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Modal vectors frequently have small amounts of contamination 
or distortion from random errors or bias errors, particularly when 
compared to results from modeling where normal modal vectors 
are the common result since damping is not included in the model. 
To understand and possibly eliminate the contamination, tools 
are needed to evaluate the contamination. While the traditional 
modal assurance criterion (MAC) is useful, more sensitive meth-
ods are desirable. Several altered forms of MAC are reviewed 
for this purpose. These methods include evaluating the real part 
of a modal vector compared to the complex-valued modal vector 
(rMAC), evaluating the imaginary part of the modal vector com-
pared to the complex valued modal vector (iMAC) and evaluating 
the real part of a modal vector compared to the imaginary part 
of the modal vector (riMAC). Weighted versions of each of these 
evaluations are also used (rwMAC, iwMAC,and riwMAC). These 
methods have shown to be very useful when evaluating modal 
vectors associated with close modal frequencies and suggest a 
need for improved processing (numerical estimation procedures 
for modal vectors) or “decontamination” (post-processing proce-
dures for modal vector sets) are required.

The evolution of modal parameter estimation over the last 40 
years or so has changed the way modal vectors are estimated from 
experimental data. The progression from single-measurement 
modal parameter estimation to autonomous (MIMO) modal param-
eter estimation has meant that the modal vector coefficients that 
once were estimated DOF by DOF and mode by mode can now be 
estimated vector by vector (including all DOFs) from clusters of 
estimates of each modal vector in MIMO procedures.

This has resulted in statistically significant estimations of the 
individual modal vectors that reduce the impact of measurement 
noise as well as other random and bias errors. In the end, the modal 
vectors always have some small amount of contamination. When a 
structure is tested where normal modes are expected, the estimated 
modal vectors will always contain a small amount of contamination 
that will yield a slightly complex estimate of the modal vectors.

For this situation, the contamination can often be ignored or 
eliminated through a real normalization procedure. This can 

be justified, particularly when the contamination appears to be 
dominantly random. However, when the contamination is biased, 
this justification becomes complicated. Even with the most so-
phisticated modal parameter estimation algorithms and numerical 
procedures, the contamination will often be biased in the form 
of contamination that looks like a nearby mode. This indicates 
that the estimated modal vectors satisfy whatever algorithm and 
numerical procedure are being utilized, but the estimated modal 
vectors still contain characteristics that may be perceived as a 
nonphysical result.

Recent use of autonomous modal parameter estimation methods 
indicates that these small amounts of contamination still persist 
even when statistically significant data are included in the esti-
mation of the modal vectors, and estimation of the modal vectors 
involves alternate numerical methods. The common form of this 
contamination is most notable when the modal frequencies are 
closely spaced or repeated in frequency. In these cases, when 
the modal vectors are expected to be real-valued, normal modes, 
the estimated modal vectors will often contain a small imaginary 
valued component that correlates with the dominant (real-valued) 
characteristic of a nearby modal vector.

Autonomous Modal Parameter Estimation
Some comments about how modal vectors are estimated when 

using autonomous modal parameter estimation methods are in 
order.1-3 In the end, the modal vector contamination that is being 
studied is present in all modal parameter estimation approaches. 
However, the autonomous modal parameter estimation procedures 
often use a statistically based solution that involves a singular-value 
decomposition of a cluster of modal vectors estimates. This yields 
an extremely good result, where the modal vectors have much less 
contamination than that found historically. Even so, the modal 
vector contamination problem cannot be eliminated. 

The following discussion is a brief summary of how the common 
statistical subspace autonomous modal identification (CSSAMI) 
method estimates the modal vectors. Essentially, any modal pa-
rameter estimation algorithm can be utilized to get a consistency 
diagram. This consistency diagram represents hundreds of solu-
tions for the possible modal parameters (modal frequencies and 
modal vectors). The vectors in these solutions are combined with 
the modal frequencies to create state vectors. Now the hundreds 
of state vectors can be sorted into clusters, where each cluster 
represents a single modal vector.

This sorting procedure involves the modal assurance criterion 
between all of the state vectors. The final modal frequency and 
modal vector can now be determined from the singular value 
decomposition of each cluster. This is a slightly different proce-
dure than historical methods that used least-squares or weighted 
least-squares methods to determine modal vectors via a partial 
fraction residue model.

Note that much of the background of the CSSAMI method is 
based upon the unified matrix polynomial algorithm (UMPA).4-5 
This means that this autonomous method can be applied to both 
low- and high-order modal parameter estimation methods with 
short or long dimension modal (base) vectors. These different 
methods can now be combined in one procedure.

In these cases, it may be useful to solve for the complete unscaled 
or scaled modal vector of the large dimension NL. This will extend 
the temporal-spatial information in the modal (base) vector so that 
the vector will be more sensitive to change. This characteristic is 
what gives the CSSAMI autonomous method a robust ability to 
distinguish between computational and structural modal param-
eters. (Please refer to a series of previous papers in order to get an 
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iMAC = MAC (imaginary part versus complex)
riMAC = MAC (real part versus imaginary part)
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rwMAC = Weighted MAC (real part versus complex)
iwMAC = Weighted MAC (imaginary part versus complex)
riwMAC = Weighted MAC (real part versus imaginary part)
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overview of the methodology and to view application results for 
several cases.6-8)

Modal Assurance Criterion
The traditional modal assurance criterion (MAC) computa-

tion9-12, restated in Equation 1, is widely used in modal parameter 
estimation and structural dynamics to sort the numerous possible 
solutions of modal vectors from either modeling or experiment:

	

Once modal vectors are estimated in any modal parameter esti-
mation procedure, the MAC computation is often used to evaluate 
the quality of the solutions. This begins with an evaluation of the 
MAC between all of the modal vectors in the final set to ascertain 
whether the modal set is an independent set of vectors. This often 
involves including the estimates of the modal vectors associated 
with the conjugate poles.

Since the conjugate poles and vectors are estimated separately, 
if nonconjugate relationships exist between the associated modal 
vector estimates (between the modal vector for pole and the modal 
vector of the conjugate pole), the MAC between these two vectors 
will not be unity as expected. A number of users have noted that 
this often correlates with modal vectors that are exhibiting some 
unexpected characteristics.

Figure 1 is a graphical representation of this situation. While 
the MAC values are acceptable, the comparisons between modal 
vectors and the associated conjugate modal vectors do exhibit 
slightly lowered consistency or correlation.

When the last three modal vectors are visualized, as in Figures 2 
and 3, no particular problem can be noted until the modal vectors 
are animated. Then, the two modes in Figure 2 clearly show a small 
complex mode characteristic. Since these results are statistically 
consistent across many solutions, the limitations of the data, both 
in frequency and spatial resolution, are the root of the problem. 

Unlike the historical approach to estimation of the modal vectors, 
many recent modal parameter estimation algorithms, including 
the autonomous procedures, are based on numerical processing 
methods like singular value decomposition (SVD). The solutions 
that are identified, based on the data associated with a cluster 
of estimates, have no physical or causal constraint. An example 
of a physical or causal constraint would be the expectation of 
real-valued, normal modes for systems where no expectation of 
nonproportional damping is likely. SVD methods will identify the 
most dominant unitary (orthogonal and unit length) vectors in a 
cluster, yielding a complex-valued vector in general. Experience 
has shown that when modes are very close in frequency with 
minimal spatial resolution, the complex-valued vectors will still 
show significant independence.

However, when these complex-valued vectors are examined 
closely, the nondominant portion of the complex-valued vector 
often correlates very highly with one or more nearby modal vectors. 
This can be examined by several variants of the MAC calculation 
and the weighted MAC calculation.

Weighted Modal Assurance Criterion
Identifying the potential contamination of modal vectors is help-

ful to the thorough understanding of modal parameter estimation 
algorithms and autonomous procedures as well as being instruc-
tive for potential removal of the contamination.13 If some sort of 
real normalization is desirable (to match well with an undamped 
analytical model, for example), understanding the contamination 
that is being removed is a prerequisite to any procedure. Random 
contamination may simply be ignored, smoothed or averaged out, 
but if the contamination is related to nearby modes, it may indicate 
that the modal parameter estimation may need further evaluation 
or that more data are required.

For this evaluation of the modal vector contamination, it is 
easier to first rotate each complex-valued modal vector to a real (or 
imaginary) dominant vector. This is done by using a least-squares 
method to identify the rotation of the modal vector away from the 
real or imaginary axis and then using the associated complex pha-
sor to rotate each original complex-valued modal vector to a new 
complex-valued modal vector that aligns with the real or imaginary 
axis.13 For all following discussions, the original complex-valued 
modal vectors are rotated to be dominantly real-valued. It is con-
venient, for display reasons to also normalize the new complex-
valued modal vector to a unity maximum or unity vector length. 
Naturally, the rotation and rescaling must be considered in any final 
estimates of modal scaling (modal mass, modal A, residue, etc.)
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Figure 1. MAC of modal vectors and conjugate modal vectors.

Figure 2. C-plate example: modal vectors – 2312.8 Hz (a) and 2324.3 Hz (b).

Figure 3. C-plate example: modal vector – 2337.9 Hz.
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To understand the nature of the possible modal vector contami-
nation in a complex-valued modal vector, three conventional MAC 
calculations can be performed (1) between the real parts of the 
modal vectors and the complex-valued modal vectors, rMAC, (2) 
between the imaginary parts of the modal vectors and the complex-

valued modal vectors, iMAC, and (3) between the real parts of the 
modal vectors and the imaginary parts of the modal vectors, riMAC.

These three MAC calculations and the interpretation of these 
MAC values will be sensitive to the rotation and normalization of 
the complex-valued modal vector estimates. The following use and 

Figure 4. Real and imaginary MAC evaluations.

Figure 5. Real versus imaginary MAC evaluation. Figure 7. Real versus imaginary weighted MAC evaluation.

Figure 6. Real and imaginary weighted MAC evaluations.
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discussion assumes that the complex-valued modal vectors have 
been rotated so that the central axis of the complex-valued modal 
vector is centered on the real axis.

These three MAC computations identify: (1) that the real part 
of the modal vector is the dominant part of the complex-valued 
modal vector, rMAC; (2) that the imaginary part of the modal vector 
is the dominant part of the complex-valued modal vector, iMAC; 
and (3) that the real and imaginary parts of the modal vector are, 
or are not, related to one another.

All MAC computations in this case are, as always, bounded from 
zero to one. If near normal modes are expected: (1) the rMAC should 
be close to one, (2) the iMAC should be close to zero; and (3) the 
riMAC should also be close to zero. Note in the following defini-
tions, complex-valued modal vectors c and d can again be any of 
the modal vectors that the user wishes to include in the evaluation:

Figures 4 and 5 are graphical representations of Equations 2 
through 4. Each block or cluster in these diagrams contains the 
information from both the complex modal frequency and the as-
sociated conjugate modal frequency. The rMAC in Figure 4 shows 
that the modal vectors are real dominant and linearly independent. 
The iMAC in Figure 4 and the riMAC in Figure 5 both show that the 
imaginary portion of the vectors are linearly and strongly related 
to a nearby mode, which is frequently the pseudo-repeated root 
twin to the mode in this case. 

These graphical representations indicate that the imaginary 
part (contamination) of a given mode is strongly related to the real 
(dominant) part of the modal vector associated with its pseudo-
repeated root companion. This is consistent with theory that 
explains the cause of a complex-valued modal vector when two 
real-valued modal vectors are close in frequency and misidentified 
as a single modal vector.

The above MAC evaluations identify whether, and how, the con-
tamination of a complex-valued modal vector is related to another 
of the identified modal vectors. However, the MAC computation is 
normalized by vector length, vector by vector, for the vectors used 
in the calculation. A weighted MAC can be used to determine the 
degree or scale of the contamination. The following three defini-
tions of the weighting for each of the above MAC calculations limit 
the associated MAC value to a fraction of the zero-to-one scale. If 
near normal modes are expected, (1) the weighting and rwMAC 
should be close to one; (2) the weighting and iwMAC should 
be close to zero; and (3) the combined weighting and riwMAC  
should also be close to zero. Note that in the following definitions, 
complex-valued modal vectors c and d can again be any of the 
modal vectors that the user wishes to include in the evaluation:

Figures 6 and 7 are graphical representations of Equations 5 
through 7. These figures yield the same conclusions as Figures 4 
and 5. In addition, the iwMAC and riwMAC values show that the 
contamination is at a relatively low level.
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At this point, now that the contamination of the complex-valued 
modal vectors can be confirmed to be from the dominant portion 
(real part) of the other complex-valued modal vectors and that 
the contamination is not significant, a strategy for determining 
the best set of real-valued modal vectors can be identified. One 
reasonable option would be to place the real parts and imaginary 
parts of each complex-valued modal vector into a matrix as separate 
real-valued vectors.

A singular-value decomposition of this real-valued matrix will 
yield real-valued singular vectors, and the most significant singular 
vectors equal to the original number of complex-valued modal 
vectors associated with the largest singular values can be used 
as the final set of real-valued normal modes. A simpler solution 
would be to eliminate the imaginary parts, since the scale of the 
contamination is shown to be small.

Summary
With the advent of more computationally powerful computers 

and sufficient memory, it has become practical to evaluate sets of 
solutions involving hundreds or thousands of modal parameter 
estimates and to extract the common information from those sets. 
In many cases, autonomous procedures give very acceptable results, 
in some cases superior results, in a fraction of the time required 
for an experienced user to get the same result. The modal assur-
ance criterion, both unweighted and weighted, is instrumental in 
evaluating the quality of the modal vector results.
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