends.

Figure 4: Multiple modal models coupled by two systems of ideal piston/
cylinders.
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area. Since all the pistons have the same area, a force of Fb is 
applied to each of the N modal models. In response, the red 
hydraulic system sees N piston motions Xa,n. Since all piston 
areas are identical, the DOF physical response piston moves by: 

the sum of all component modal deformations. The important as-
pect of such a model is that the effect of design refinement on each 
individual mode can be readily seen. Such separation is valuable, 
since often a structural problem is dominated by the undesired 
behavior of a single mode, and effective corrective measures can 
be evaluated by focusing on the response of that mode in isolation.

Once we have a complete modal model from test or analysis, it 
can be used to refine the dynamic performance of the structure. 
Common modifications include adding mass to reduce a resonance 
frequency (or the excursion at a particular place). Consider Figure 
3 once more: red dots identify the central DOF in all six modes. 
Consider the effects of adding a lump of mass to this location. A 
few minutes inspection will confirm that this central location is 
on a node line for modes 2, 3, 5 and 6. We do not expect these 
modes to change in shape or frequency when the central DOF is 
mass-loaded. But modes 1 and 4 have antinodes at the intended 
modification site. We expect that these will be affected, but by 
how much? Our simple lever-arm model provides some insight.

When we add a mass at any DOF, we will reduce the natural 
frequency of one or more modes (and increase the frequency of 
none). Clearly, adding a physical lump of mass to any DOF is going 
to potentially change all of the modes. Figure 5 models the inter-
action of such a mass addition with one of the structure’s modes. 
The result of such an attachment is that the mode’s modal mass is 
increased from Mn to Mn+ Mc c nf ,

2 . Note that it does not matter if the 
attachment point’s modal coefficient fc,n is positive or negative – 
adding a mass anywhere always increases the mode’s modal mass 
unless the attachment is exactly at a nodal point, resulting in a 
reduced natural frequency, a reduced damping factor and decreased 
��x Fa n b, /  plateau value for any DOFs a and b. The effective mass 

detectable at DOFs a and b are increased to:

respectively. 
In analogous manner, appending a spring to ground at any non-

nodal DOF increases the modal stiffness from Kn to K Kn c n c+ f ,
2  (see 

Figure 6). It does not matter on which side of the nodal pivot the 
spring is attached; adding a spring invariable increases the mode’s 
undamped natural frequency and decreases the viscous damping 
factor. The ��x Fa n b, /  plateau value is unaffected, as are the modal 
mass and the effective mass values at a and b. Typical attachment 
results are shown in Figure 7.

The conceptual model provides particular insight with respect to 
adding a vibration absorber to a problematic structure. Most texts 
introduce the vibration absorber by appending a second spring-
mass-damper to a ground-referenced SDOF system. This is an 
excellent introduction to the topic, but it leaves the student with 
some unanswered questions and leads to the presumption that the 
absorber needs to be applied at the DOF where a problem vibration 
manifests and that the absorber must be tuned to exactly match the 
parent structure’s resonance to do any good. In fact, the absorber is 
a far more versatile tool. When installed at point C, it may be used 
to reduce the motion at point A due to a force applied at point B.

For example, the tonal blade-passage frequency vibration of a 
helicopter pilot’s seat to forces generated by the rotor can be re-
duced by an absorber elsewhere in the fuselage. Such appended 
absorbers are often made by mounting a heavy component such 
as a battery on a flexible support shelf and tuning the frequency 
of this subsystem to a frequency within the range of the blade-
passage frequency.

An absorber is used most successfully when it is applied to quell 
the problematic response of a relatively isolated or frequency-
separated mode. Its function is to “split” the mode’s response, pro-
ducing an antiresonant notch where a resonance once held sway. 
In return, two new resonant frequencies are formed, one above and 

Figure 5: Adding a mass at fc,n to a single mode.

Figure 6: Adding a spring at fc,n to a single mode.
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Figure 7: Effect of attaching a mass or spring at DOF c on acceleration at 
a caused by force at b.
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one below the original frequency. In essence, the absorber becomes 
a “sacrificial” substructure, enduring the punishment that once 
tormented the site of its installation and its surroundings.

Make no mistake, adding an absorber to a structure effects all of 
the structure’s modes. But if the modes are not closely spaced (as 
in the most likely circumstance for absorber application), a great 
deal of insight may be gained by using our lever model to study 
the effect on a single mode in need of help. Figure 8 illustrates the 
attachment of a tuned absorber to such a mode. The (physical unit) 
spring-mass-damper absorber is appended to the model at radius 
fc,n from the pivot, where fc,n is the modal coefficient of the cth 
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DOF in the problematic nth mode measured from the structure.
 The effect of such an appendage on the acceleration at a due 

to a force applied to b is illustrated in Figure 9. When the added 
system is tuned to resonate (independently) at the frequency of the 
nth mode, its influence on the frequency response function (FRF) 
between these DOFs is characterized by the ratio of the added 
system’s mass M to the effective mass (Mn/f2

c,n) at the attachment 
DOF. As this ratio increases, the frequency spread between the 
new resonance frequencies increases. As long as the mass ratio is 
non-zero, a minimum acceleration/force “notch” is created in the 
FRF at exactly the tuned frequency of the absorber (not necessar-
ily the mode’s fn). Figure 9 shows typical results for an appended 
system with mass M equal to 20, 50 and 100 percent of the effec-
tive mass detectable at DOF c. Note that a deep response notch is 
formed at the tuned frequency of the addition regardless of where 
the response (a) and forcing (b) DOFs are chosen (as long as the 
addition DOF (c) is not a node. Note further that the detectable 
effective mass at DOFs a and b remain unchanged, as does the 
high-frequency plateau measured in ��x Fa b/ .

 Traditional vibration absorber studies tend to focus on the results 
of appending an SDOF system tuned to perfectly match the charac-
teristics of the host; this rarely happens in practice. But an absorber 
remains a practical solution, even when the appended hardware 
cannot be custom tuned to exactly match each manufactured host.

Figure 10 presents the results of an fn mismatch of ±10% between 
the absorber and its host. Note that the forced response observable 
between any two DOFs is minimum at the tuned frequency of the 
absorber (not necessarily the original resonance frequency). The 

frequencies of two bounding maximum responses are independent 
of the a and b DOFs selected; they depend solely on the mounting  
DOF (c ), the modal mass (Mn) and the physical amount of mass 
(M) of the appended absorber. Yes, proximate modes do influence 
these results – that’s why we suggest the use of an absorber for 
modes that enjoy some degree of frequency independence. But the 
dominant response change will be in the region of that isolated 
mode focused upon.

We have been very careful to call these appended structures 
absorbers, not dampers. Some folks in the automotive industry 
are not so discriminating. They talk about applying dampers to 
torsional vibration problems with crankshafts – they really mean 
to say absorbers, because sufficient damping cannot be added by 
such appendages to really change the response of the host.2

Consider Figure 11, which illustrates the results of applying 
heavily damped absorbers to a 1% critically damped (typical 
monolithic metallic) structure. Added structures with damping fac-
tors of 1, 2 and 5% damping are shown. While increased absorber 
damping significantly reduces the response at the above fn peak, 
the response at the lower peak is much less affected. Further, the 

Figure 8: Adding a vibration absorber – coupling to single mode.
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Figure 9: Effect on (mode n) acceleration at a due to force at b of adding 
vibration absorber with mass equal to 20, 50 and 100 % of effective mass 
at attachment point, c.
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Figure 10: Effect on (mode n) acceleration at a due to force at b of mistun-
ing (20 % effective mass) vibration absorber’s natural frequency by ±10%. 
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Figure 11: Effect on (mode n) acceleration at a due to force at b of a frequency-
matched (100% effective mass) absorber with 1, 5 and 10 percent damping 
applied to 1% damped structure.
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depth of the anti-resonance notch is rapidly reduced by increased-
damping. Therefore, adding an absorber with heavy damping is 
of questionable value.

Conclusions
No two of us learn in exactly the same manner. What may be 

blatantly obvious to one student may be quite obscure to another. 
I believe it is the obligation of a responsible teacher to present 
every major topic from multiple viewpoints and to employ all ap-
propriate analogies known to him. Few instructors live up to this 
obligation – I was fortunate enough to have exactly one during my 
college experience, a chemist who taught graduate mathematics 
courses. It is my fervent hope that this funny collection of lumped 
masses, levers, springs, pistons and cylinders will bring home the 
concept and purpose of modal decomposition to at least one other 
person. It’s my further hope that some competent instructors will 
add this little model to their “bag of tricks” and use it to reach the 
quiet guy in back row of Mechanical Vibrations 101.

Adding an idealized lever to Herman Frahm’s conceptual vi-
bration model facilitates including modal coefficients for points 
of excitation, response and attachment. This allows envisioning 
and forecasting the dynamic effects of attachments such as mass, 
stiffness and absorbers to a single mode. Using hydraulic piston/
cylinders at modal coefficient lever arm locations facilitates inte-
grating multiple modes in the complete simulation of a structure’s 
forced response. But the ability to understand and forecast the 
effect of structural modifications mode by mode is the big-picture 
concept every dynamics student needs to understand at a gut level.
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A Little Something for the Culture Vultures
While this article was deliberately devoid of equations, some 

readers may wish to examine some of its conclusions arithmeti-
cally. Here are the basic (LaPlace Transform based) equations 
governing the models discussed. I used these relationships 
and Microsoft Excel® to generate the various response plots 
exhibited. For consistency, response motions are presented in 
terms of acceleration, here and in the article text.

Equation 1 governs the basic model of Figure 1. It is aug-
mented to include attachment DOF c in addition to response 
DOF a and excitation DOF b:

Equation 2 describes the combined actions of both hydraulic 
systems illustrated in Figure 4. This frequency response func-
tion combines the actions of N modal models to reproduce the 
motion at location and direction (i.e., DOF) a due to a force 
applied at DOF b.

Equation 3 presents the inertial impedance of the vibration 
absorber shown attached in Figure 8. It can be used with a 
further gain of f f fc a b

2 /  as a negative feedback around Eq. 2 to 
explain the absorber’s effect on a spatial-transfer FRF:


