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In the study of product sound quality using paired-comparison 
methods, it is generally assumed that preference within the jury 
population is universal. This assumption often holds true, but 
there are often scenarios where preference varies significantly 
with demographics. Identifying the presence of and partitioning 
the jury members with these varying criteria for preference is 
seldom a trivial exercise. This article presents an unsupervised 
clustering technique that can be applied to jury-paired preferences 
in an attempt to infer the number of subgroups in a jury pool. The 
same algorithm can then be used to classify jury members into 
appropriate subgroups. In addition, the approach is applied to 
the results of a small-engine jury study of more than 80 members. 
Two subgroups, corresponding to American and European jurors, 
were successfully identified and classified.

In analyzing product sound quality, the method of paired com-
parison1,2 is often used to establish an understanding of the prefer-
ence or impression of quality of a product based on the sound that 
the product emits during operation.3-6 In most cases, including the 
commonly used Bradley-Terry model,7 it is assumed that the entire 
jury pool has a common preference. Although this assumption is 
often true, it is not a reasonable assumption for all products with 
sound emission issues.

An example of varying preferences was observed during the 
analysis of a small informal jury study for impact harshness sound. 
It was found that there were two subgroups of jury members in the 
jury pool; those that preferred a firm short duration impact and 
those that preferred a low-level sound amplitude. The first group 
of jury members was willing to accept a higher-level impact for 
a short duration or “crisp” impact. In contrast, the second group 
preferred a lower level of impact sound even if it meant that the 
impact event was longer.

Therefore, it is necessary to either separate the jury population 
into subgroups (or demographics) prior to applying the model 
or to use a model that can account for the individual juror de-
mographic.8 In either case, it is necessary to know the number 
of subgroups within the jury population and classify each of the 
jury members into the appropriate demographic. For this reason, a 
reliable method that can be used to evaluate a jury population and 
identify subgroups based on juror voting patterns is a useful tool.

This article presents the development of an unsupervised K-
means clustering approach, similar to that discussed by Lathrup 
and Williams,9,10 to estimate the number of subgroups and classify 
each juror into the appropriate subgroup. The method uses the K-
means algorithm to cluster the jury votes (data points) and evalu-
ates the total mean square distance (error) between the data points 
and cluster centers. This is iterated with the number of clusters 
increasing from 1 to n, where n is the number of clusters that is 
expected to exceed the true number of clusters or jury subgroups, 
in the study. The total error for each iteration is then used to infer 
the number of independent subgroups in the jury. In addition, a 
Ward’s agglomerative clustering approach16 was compared to the 
K-means clustering method. Finally, the procedure is applied to 
data collected during a real jury study of small-engine sounds. Both 
the K-means and Ward’s clustering methods are used to identify 
subgroups in the jury that included roughly half European and 
half American jurors.  

Background
Clustering analysis11,12 is an unsupervised method for organizing 

data into groups with similar characteristics with no prior knowl-

edge of the classification of the data points. The goal of clustering 
is to group similar data and to gain an understanding of underlying 
characteristics or structures within the observed data.

One of the simplest and most common methods used for un-
supervised clustering is the family of K-means algorithms.13 The 
K-means clustering algorithm categorizes data points by attempting 
to minimize the total sum of the squared distances (or total squared 
error) between the data points and cluster centers. An introduction 
to clustering in general along with various examples of clustering 
algorithms is given by Hartigan,14 with additional introductory 
discussions provided by Jain13 and Bishop.15

While the goal of the K-means clustering algorithm is generally to 
identify cluster centers that describe and classify the data based on 
a given number of clusters k, the goal as applied in this approach 
is to infer the number of clusters (jury subgroups) based on the 
relationship between the number of clusters and the total squared 
error. This procedure, described by Lathrup and Williams9,10 as 
an inverse scree test, infers the appropriate number of clusters by 
identifying the “elbow” in a plot of the number of clusters versus 
the total squared error. Once the appropriate number of clusters, or 
jury subgroups, is known, the K-means algorithm is then applied 
to classify the data points, or jury members, into the appropriate 
subgroups.

An alternative method found in the open literature is the use of 
a hierarchical approach such as that developed by Ward.16 His ap-
proach, described as hierarchical agglomerative, essentially begins 
with all data points as their own respective clusters. Therefore, for 
n data points there will be n clusters defined, and the total sum of 
error will be zero. During the first iteration, two clusters (points) 
are merged into a cluster, and the error associated with this merger 
is calculated. The error, referred to as the “cost,” is commonly a 
squared sum of the distances between all points in the cluster and 
the cluster center, defined as the mean of the points within the 
cluster. This is repeated for all possible pairs within the dataset, 
and the pairing with the lowest cost is selected as a cluster for that 
iteration. In this way, after one iteration, there will be n–1 clusters 
representing n data points.

For the next iteration, the cost is calculated for all possible pair-
ings of the n–1 clusters. Again, the combination with the lowest 
cost is selected as a cluster for the second iteration, reducing the 
number of clusters to n–2. This is repeated until there is only a 
single cluster to represent all of the data points. By tracking the 
cost associated with each iteration, one can infer the appropriate 
number of clusters by identifying the point at which reducing the 
number of clusters by one significantly increases the error.

Funfgeld and Wang17 discuss the use of clustering to better 
understand attitudes and behaviors in routine finance, and Ross18 
utilizes cluster analysis in segmenting sports fans from a marketing 
perspective. In both cases, the clustering approach was adopted 
from suggestions by Punj and Stewart19 for using a two-stage 
clustering process. In this approach, a hierarchical method, such 
as Ward’s method,19 is used in the first stage to infer the optimal 
number of clusters and to establish initial cluster centers. The sec-
ond stage uses a K-means algorithm, initialized with the number of 
clusters and cluster centers output from the first stage, to optimize 
the cluster assignments.

As discussed by Funfgeld,17 the second stage uses a K-means 
solution to avoid a weakness of Ward’s clustering approach. Since 
Ward’s method is a deterministic and “greedy” algorithm, it has 
no means of resorting or optimizing the cluster assignments once 
a solution is reached. Punj and Stewart19 proposed the two-stage 
process to address the concern that the solution to a clustering 
problem using a K-means approach depends on the initial cluster 
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centers. For this reason, Ward’s method is used to establish the 
initial cluster centers. Then, the K-means algorithm is used to 
“optimize” these clusters. While this results in a deterministic 
algorithm, there is still no guarantee that the solution will be a 
global minimum. 

Xu and Wunsch12 summarize alternative methods to addressing 
the initial cluster center issue with the K-means algorithm. Of the 
methods discussed, the strategy of solving the K-means algorithm 
for multiple randomly chosen initial centers and selecting the 
best result is used in the proposed approach employed in the 
present study.

The K-means algorithm was chosen instead of a model based 
clustering method, such as a Gaussian Mixture Model, due to the 
discrete nature of the training vectors. Because the jury response 
can be one of three options (prefer A, prefer B, or no preference) 
it would be inappropriate to use a continuous model. In addition, 
the K-means algorithm is a fairly simple algorithm to implement 
and has been applied successfully in many other classification 
problems.

Furthermore, the method of generating a K-means solution over 
multiple random initial centers was chosen because it is less likely 
to be trapped in a local minimum as compared to Ward’s method 
described above. An additional advantage in using a K-means-only 
approach includes robustness to outliers19 as compared to other 
clustering algorithms. 

K-Means Clustering. The actual implementation of the K-means 
algorithm can vary slightly, but in most cases, the following struc-
ture is applied, as presented by MacKay20:

Initialization: Initialize the K-means (m(k)) to a set of random 
values.

Assignment: Assign each data point n to the nearest mean. In 
this step, the initial guess for the cluster k(n) that the point x(n) 
belongs to is denoted as k’(n):

where {d(m(k)), x(n)} represents the distance between the point, x(n), 
and the cluster center m(k). Argument in this case represents the 
minimum in the set of all values of k.

Update step: The mean m(k) is recalculated to match the mean 
of the data points belonging to it.

where R(k) is the number of data points belonging to m(k) and Sn 
x(n) represents sum of all points belonging to set n . 

Iteration: Repeat the assignment and update steps until there 
is no more change.

Variations to the algorithm generally involve modifications to 
the method for initializing the K-means, the method for calculating 
the distance between the means and the data points, and method 
for assigning the points to clusters. These approaches are sum-
marized by Jain.13

Some common methods for initializing the means include ran-
domly selecting points within the data space, randomly selecting 
actual data points, or selecting mean points based on data point 
density. Various methods are discussed by Steinley21 and Xu and 
Wunsch.12

The distance calculations include those commonly used in 
measuring distances in multidimensional space, such as the Eu-
clidean, cosine, Manhatten (city block), Mahalanobis and Hamming 
distance.12 Finally, variations to the iterative approach include 
various strategies intended to reduce the solution time and address 
some of its shortcomings. Some of the approaches are presented 
by Xia, et al.22

The K-means algorithm behaves like a gradient-descent approach 
so is susceptible to getting trapped in local minimums. Also the 
solution depends on the starting point or the initial K-means 
used.13 A common strategy applied to reduce this effect, or at least 
increase the likelihood of finding the global minimum, involves 
iterating on multiple initial means. This strategy employed by the 
kmeans function in Matlab®23, and discussed by Xu and Wunsch12, 
is applied in this study. To implement the strategy, an error func-
tion is first defined. A common error function is the total sum of 

the distances between the data points and their respective cluster 
means. For each iteration, the initial K-means or cluster centers 
are initialized at random, and the error function is used to track 
the total error associated with the given solution after the K-means 
algorithm converges. After the defined number of iterations, the 
solution with the smallest total error is selected.

Although the approach of iterating the algorithm over a number 
of randomly selected initial K-means can be computationally in-
tensive, especially for a large dataset, the dataset size of a typical 
jury study seldom exceeds 100 members.1 This is relatively small 
considering that Jain, et al.,13 discuss datasets that can reach mil-
lions of data points with thousands of features. So a typical jury 
result of less than 100 jury members (datasets) and 45 features (for 
paired comparison of 10 sounds) would generally be considered 
small. Therefore, an iterative approach would not be expected to 
demand an excessive amount of time.

Ward’s Clustering Method. As described earlier, Ward’s 
method16 for clustering is also approached iteratively. In contrast 
to the K-means algorithm, Ward’s method can be described as 
hierarchical agglomerative. Again there may be variations in the 
specific implementation, but in general, the approach is described 
in Reference 24:

Initialization: Initialize all points as m individual clusters (cm).
Evaluate: For all possible pairings (cij) of the m clusters, find 

the pairing that results in the minimal within cluster variance, 

where s 2 c ci j»( ) represents the variance of the combination of 
clusters ci and cj.

Merge: Form a set of m–1 clusters by combing clusters ci and cj.
Iteration: Repeat the evaluate and merge steps until points 

belong to a single cluster.
Jury Clustering and Classification. An inverse scree test9,10 is 

used to estimate the number of jury subgroups based on the total 
error for the K-means solution for 1 to n clusters. In this case, the 
total error is measured as the total squared distances between all 
data points and its assigned cluster center. As implemented in this 
study, the test is a subjective evaluation that identifies the “elbow” 
in comparing the total error plotted against the cluster number. To 
generate the scree plot, a K-means solution is found for 1 to n clus-
ters, where n is a number that is expected to be much larger than 
the true number of clusters. An example of this is shown in Figure 
1, where the elbow is clearly defined. The results in this plot were 
generated by a simulated jury with 50 jurors and three subgroups.

The second component of this jury clustering approach involves 
classifying the jury into the appropriate subgroups, which can then 
be used as an input into a preference model. The classification 
step is accomplished by reapplying the K-means algorithm using 
the number of clusters that corresponds to the number of jury 
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Figure 1. Number of clusters versus total squared error for a simulated jury 
(n=50) with three subgroups.
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subgroups identified by the scree test described above.
Small-Engine Jury. The two clustering algorithms were applied 

to real jury results from a small-engine sound quality jury study. 
During the study, nine small engine sounds were presented to 
more than 40 American and more than 40 European jurors. The 
jurors were informed that they would be listening to small-engine 
sounds and measured at a typical operator position during typical 
operation.

Each juror was presented with a pair of sounds, labeled Sounds 
A and B and asked to select the sound that they preferred. This 
comparison is done for all possible pairings, and so for a set of 
nine sounds, a total of 36 comparisons are made, and the output 
for that juror was a vector of length 36 consisting of values −1, 0, 
or 1 indicating prefering the first, no preference, or prefering the 
second sound. This is repeated for all jurors, and the “preference 
vectors” were used as the input to the jury-clustering algorithm 
applied in this study.

The K-means and Ward’s scree tests for this jury are shown in 
Figure 2. This figure indicates that both methods again give nearly 
identical results and indicate that there are two subgroups within 
the jury. Based on this, the K-means solution was used to classify 
the jurors into two subgroups. The classification from the two 
subgroup K-means clustering solution is then compared to the 
known classification in a confusion matrix, shown in Table 1. The 
confusion matrix shows the percent of American and European 

jurors classified into Subgroups 1 and 2. In this case, the K-means 
clustering approach puts 98% of the American jurors and 12% 
of the European jurors into Subgroup 1, and 2% of the American 
jurors and 88% off the European jurors into Subgroup 2, based 
on their preferences. For reference, the subjective merit scores for 
the nine small engine sounds for the two subgroups are shown 
in Figure 3. It is not known if the European jurors classified into 
Subgroup 1 and the American jurors classified into Subgroup 2 are 
erroneously classified in that way or if they truly share preferences 
common with the other group. 

Conclusions
An approach to using a visual scree test in conjunction with a 

K-means clustering and Ward’s agglomerative clustering algorithms 
is employed to estimate the number of jury subgroups and to clas-
sify each of the jury members into the appropriate subgroup based 
on voting preference.
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Figure 3. Merit scores for nine small-engine sounds based on (a) subgroup1 
and (b) Subgroup 2 preferences.

Table 1. Confusion matrix showing percentage of American and 
European jurors classi�ed into Subgroups 1 and 2.

 Subgroup 1 Subgroup 2

American 98 2 

European 12 88

Figure 2. Scree plot for a small-engine jury study; K-means clustering solu-
tion is shown in dashed black and Ward’s method is red.
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