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Visualizing Structural Vibrations 
Using a Novel Strobe Light Setup

The visualization of structural vibrations has always been a 
key technology when teaching vibration analysis. If the structural 
motion can be perceived directly without numerical simulation or 
extensive measurements, basic modal analysis concepts like mode 
shapes, natural frequencies or resonances and antiresonances are 
intuitively understood. The application of stroboscopes has a long 
tradition in vibration analysis and is particularly well established 
in rotor dynamics. Nevertheless an inexpensive and simple device 
for the visualization of larger structures like car spoilers was miss-
ing.  The application of several arrays of white-light, high-power, 
light-emitting diodes together with an electronic power supply 
resulted in an innovative and highly flexible distributed light 
source perfectly suited to visualize resonant structural vibrations 
in the mid-frequency range. Furthermore, the effect of aliasing 
is demonstrated convincingly and the results can be compared 
qualitatively to experimental modal analysis. In combination with 
an electrodynamic shaker, the setup has been applied success-
fully to visualize vibrations of parts of car bodies, tennis racquets, 
skis, piano or cello strings, as well as plate and shell structures.

Theoretical and experimental modal analysis is a demanding 
and complex scientific discipline, and consequently it is impor-
tant to attract a student’s attention by a suitable combination of 
complementary teaching methods. If the confidence in numerical 
simulations and a virtual experiment is sufficient, almost any 
phenomenon might be explained and understood by applying 
theoretical or numerical methods only. However, since vibrations 
are present in everyday life, it is possible to explain many phe-
nomena by investigating real effects on commonly used structures.

In the low-frequency range, structural vibrations might be felt di-
rectly; medium or high frequencies often radiate acoustic emissions 
that can be heard. Unfortunately this direct perception contributes 
little to a fundamental insight. If, on the other hand, it is possible 
to fully visualize the movement of a structure, the understanding 
will be increased tremendously. Furthermore, if it can be proven 
convincingly that theoretical predictions and real experiments 
do compare well, this raises confidence in a virtual experiment.

These considerations were the driving force behind the develop-
ment of a proposed setup that has shown to be a versatile tool for 
explaining and teaching vibration phenomena. It is still widely 
accepted to use large and greatly simplified structures with low 
natural frequencies to prove that theoretical predictions do com-
pare well with experiments. Pendulum type structures, large helical 
springs, standing waves on water or large strings are commonly 
used to explain basic principles like natural frequencies and mode 
shapes. Also widespread are Chladni plates to display node lines 
or the visual demonstration of sound wave patterns in a Kundt’s 
pipe filled with cork or polystyrene balls. These experiments have 
the commonality that they are based on idealized elementary 
structures or substantial structural simplifications when compared 
to real systems, a drawback that is eliminated with the proposed 
application of stroboscopic light.

The basic idea is to apply several arrays of high-power, light-
emitting diodes (LEDs) in a stroboscopic configuration to obtain a 
homogenous illumination level over the entire vibrating structure. 
At frequencies of more than 40 Hz, the sequence of light flashes 
is perceived as uniform light intensity by most observers. This 
assumes that, harmonic motion of a relatively flexible structure 
with moderate to large vibration amplitudes, an arbitrary frequency 

shift can be achieved by violating Shannon’s sampling theorem.
Consequently, the original high-frequency motion is mirrored 

about the sampling frequency, rendering the visible alias frequency. 
Conversely, the actual mode shapes remain unaffected, and the real 
structure seems to vibrate in slow motion. This strategy works for 
any structure as long as the vibration amplitudes are in the visible 
range. Laboratory experiments have been carried out using many 
technical and common articles, and the setup has become a valu-
able, quick and easy system for demonstrating different vibration 
modes and creating a feeling for modal relations.

Theoretical Background
Whenever a continuous process is discretized by taking equally 

spaced samples, the effect of aliasing has to be considered. In many 
film productions, aliasing is the reason for car wheels turning 
forward and backward during an accelerated motion. In computer 
graphics and image processing, a similar effect results from a finite 
spatial resolution; often observed as appearance of a Moiré pattern. 
Aliasing is a frequently encountered and widely underestimated 
problem that can occur in all data acquisition processes whenever 
samples are taken from a continuous process, thereby corrupting 
the measured data by changing the signal or system information. 
In modal analysis, it can be observed as both a spatial or temporal 
effect. Although generally undesired, it is exactly the effect of 
changing the frequency content of the observed motion by aliasing 
that the current application is based on.

From the theory of signal analysis it is well known that any 
discrete time signal corresponds to a periodic spectrum, and due to 
the symmetry (duality) of the Fourier transform (FT), any discrete 
spectrum has a corresponding periodic time signal.1 If a continuous 
signal s(t) is discretized by impulse sampling at equally spaced time 
intervals Dt  using the sampling frequency fs = 1/Dt, the discrete 
time signal Sd(t) is obtained, see Figures 1a and 1c.

Its spectrum Sd(f) = FT{Sd(t)} is continuous with the period fs in 
frequency domain and proportional to the spectrum of the origi-
nal continuous time signal S(f); see Figures 1b and 1d. Since the 
considered mechanical systems have low-pass characteristics and 
the excitation is limited in frequency as well, the highest signal 
frequency component of s(t) is denoted B. If properly sampled, 
Sd(f) contains periodic and well separated signal sections. If fs is 
reduced, the periodic sections will start to overlap. Since Sd(f) is 
the sum of all spectral images, S(f) and Sd(f) will start to differ in 
the fundamental frequency band, −B ≤ f < B (see Figure 2a).

Because of the symmetry of real signals, |Sd(f) | = |Sd(−f) |, it 
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Figure 1. Continuous and impulse-sampled time signal with correspond-
ing spectra.
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becomes apparent from simple geometric interpretations that 
the resulting spectrum seems mirrored about fs/2. Consequently 
high-frequency components will appear in the fundamental fre-
quency band, thereby representing alias frequencies. This spectral 
degeneration, also known as frequency folding, can be avoided if 
the condition holds.

Equation 1 is known as the Nyquist-Shannon sampling theorem 
and represents a sufficient condition for exact reconstructability 
of the original time continuous signal s(t) from the sampled data 
sd(t). The Nyquist rate 2B is a central property of a band-limited 
signal, contrary to the Nyquist frequency fs/2, which results from 
the sampling system. The effect of undersampling can be best ex-

plained by considering the single frequency signal s(t)=cos(2pft). 
For this signal, the bandwidth is certainly limited by B=f, and the 
spectrum consists of two spectral lines at the frequencies ±f. For the 
sampled signal this is also true as long as inequality (Eq. 1) holds. 
But as soon as the sampling frequency is reduced below fs<2B, the 
true spectrum and its periodic images overlap, thereby forming a 
spectrum whose lowest and therefore predominant frequency is 
a result of the sampling process and does not exist in the original 
signal (see Figures 2c and 2d).

The spectrum given in the fundamental frequency band of Figure 
2d corresponds to the alias signal sa(t)=cos(2pfat), fa=fs−f. Actually 
only sa(t) is visible in the time domain (see Figure 3a).

Although the frequency has changed, the amplitude of s(t) and 
sa(t) remain identical. fa vanishes if fs=f/n, and n=1,2,3. The condi-
tion fa=fs–f=0 is frequently used to determine the angular frequency 
of rotating shafts. For periodic signals with the fundamental fre-
quency f and several frequency components, the frequency folding 
still appears and can be analyzed by linear superposition. However, 
instead of using the time scaling theorem of the Fourier transform, 
the effect of undersampling is directly understood by looking at 
the time signal (see Figure 3b). In fact any signal of period T=1/f 
shows a scaling in the time domain and can be slowed down to 
almost zero if fs≈f/n. For fs>f/n the signal is running forward, but 
for fs<f/n, it seems to be running backward in time.

Again, the amplitudes of the signal are generally not affected by 
the undersampling procedure. Because the aim is to visualize fast 
periodic vibrations in slow motion, only sampling frequencies of 
about fs≈f/n are of interest. If sampling is performed by stroboscopic 
light flashes and s(t) represents the displacement of an arbitrary 
point on a vibrating structure, the time scaling effect must occur 
for any point. Therefore, the entire structure appears to vibrate in 
slow motion. To ensure that the structural motion is visible, the 
peak displacements should be in the mm range. This requires a 
strong excitation or the effect of a structural resonance. For this 
reason, the setup is adequate to visualize resonant vibrations, 
which are observed as the operating deflection shape (ODS) in 
case of single frequency excitation. Furthermore, if the structure’s 
natural frequencies are well separated, the ODSs are almost identi-
cal to the mode shapes.

Technical Details and Practical Aspects
The LED stroboscope is a prototype that has been designed and 

built at the University of Applied Sciences in Wiener Neustadt. A 
total of 4¥8 white, high-power, light-emitting diodes of type LUW-
W5AM (1A, 3W each) are arranged in four linear arrays of about 
1 m long. Because of the significant heat production, the LEDs are 
glued to a beam-type heat sink that additionally acts as supporting 
element (see Figure 4a). The cooling is a measure of precaution in 
case the power is switched on permanently.

During normal stroboscope operation, the LED’s duty cycle is 
around 1-2%, which requires no cooling. To achieve a constant 
homogenous illumination, the power supply offers four channels 
with linear, constant, current control. Each channel is connected 
to a standard BNC connector to control one array using standard 
TTL-signals. The input section is protected against external over-
voltage up to 50 V; the power section (LM317T) is equipped with 
an internal protection against overheating. In Figure 4b, the sche-
matic diagram of a single channel is given. The internal power of 
24 V is provided by a simple rectifier circuit connected to a large 
smoothing capacitor and provides power for the adjustable volt-
age regulators that are used in constant current, with current set 
to approximately 0.7A. Each output (CH1_1_OUT,CH1_2_OUT) is 
connected to a series of four high-power LEDS, together forming 
one linear stroboscope array.

Depending on the actual application, this basic circuit can be 
duplicated arbitrarily. In the stroboscope prototype, it was used 
four times (see Figure 4a). Although it is possible to operate the 
arrays independently, they are generally connected together and 
used in phase for best illumination of the test object. It is strongly 
advised to use very powerful LEDs because they allow for high 
averaged light intensities while still using short light flashes.

Apparently, best visual effects are obtained if ambient and es-
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Figure 2. Spectral degeneration by frequency folding.
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Figure 3. Aliasing effect for harmonic and periodic signal.
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pecially artificial light is reduced to a minimum. The higher the 
duty cycle, the better the illumination level, but at the price of 
blurring the visual perception. Experience shows that, depending 
on the spectator, stroboscopic light flicker can cause discomfort. 
This is why we recommend operating the system at frequencies 
higher than 40-50 Hz.

This guarantees a perfect illusion of the slowly moving structure. 
However, note that flashing light might trigger epileptic seizures 
in people who suffer from photosensitive epilepsy, so people 
watching the experiment must know about this effect. For best 
results, the alias frequency should be ideally around 1-2 Hz, with 
maximum displacement amplitudes of more than 1-2 mm. If the 

structure has shiny or painted surfaces, the moving light reflec-
tions also clearly indicate the structural motion and contribute to 
a strong visual effect even for much smaller displacements. Since 
switching of the electronic device is possible up to several kHz, 
it is possible to investigate local vibration effects as well as very 
small devices. In this situation magnifying optics might be neces-
sary to observe the vibrations.

For appropriate excitation, harmonic force or ground excitation 
is recommended, which is generally provided by an electrodynamic 
shaker. For light and almost undamped structures, a simple alterna-
tive has proven to work satisfactorily. If a small strong permanent 
magnet is attached to a lightly damped test structure, a simple 
coil connected to a commercial audio amplifier under harmonic 
input can be used to excite the test structure’s resonance. A similar 
but inverse setup can be used if electrically conducting elements 
of string type have to be analyzed. A current-carrying conductor 
located in the homogenous field of a strong permanent magnet 
experiences an electric force proportional to the current and the 
magnetic field. This type of excitation is used to investigate vibra-
tion and wave phenomena on strings or excite stringed instruments 
in a realistic way, respectively.

Applications
It must be pointed out clearly, that the system presented here can 

never be used to replace vibration measurements or experimental 
modal analysis. However, it is a very simple and effective setup to 
visualize and understand some basic principles of modal analysis 
like modal decomposition and its corresponding deflection shapes, 
the effect of resonance peaks as well as anti-resonances, superposi-
tion, the influence of the modal constant and the effect of nodes 
and node lines. One major advantage of the setup is the possibility 
to apply it for the analysis of both simple teaching experiments 
and complex structures.

When using the stroboscope, only estimates of the structural 
resonances are required, because varying the harmonic excitation 
frequency quickly renders the resonant vibrations that are often 
accompanied by acoustic emissions and a blurred view of the geom-
etry. Using the stroboscope with a flash rate of 1 or 2 Hz above the 
resonance frequency fj extracts the true structural displacements 
in slow motion, and the mode shape vector yj (precisely the ODS) 
is observed directly. Several different applications are discussed 
in the following paragraphs.

Cantilever Beam. When studying a cantilever beam experimen-
tally, the natural frequencies, the number and position of vibration 
nodes as well as the deflection shapes are in perfect agreement with 
theoretical considerations for the lower vibration modes. Therefore, 
it is straightforward to explain the effect of a node with respect to 
structural vibration measurements or structural excitation. When 
looking at transfer functions in the modal superposition form, 2,3

with sr, Qr and yj 
denoting the pole and modal scaling constant 

for each mode r and the elements of the modal shape matrix 
respectively, the influence of the modal constant (residual) Apqr 
becomes apparent and can be proven experimentally by varying 
the excitation point. Of course the experienced practitioner knows 
about the danger of missing natural frequencies and mode shapes 
using single-point excitations, but when studying modal analysis 
the demonstration of this effect is crucial.

Anti-Resonances. This important phenomenon, often applied 
in passive vibration absorption, can also be understood directly 
by simple visualization. When adding a vibration absorber to a 
structure and tuning it to a resonance fj of the host structure the 
vibration amplitude vanishes if damping is neglected.4 A close look 
at this effect reveals that the absorber adds a degree of freedom to 
the structure, forming a pair of adjacent natural frequencies (see 
Figure 5a).

Due to the phase shift at resonance, both mode shapes vibrate 
in opposite directions and compensate each other at the tuning 
frequency fj. From inspecting the extended mode shape vector, 
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however, it is apparent that this compensation by modal super-
position is only achieved for the host structure (see Figure 5b) 
for a plane three story shear frame model. Although the story 
displacements vanish, the absorber motion is amplified, generat-
ing compensating forces. This perfect passive vibration absorption 
can only be achieved at the single frequency fj. If the excitation 
frequency changes, the absorbing effect decreases and, even worse, 
another resonance phenomenon is obtained. This behavior can be 
avoided by adding viscous damping to the absorber which is com-
mon practice in wind and earthquake engineering, (see Figure 5a).

Complex Operational Deflection Shapes. When working with a 
shear frame laboratory model, for example, complex ODSs can be 
observed. They occur when the structural displacements are not 
in phase for harmonic forcing, giving the impression of a traveling 
wave, while real ODSs appear as standing waves. This phenomenon 
results from the relative phase differences between adjacent modes 
that dominate the ODS.

Mass Loading Effect. When investigating light structures, it is 
frequently observed that the mass loading of the vibration trans-
ducer influences natural frequencies and mode shapes, an effect 
that can also be shown using the presented setup.

Complex Structures. Out of the variety of ways to present 
modal concepts and phenomena, possibly the most impressive is 
the application to real structures whose modal deflection shapes 
cannot be derived intuitively. Among others are real-size car 
spoilers and doors, skis, tennis racquets, blank CDs and other 
arbitrarily shaped plate structures or loudspeaker membranes. 
Bending modes, torsional modes and even compression modes 
have been made visible directly. Some of the structures have also 
been analyzed numerically for qualitative comparison and it has 
turned out that confirming the computer results with real-scale 
experiments contributes a lot to the understanding and confidence 
of modal analysis.

Transient vibrations. Transient processes, like free vibrations, 

beating or mode-jumping experiments, are difficult to visualize 
unless they can be repeated periodically. For example, if a struc-
ture is excited with a periodic impulse type excitation, a direct 
observation of the transient response is possible. This effect has 
been tested on an electrically conducting string of length L=0.8 m, 
rigidly fixed at both ends, with a fundamental frequency of f0=48 
Hz. A suitable excitation is generated by applying a strong current 
impulse of about 30 A

 

to the string, which is partly placed in the 
homogenous magnetic field of a strong permanent magnet.

The resulting force is close to an ideal impulse, which induces 
traveling waves on the string. A periodic transient motion is ob-
tained when repeating the impulsive excitation with frequency f0. 
Flashing the stroboscope with fs≈f0 Hz displays the traveling wave 
in perfect accordance with the theoretical prediction. D’Alembert’s 
solution (traveling-wave approach) but equially Bernoulli’s solu-
tion (modal decomposition), can be used to fully describe the 
propagating wave.2,5 The latter is given by where the coefficients 
un are defined by the initial displacement, and the string is released 
with no initial velocity.

Since standing waves can be generated with the same setup, this 
simple experiment can be used to demonstrate that modes and 
waves are dual theories that explain structural displacements for 
a specific forcing in this context. From an engineer’s perspective, 
however, the modal approach is characterized by its versatility, 
because the modes can be measured or calculated, contrary to the 
wave approach, where a closed-form solution is required.

Rotordynamics. Although the application of stroboscopes has 
a long tradition in rotordynamics, it is mainly used to determine 
the speed of a rotating shaft. Experiments on a simple small-scale 
rotor test rig show that it is straightforward to visualize the forward 
whirling of a cantilever elastic shaft close to the critical speed. 
Consequently, a similar result can be expected for the backward 
whirl if it is excited properly.

Conclusions
This work presents an experimental setup to visualize structural 

vibrations using LED-based, distributed, stroboscopic-light technol-
ogy. The LED technology has turned out to be inexpensive, robust, 
fast, energy saving, flexible and easy to use.

For the experimental setup, 32 high-power LEDs are arranged 
in four mobile arrays to homogenously illuminate a test structure. 
For any periodic excitation, the structural response appears in slow 
motion if the vibrational displacements are in the visible range 
and the flash frequency is chosen close to the excitation frequency.

Several basic modal analysis concepts like mode shapes, natural 
frequencies or resonances and anti-resonances become appar-
ent through direct observation. Furthermore, the results can be 
compared qualitatively to classical experimental modal analysis 
methods or computational results. The system has been applied 
to a variety of structures, including piano and cello strings, skis, 
tennis racquets, as well as plate- and shell-type structure of various 
sizes. For large structures, the illumination and light intensity can 
be increased by simply adding more light arrays all operating in 
phase, which allows observing local and global vibration modes 
at the same time.

Acknowledgments
The author gratefully acknowledges Johann Leinweber and 

Helmut Frais-Kölbl, Department of Electrical Engineering, Uni-
versity of Applied Sciences, Wiener Neustadt, for their help in 
developing the electronic part of the project and for various discus-
sions during the experimental setup and the results.

References
1. Oppenheim, A. V., Schafer, R. W., Buck, J. R., Discrete-Time Signal Pro-

cessing, 2nd Edition, Prentice-Hall, 1999.
2, Brandt, A., Noise and Vibration Analysis, John Wiley & Sons, Ltd., 2011.
3. Ewins, D. J., Modal Testing, Theory, Practice and Application, 2nd edition, 

Research Studies Press Ltd., England, 2000.
4. Den Hartog, J. P., Mechanical Vibrations, Dover Edition, 1985.
5. Elmore, W. C., Heald, M. A., Physics of Waves, McGraw-Hill Book Com-

pany, New York, 1966.

The author can be reached at: markus.hochrainer@fhwn.ac.at.


