Advantages of Multiple-Input Multiple-Output Testing

M. A. Peres and C. Kallmeyer, The Modal Shop, Inc, Cincinnati, Ohio
M. C. Witter, Structural Dynalysis, Ltd., Cincinnati, Ohio
R. Carneiro, F. D. Marques, L. P. R. de Oliveira, University of São Paulo, São Paulo, Brazil

Multiple-input, multiple-output (MIMO) measurement techniques are a well-proven and well-established method for collecting FRF (frequency response function) data sets. Despite that, the idea of using multi-references and multiple shakers can be intimidating for an inexperienced modal test engineer. MIMO methods offer some distinct advantages for measuring and extracting basic modal parameters especially while testing larger structures. Compared to single-input, single-output (SISO) techniques, MIMO allows for more uniformly distributed energy across the structure, force levels can be kept lower, modal test data can be taken in one single shot, while nonlinearities are less likely to be excited. Experimental data were taken using single and multiple shakers on an aeronautical structure and results were compared to illustrate the basic principles behind the MIMO technique. Practical aspects of shaker setup, reciprocity checks and the capability of MIMO to resolve closely spaced modes and repeated roots are highlighted throughout the example.

Experimental modal analysis and vibration testing, in general, have been classic techniques for obtaining the dynamic characteristics of structures, for instance, resonant frequencies, mode shapes and modal damping, providing the basis for further analysis such as: response to a given dynamic load, aeroelastic prediction, model updating/validation and active or passive control design.1,2 Among the available techniques to excite a structure, use of shakers is probably the most popular thanks to their flexibility and capability to reproduce a wide range of excitation signals such as periodic, random or transient. Since the shaker needs to be mechanically attached to the structure under test, it is nearly inevitable that some sort of interaction will occur between them. The causes and effects of this interaction have been an issue for experimentalists since the very beginning of modal analysis3-5 and are still relevant research topics in both open- and closed-loop shaker testing.6-10 In particular, Oliveira and Varoto11 presented a study on this matter, paying special attention to the force drop-off phenomenon and making a brief review of most of the references cited above. Also, Lang8 approached the subject from the point of view of the shaker’s performance, and Peres et al.12 presented several practical aspects on setting up the excitation device. The versatility of shakers can also be assessed in less conventional multiple-input devices such as six-DOF exciters13 often used in environmental and reliability testing.

Even though shaker testing poses some challenges, it outperforms other means of excitation when it comes to non-linear system identification14 and measuring large complex structures such as aircraft.15 While the non-linear system identification is easily performed via SISO or SIMO (single-input, multiple-output) technique, measuring large complex structures often calls for MIMO testing, which provides a better energy distribution on large structures, allows for multi-directional excitation, a potentially smaller test setup and aids properly identifying modal parameters on structures with multiple roots.16

The aim here is to present some practical aspects regarding MIMO testing, for example, reciprocity checks and the capability of MIMO to resolve closely spaced modes and repeated roots. An aeronautical structure has been selected to demonstrate some of those features, namely a helicopter main rotor spider (Figure 1) built of composite material with some metal inserts. It provides an adequate amount of damping and is presented with a symmetrical shape, leading to closely spaced resonant frequencies (repeated roots). This structure bares a crucial role for rotor integrity, holding the rotary blades. It also must withstand the cyclic loads and centrifugal forces, rotating at about 300 RPM. The modal analysis presented here could be part of cascade component model validation, providing experimental data for dynamic model correlation.

Table 1. Lumped-parameter system properties.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>m₁, m₂, m₄, m₅</td>
<td>2</td>
<td>kg</td>
</tr>
<tr>
<td>m₃</td>
<td>10</td>
<td>kg</td>
</tr>
<tr>
<td>m₉</td>
<td>0.5</td>
<td>kg</td>
</tr>
<tr>
<td>k</td>
<td>4×10⁵</td>
<td>N/m</td>
</tr>
<tr>
<td>kₙ</td>
<td>2×10⁴</td>
<td>N/m</td>
</tr>
<tr>
<td>c</td>
<td>5</td>
<td>Ns/m</td>
</tr>
<tr>
<td>cₙ</td>
<td>5</td>
<td>Ns/m</td>
</tr>
</tbody>
</table>

Figure 1. Eurocopter AS350 – rotor spider location; based on image taken from http://www.airbushelicopters.com.

Figure 2. Five-DOF mechanical system excited by two electromagnetic shakers.
Theory and Numerical Simulation

The fact that MIMO tests use multiple shakers on different degrees of freedom (DOFs) of the structure leads to the following benefits:

1. More evenly distributed energy over the structure
2. Capability to simultaneously excite all modes of interest
3. FRF matrix with multiple columns
4. More consistent time invariant data set

As noted previously, No. 1 (above) is only perceived on rather big and/or damped structures, while No. 2 can be observed even on small structures with 2- or 3-D shapes. Also, structures with localized mode shapes can benefit from MIMO testing, as different areas can be covered by each shaker. Items No. 3 and 4 are somewhat related, since having multiple references aids in the quality of the estimated modal parameters, which is also a result of having a more consistent time invariant data set, one that is less susceptible to noise and nonlinear issues than its SIMO counterpart.

In the remainder of this section, a simple numerical exercise is reported to show one of the advantages of using multiple inputs in shaker testing. Although not all aspects of a practical implementation can easily be reproduced in simulation, such as poor spatial energy distribution, overtesting and nonlinearity issues, this exercise aims at addressing the drop in excitation forces. This has been reported several times in the past for single excitation and over testing.

The lumped-parameter system is excited on DOFs 1 and 3, as can be seen in Figure 2. The resulting driving-point FRFs are shown in Figure 3, namely, \(H_{11} \) and \(H_{33} \). Three excitation configurations are considered: single excitation on DOF 1, again single excitation on DOF 3, and multiple excitations on DOFs 1 and 3. The resulting excitation forces can be seen in Figure 4. Although DOF 1 shows just some improvement, it can be seen that the dynamic force level on DOF 3 is significantly improved (force drops are minimized), which in practice would lead to a more assertive data set less susceptible to noise interference.

Test Setup – Helicopter Rotor Spider

The structure under test is a helicopter rotor spider from a Eurocopter (now Airbus Helicopters) model AS350. It has a triangular shape of approximately 1000 mm inside and 15 kg of mass. The helicopter rotor spider is the part responsible for transmitting the rotary motion from the rotor shaft to the rotating blades. The symmetry provided by its triangular shape results in multiple mode shapes lying in, theoretically, the same resonance frequency (multiple or repeated roots). Due to its construction of composite materials, however, one could expect those resonant frequencies to be close, rather than exactly the same.

To perform the experimental modal analysis, the rotor spider was suspended on bungee cords (Figure 5). A total of 12 unidirectional accelerometers (PCB models 333B3 and 333B30) were used, while the input forces were measured by impedance heads (PCB model 288D01). The spectral acquisition system is an LMS SCADAS Mobile, with two output and 24 input channels, running LMS Test.Lab v.12A.

Two excitation configurations are reported here. The SIMO measurements were conducted with a traditional modal shaker (130 N peak force) powered by a stand-alone power amplifier running both voltage- and current-driven modes. During the SIMO measurements, the shaker was mounted on the position indicated as F1 in Figure 5. The MIMO measurements were carried out using two identical, small SmartShakers (Modal Shop Model K2007E01, 31 N peak force) with integrated power amplifier running on voltage mode, mounted on F1 and F2. Notice that the position of F1 in each measurement, SIMO and MIMO, are symmetric, which, in turn, should result in similar FRFs.

The measurement runs, SIMO and MIMO, were conducted with rather distinct levels of excitation, to show the trade-offs between one stronger single source of excitation versus multiple less powerful ones distributed along the test specimen. Figure 6 shows four power spectrum densities, both forces for the MIMO set, SIMO voltage and current mode forces. The overall levels for each case are also indicated in Figure 6, showing 1.72 \(N_{\text{RMS}} \) and 1.46 \(N_{\text{RMS}} \) during MIMO testing, while single excitation ranged 7.68 \(N_{\text{RMS}} \) (current mode) and 13.2 \(N_{\text{RMS}} \) (voltage mode).

The force drop-offs are clearly seen on both single excitation PSDs, even more pronounced on the current-driven test, which also provides the greatest dynamic range. The additional damping provided by the voltage amplifier smooths out the force spectrum slightly. Besides noise error, one should also be aware of “overtest-
ing” (driving the structure with too much force) when trying to get the most out of a single shaker. In addition to exciting undesirable nonlinearities, sensitive structures or subcomponents can be damaged during testing, which is an important issue, especially in aerospace systems.17

During MIMO testing, however, the force spectra were kept almost flat, as predicted by the simulation, which clearly benefits FRF estimation and reduces measurement uncertainties. The force levels were kept lower for the MIMO test than the SIMO test since distributed smaller forces are typically better than using a single strong excitation.

Figures 7 and 8 show an overlay of all FRFs obtained in each run, SIMO (voltage mode) and MIMO, respectively. As it can be seen, the structure shows a sort of “band stop” behavior between 100 and 300 Hz. The SIMO FRFs in Figure 7 show two peaks in the range of 50-75 Hz and three peaks above 300 Hz. On the other hand, a closer look at Figure 8 shows a more complex dynamic behavior – what seems to be a single peak around 70 Hz for the SIMO measurement shows two closely spaced peaks in the MIMO run. Similarly, between 300 and 400 Hz, at least two additional peaks can be found on a quick visual inspection.

One important measure during a MIMO test is checking for reciprocity. Among others, it shows the system still behaves linearly, that the levels on multiple sources are in agreement, that excitation signals are sufficiently uncorrelated so that you can indeed have a proper multi-reference analysis, etc.

Figure 9 shows three FRFs, the two almost perfectly lined up are the MIMO reciprocal FRFs, while the slightly different one is the SISO. At first glance, there can hardly be any difference between the three FRFs for the first two peaks, although some differences occur for the higher frequency ones. It is known that the shaker assembly can modify the dynamics of the structure, after all they are mechanically attached to the structure. Note that during MIMO testing, those changes are consistent throughout the data set, while moving a single shaker around will cause a scatter on different FRF runs.16

Another rather practical aspect of checking for reciprocity, even during pre-testing, is that it provides instant information on the status of the shaker (or multiple shakers) and correct labeling of channels. For example, if one shaker is on standby or a sensor channel is misplaced, some significant differences between those measurements will arise.

Modal Analysis

In this section, the modal parameters obtained from both SIMO and MIMO runs are obtained and compared. These results are used to illustrate the main advantages of using multiple sources for experimental modal analysis.

The first modal identification method for MIMO systems is the polyreference complex exponential, proposed in the early 1980s,18 which was an extension of the classical least-squares complex exponential, originally devised for SIMO applications. Other methods have been proposed,19,20 including frequency-domain methods that were also available toward the end of the 80s.21,22,23
More recently, an evolution of the least-squares complex frequency domain known as PolyMAX, which uses FRFs as primary data, has been introduced. The results presented here have been obtained via the PolyMAX method.

Figure 10 shows the stabilization diagram for the SIMO measurement. The mode indicator function (MIF) shows a single column of poles for each resonant peak found on the FRF plots (Figure 7), revealing that the single shaker assembly is not capable of sorting out the closely spaced mode shapes that are present.

Figure 11 shows the same plot for the MIMO measurement, presenting a much more populated scatter of stable poles and two MIFs, since there were two references. The modal data obtained from both analyses are summarized in Table 2. For a picture of the mode shapes, please refer to Figure 12.

The first column, approximately 52 Hz, represents the first mode shape in which the three legs are bending in phase (see Table 2). This symmetric mode shape presents only one root on both plots, as expected, but in the vicinities of 67 Hz, the MIMO results show two stable poles instead of one for the SISO. Those two modes are combinations of bending and torsion. There could be even more poles if more excitation channels were available.

Between 100-300 Hz, some poles appear on the MIMO stabilization diagram, which are judged as numerical artefacts, possibly due to the low level of excitation selected for this run.

Four depths are present in the MIMO MIFs between 300-400 Hz (only three on the SIMO MIF), but also some of them show closely spaced poles, totaling 11 modes identified in a single MIMO run, versus only 6 on the SIMO.

By visual inspections of the mode shapes, 12 modes are depicted in Figure 12, with modal data described in Table 2. Some modes, numbered successively, are symmetric pairs or trios, such as Modes 6 and 7 or Modes 10, 11 and 12. When the same mode shape is found on both analyses, their resonance frequencies and modal damping ratios are attributed to the same mode number, which is the case for Modes 1, 3, 6 and 9.

The complete identification of such a small and rather flat structure is not achieved with the two-shaker setup. As the single excitation force was placed on a symmetric position, with regard to F1 in the MIMO run, complementary mode shapes have been identified. For a full modal identification, further measurements would still have to be done. But for the sake of this study, the results presented here demonstrate the value of multiple shaker excitation, even with much lower excitation levels than single input.

Conclusions

Some advantages of MIMO over SIMO testing have been demonstrated, both numerically and experimentally. The lumped parameter model simulation reveals a key advantage of MIMO, since the force spectra are smoothed in the presence of multiple shakers.

To demonstrate this experimentally, a helicopter rotor spider was subjected to single and multiple shaker excitation, while supported in a free-free boundary condition. First, the experiments corroborate the smoothed force spectra predicted by the simulation. The reciprocal FRFs taken during the MIMO tests show good agreement, which is also a sign of a high-quality dataset.

The experimental data also show that low-level distributed MIMO measurements provided much better, complete multi-

<table>
<thead>
<tr>
<th>Mode</th>
<th>MIMO Freq., Hz</th>
<th>MIMO Damping, %</th>
<th>SIMO Freq., Hz</th>
<th>SIMO Damping, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>51.6</td>
<td>0.23</td>
<td>52.4</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>66.6</td>
<td>0.27</td>
<td>67.9</td>
<td>0.23</td>
</tr>
<tr>
<td>3</td>
<td>68.8</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>323.0</td>
<td>0.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>323.2</td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>336.7</td>
<td>0.27</td>
<td>340.9</td>
<td>0.27</td>
</tr>
<tr>
<td>7</td>
<td>337.3</td>
<td>0.30</td>
<td>340.9</td>
<td>0.34</td>
</tr>
<tr>
<td>8</td>
<td>355.5</td>
<td>0.27</td>
<td>370.5</td>
<td>0.31</td>
</tr>
<tr>
<td>9</td>
<td>359.6</td>
<td>0.43</td>
<td>387.0</td>
<td>0.29</td>
</tr>
<tr>
<td>10</td>
<td>389.2</td>
<td>0.25</td>
<td>392.4</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Reference FRFs, allowing the identification of closely spaced modes not evident in the SIMO measurements. And specifically applying
References

The authors can be reached at: mperes@modalshop.com.