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If you study vibrations, your world has measurable peaks and 
valleys. Business, in general, has its ups and downs. Just as your 
accountant would rather discuss the economic highs of your 
business, your vibration mentor was more likely to tell you all 
about the properties of resonance peaks rather than describing the 
accompanying antiresonance valleys. This is unfortunate; those 
antiresonance depressions have a lot to tell us.

In electronic servomechanism parlance, an antiresonance is a 
system zero as opposed to a system pole (a resonance). To most 
mechanical engineers, an antiresonance is just a sharp amplitude 
dip between two resonance peaks seen in a log-log vibration re-
sponse measurement. (Without the use of log amplitude scaling, 
we would be totally unaware of these minima.) The electrical 
engineer and his preferred log-scaled plot has given us something 
quite important; he has given us the key to understanding how to 
correct a vibration problem.

Consider a simple two-degree-of-freedom (2-DOF) lumped-
mass system as shown in Figure 1. Let’s apply measured forces 
to each mass, in turn, and monitor the response acceleration of 
the two masses. The resulting frequency response function (FRF) 
magnitudes are plotted in Figure 2 with the frequency axis normal-
ized by dividing frequency (in Hertz) by 1 2/ /p K M . Note that 
Figure 2 actually shows four traces; structural reciprocity causes 
the two spatial transfer FRFs, / /�� ��X X1 2 1F  and F2

to be identical. 
Observe that all four traces exhibit sharp peaks at the two reso-
nance frequencies.  

The two driving-point FRFs, / /�� ��X X1 F  and F1 2 2  each exhibit a 
sharp notch between the two resonances. These are antiresonances. 
While the resonance frequencies (the natural frequencies) are 
spatially invariant, antiresonance frequencies vary with the DOF 
from which they are detected. A driving-point FRF will always 
have an antiresonance between each pair of resonances. Spatial 
transfer measurements may or may not exhibit antiresonances. In 

our simple 2-DOF example, no 
antiresonance notch is evident 
in / /�� ��X X1 2 1F  and F2 , because 
of the two mode shapes exhib-
ited by our structure.

At a normalized frequency 
of 0.62, the first resonance has 
both masses moving in phase 
with one another. Both springs 
experience tension simultane-
ously as the masses move up-
ward. They compress simulta-
neously as the masses descend. 
At a normalized frequency of 
1.62, the second mode shape 
has the masses moving in phase 
opposition. When the lower 
mass rises, the upper mass de-
scends. This places the lower 
spring in tension and the upper 
one in compression. All of these 
conditions reverse when the 
lower mass moves downward 
past the equilibrium position. 
The (dotted) spatial transfer 
FRFs reflect these shapes. The 
lower-frequency spike has a 
positive sign, while the upper 
one is negative. In modal analy-

sis parlance, the lower resonance has a positive residue, while the 
upper one has a negative residue. 

In the above log-log acceleration FRF plots, each resonance 
frequency marks the intersection of a rising (+2 slope) “spring 
line” or low-frequency stiffness-reciprocal asymptote with a (flat) 
mass-reciprocal asymptote above it. These lines are asymptotes 
of opposite phase. At their intersection, they cancel one another, 
yielding a sharp spike, whose amplitude is controlled solely by 
the damping in the system (0.5% in this example).

The antresonance frequencies represent the intersection of a 
mass-reciprocal line extending above a resonance with a rising 
stiffness-reciprocal asymptote leading to the next resonance. If 
the two bounding resonances are of the same phase, the intersec-
tion results in a notch of near-zero amplitude. If they are in phase 
opposition, no cancellation occurs. Instead, a gentle rounded 
valley results. When a driving-point FRF is measured, all of the 
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Figure 1. Base-constrained 2-DOF 
lumped-mass system.

Figure 2. Four acceleration/force FRFs.

Figure 3. Applying constraints to the two DOFs.



www.SandV.com14 SOUND & VIBRATION/NOVEMBER 2015

modes are represented with the 
same phase; all the resonances 
have positive residues and 
strong antiresonance notches 
result. In a spatial-transfer FRF, 
adjacent modes may or may 
not be in phase; if they are, a 
notch results. Should adjacent 
residues in a spatial-transfer 
FRF be of opposite sign, there 
will be no antiresonance notch 
between them.

If we measure a series of 
driving-point FRFs around a 
structure, we will find the anti-
resonance frequencies change 
from location to location. Each 
antiresonance is bounded by 
a pair of resonances, whose 
natural frequencies are constant 
around the structure. A node 
is a place (and direction) on 
the structure where an anti-
resonance frequency is equal to 
one of its bounding resonance 
frequencies. The result is that 
this DOF is zero valued in the 
intersected resonance’s shape.

Predicting Change Effects
Antiresonances also repre-

sent the structure’s resonances 
under different boundary con-

ditions. To be specific, if a DOF is “grounded” so that it may not 
move, the resulting constrained structure will have resonance 
frequencies equal to the antiresonance frequencies of the uncon-
strained structure. This provides a wonderful predictive tool for 
modification analysis. By way of example, consider the effects of 
constraining our simple 2-DOF structure as shown in Figure 3.

First, we ground the lower mass, forcing the constraint 
�� �X X X1 1 1 0= = = . This results in a single-degree-of-freedom 

model with an undamped natural frequency equal to 1 2/ /p K M
or a normalized frequency of 1. This is exactly the antiresonance 
frequency shown by the red ��X F1 1/  trace.

Second, constrain the upper mass, forcing �� �X X X2 2 2 0= = =  and 
a single-DOF system results. However, this system has twice the 
restoring force (2K) and therefore an undamped natural frequency 
of  1 2 2/ /p K M or a normalized frequency of 2 . This agrees 
exactly with the antiresonance frequency of the black ��X F2 2/  trace.

Don’t ignore the ignorable
Now, what might happen if we pick our test structure up and 

bolt it down on a shaker table  instead of to a rigid foundation? In 
essence, we are changing the systems boundary conditions from 
base-constrained to free-free. Presuming we measure the force, 
F0, applied by the shaker to the bottom of the lower spring and 
damper as shown in Figure 4, we can form another driving-point 
FRF, ��X F0 0/ . The result is plotted in Figure 5.

Clearly, the form of this FRF is very different from the base-
constrained, driving-point measurements of Figure 2, yet they are 
strongly related. The most important fact is that the two antireso-
nances seen are at exactly the 0.62 and 1.62 normalized resonance 
frequencies of the base-constrained configuration. The single reso-
nance between these antiresonances is a genuine free-free mode. 
Looking at these actions in reverse sequence, grounding the base 
DOF of this free-free structure results in a constrained structure 
with resonance frequencies matching the two antiresonances of 
the free-free shake.

Less obvious is the fact that the first singularity encountered in 
a free-free shake is always an antiresonance notch, not a resonance 
spike. In contrast, constrained structure tests always exhibit FRFs 
that have a resonance lower in frequency than the first antireso-

nance. Alternatively, one can recognize that the first resonance 
encountered in a free-free shake is actually a rigid body translation 
of the entire system occurring at zero Hertz. It is also interest-
ing to note that the mass-reciprocal asymptote at low frequency 
“weighs” the entire structure by exhibiting a normalized ��X F0 0/  
magnitude of 1/2M.

Modal analysts term tests of this geometric form an ignorable 
coordinate shake, indicating that a coordinate normally constrained 
to ground is the forcing degree of freedom. Others will recognize 
this configuration simply as an environmental shake test, normally 
used to prove robustness rather than to specifically identify reso-
nances. However, the above FRF is rarely measured in an environ-

Figure 4. An “ignorable” coordinate 
shake more commonly, a base shake.

Figure 5. Acceleration/force FRF from a base shake.

Figure 6. Transmissability FRFs measured in a base shake.

Figure 7. Base shake of center-clamped beam using PCB 288M05 impedance 
head and LDS V203 shaker.



www.SandV.com SOUND & VIBRATION/ NOVEMBER 2015 15

Derivation of Equations

Free-body diagrams of the two masses show the forces acting upon each. Summing 
the forces and equating them to the mass-acceleration products yields the familiar 
matrix force balance statement:

    
Applying the LaPlace Transform (with all initial conditions equal to zero) allows the 
equations to be written more compactly:

 
      

Inverting the matrix of Equation 2 provides the basic FRF solutions for forced re-
sponse. Applying synthetic double-differentiation allows these to be stated in terms 
of acceleration:

   

 

Evaluating Equation 3 for S = j2wf provides the FRFs of the base-constrained system. Note the denominator term is the system’s char-
acteristic equation, and its roots are the damped natural frequencies and damping in radians per second.

When the system is placed on a shaker and subjected to a base shake, the equations become homogeneous but non-square:

    

These can be restated as a square set of non-homogeneous equations by employing the result (Equation 3) as:

 

This permits the transmissabilities to be written explicitly:

     

The force applied by the shaker to the base of the system can be identified as:

           
The motion, X1, is given by (Equation 6). Specifically:

    

    
So the acceleration/force FRF for the ignorable coordinate X0 may be written:
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mental shake, since the force applied to the test article is rarely 
measured. Instead, motional patterns at resonances are identified 
from transmissibility FRFs. Transmissabilites are measured by 
using the shaker table’s acceleration ( )��X0  as an FRF reference.

Note from the two transmissibility plots, �� �� �� ��X X X X1 0 2 0/ / and  
shown in Figure 6, that the 0.62 and 1.62 normalized frequency 
resonances of the base-constrained structure present as sharp peaks. 
It is interesting to note that exactly the same plot results, whether 
the motions are measured as acceleration, velocity or displacement. 
Further, the same transmissibility FRF can be found by applying 
forces to a base-constrained structure and measuring the resulting 
reaction force, F0. That is �� �� � �X X X X X X F Fn n n n/ / / /0 0 0 0= = = !

Some Experimental Confirmation
Now it is time to demonstrate that these mathematical exercises 

actually model observable physics. Figure 7 shows a simple 6-inch 
brass beam center-mounted to an impedance head on a small 
electrodynamic shaker. The impedance head provides 1000 mv/lb 
and 100 mV/g force and acceleration signals at the driving point of 
the structure; that is, it measures ��X F0 0/ . An (uncontrolled) base 
shake was conducted using white random noise over a 250-Hz 
span. Figure 8 presents the results over 10 to 100 Hertz. Compare 
this figure with Figure 5.

In Figure 8, the first singularity is clearly an antiresonance; this 
occurs at 42.9688 Hz. A resonance peak occurs at 50.4688 Hz. 
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Figure 8. Measured ��X F0 0/ of base-driven, center-clamped beam.

Below the first antiresonance, the ��X F0 0/  measurement is essen-
tially flat, and it “weighs” the entire test structure (with slightly 
less than 1/20 lb indicated). The actual beam and its mounting 
hardware weigh 21.57 grams or 1/21.07 of a lb. Below 10 Hz, the 
measured data are compromised by the AC coupling of the sensor 
power supplies and the analyzer. This probably causes the gentle 
roll-off below 20 Hz seen here.

The operating deflection shapes (ODS) associated with this 
measurement are interesting to view. Below the first antiresonance, 
the beam structure acts like a rigid body. Figure 9 illustrates the 
typical response shape when the shaker is driven with a 30-Hz 
sine wave. In this configuration, the impedance head experiences 
the full mass of the DUT. As the antiresonance is approached, 
the apparent mass of the DUT increases. At each antiresonance, 
the detected mass is a local maximum. In contrast, each free-free 
resonance provides a local minimum effective mass.

Figure 10 shows the deformation pattern when the beam is driven 
at the antiresonance frequency with a 42.9688 sinewave. Note each 

Figure 9. Rigid-body motion below first antiresonance frequency; response 
shape at 30 Hz shown.

Figure 10. Sinusoidal response shape at 42.9688 Hz antiresonance; note 
stationary shaker and beam center.

Figure 11. Sinusoidal response shape at 50.4688 Hz resonance; note shaker 
motion at beam center.

limb of the beam responds with a shape identical to a cantilever’s 
first mode shape. That is, the driving shaker is (essentially) standing 
still, while the beam tips exhibit maximum motion.

In contrast, when the sine frequency is increased to the 50.4688-
Hz resonance frequency, the driving shaker is clearly in motion, 
and a pair of nodes may be seen (Figure 11) about an inch from the 
center. This distinction is characteristic of every pair of antireso-
nances and resonances. At every antiresonance, the driving DOF is 
stationary, and the shaker simply imparts a maximum force to the 
device under test (DUT). At each free-free resonance, the shaker 
moves freely and provides a minimum force to the DUT.

An Interesting Anomaly
A center-mounted beam is a seemingly ideal payload for a small 

shaker and an impedance head. Its symmetric mass distribution 
does not impose moments on the shaker’s suspension or upon the 
dual-output sensor. However, it should be noted that small errors 
in symmetry (such as drilling the mounting screw-hole off center) 
will result in pairs of “split” resonances and antiresonances very 
closely spaced in frequency. This is because the center-clamped 
beam actually exhibits “repeated roots” for every mode. These are 
the “symmetric shapes” (where both beam tips move in phase) 
that a linear shaker can excite; and the “anti-symmetric shapes” 
where the beam tips move in phase opposition, requiring a rock-
ing moment to excite.

The lack of perfect symmetry splits these repeated roots into 
pairs of distinct roots. In essence, we end up with two new fami-
lies of modes, those associated with the “long cantilever” and a 
(very slightly) higher frequency set associated with the “short 
cantilever.” Figure 12 illustrates measurement of such a flawed 
beam. This simple contrast demonstrates how readily base-shake 
antiresonance inspection can identify flawed assemblies and parts 
from a change in the detected frequencies.

 Conclusions
The antiresonance is infrequently discussed in today’s literature. 

It has much to offer the practicing dynamicist. The driving-point 
antiresonances of a constrained structure are the resonances that 
will result if the driving DOF is constrained not to move. This is a 
very useful predictive tool. Consider the obvious example of de-
ciding where to position piping hangers or muffler supports. The 
antiresonances of a free-free structure in an ignorable-coordinate 
shake are the resonances of the same structure with the ignorable 
DOF grounded. This provides a simple means of identifying mul-
tiple natural frequencies without need to attach response sensors, a 
key to simple inspection for parts consistency and correct assembly. 
Further, the identification is not compromised by transducer mass 
loading; the only attachment is at a node for every (constrained) 
mode detected.

Figure 12. Repeat of Figure 10 with beam slightly off center, illustrating 
“modal splits.”
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