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Seismic testing sometimes requires significant roll, pitch, and 
yaw rotations from their MDOF vibration test systems when re-
producing certain reference waveform vectors on seismic tables 
that are associated with particular seismic environments. When 
these reference waveforms (typically accelerations) are used for 
such testing, significant rotational motion of the test system’s 
shake table can occur. As a result, the X, Y, and Z control trans-
ducers that are mounted on the surface of the table will no longer 
be aligned with the world (fixed) coordinate system as the table 
rotates about X, Y, and Z, but rather with respect to the shake 
table’s body (moving) coordinate system. This lack of alignment 
with respect to the world coordinate system in turn causes geo-
metric distortion in the output of the control accelerometers that 
are required to control such MDOF tests. These errors can cause 
further errors in the control system’s ability to reproduce the 
motion specified by the test’s reference waveforms with respect 
to the world coordinate system as required by the seismic test 
specifications. Similar problems can also occur in other such ap-
plications of MDOF testing with reference acceleration waveforms 
that similarly produces significant roll, pitch, or yaw rotations 
with their tests. This article presents methods based on the use of 
quaternions to correct the resulting control transducer measure-
ment distortions. Quaternions are also used widely in physics, 
guidance and control, kinematics, robotics, autonomous cars, 
video games, and general graphics applications.

MIMO test waveforms sometimes require significant rotations 
in roll (about X – Rx), pitch (about Y – Ry), and yaw (about Z – Rz) 
from their MDOF test systems as a result of the spectral content of 
the particular reference waveforms used for the tests. (See Refer-
ences 1 and 4 for examples of 6-DOF test systems and applications.)

When high rotational displacement motion occurs, the control 
transducers mounted on the surface of the shake tables1,4 that 
are used for this type of testing will no longer point in the world 
(nonmoving) coordinate system as the table rotates. Furthermore, 
the X, Y, Z values that are computed by time-invariant I/O trans-
formations1 typically used by MDOF control don’t account for 
these rotations. Thus, the obtained estimates of the X, Y, and Z 
control responses1,4 will exhibit the effects of significant geometric 
distortion.

Additionally, these time-invariant input transformations will 
not produce acceleration measurements that are aligned with the 
fixed world coordinates, but rather will produce measurements 
that are aligned with the moving-body coordinates of the table, 
which will rotate in 3D space as a function of the roll, pitch, and 
yaw rotational displacements that are associated with the test’s 
particular reference waveforms. Reference waveforms are typi-
cally specified as acceleration waveforms obtained from the test 
article’s field data.2 Examples of such MDOF systems are shown 
in the illustrations that follow.

Figure 1 shows a 40-ton seismic table used for seismic simulation 
controlled by a Jaguar MIMO control system from Spectral Dynam-
ics. Eight servo-hydraulic actuators arranged in a 2-2-4 configura-
tion4 drive the table with four vertical and two each (opposed) in 
the horizontal and lateral directions. Controlled operation is from 
0.1 Hz to 100 Hz with maximum displacements of greater than 200 
mm p-p. Loads of up to 60 tons can be accommodated. Typical 
applications are MIMO transient wave, MIMO swept sine, MIMO 
random, and MIMO replication for structural testing.

Some of the MIMO tests performed by this facility require signifi-
cant rotational displacements. So the need for geometric distortion 
compensation has been a concern. However, the bulk of seismic 
test specifications have been 3 DOF, where MIMO control is used to 

suppress rotations1,3,4 and thereby resolve the geometric distortion 
indirectly. As a result of the further use of measured field data,2 the 
test requirements are starting to change where significant rotations 
are starting to appear in the newer test requirements. This has been 
another of the motivations to find better methods to address these 
newer requirements.

 Figure 2 shows a multi-shaker3 system used for satellite testing, 
which includes a vibration table platform, which is 2.1 m ¥ 2.1 m. 
The platform is excited by eight electro-hydraulic “hydrashakers” 
that are attached to the table by spherical couplings to allow for 
their independent motion. These are arranged in 2-2-4 configura-
tion4 that consist of two X, two Y, and four Z actuators. Each of the 
actuators is capable of providing 26,400 pounds of force dynami-
cally. The static capacity of each actuator is 20 tons.

Figure 3 shows a typical dummy mass test specimen used in con-
junction with MIMO swept-sine satellite testing, which simulates 
the satellite to be tested, including dimensions, total mass, center 
of gravity, and moment of inertia. It consists of two bolted sections, 
where the lower is a truncated hollow cone and the upper is 2,800 
kg of solid steel. As a result, the dummy mass center of gravity is 
3 meters from its base. It’s attached to the vibration table platform 
via coupling ring. The four triaxial control accelerometers are 
mounted on the ring at 90° intervals around the ring. Test results 
obtained from X, Y, Z swept-sine testing of the dummy mass with 
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Figure 1. 6 meter × 6 meter seismic table with eight actuators – 4 Z, 2 X, 2 Y.

Figure 2. Eight-shaker arrangement with 2-X, 2-Y and 4–Z actuators.



www.SandV.com8 SOUND & VIBRATION/NOVEMBER 2015

if these rotations are large enough.
To get a sense of how large this error might be, we simulate 

moderate roll and pitch rotations, say around 10° each, and cal-
culate what the components of a vertical acceleration would be 
that’s in terms of body coordinates, which are tilted with respect 
to the world coordinates as a result of the induced roll and pitch 
displacements. We find that if we have pure Z motion of 1 g along 
the body coordinate positive Z axis and our table is tilted with 10° 
of roll and pitch, we would measure 0.97 g in the world coordinate 
Z axis from a Z accelerometer placed at the center of the tilted table 
and an even more troubling 0.1736 g and –0.1710 g contribution 
to each of the associated world coordinate X and Y axis. (That is, 
world coordinate aligned lateral accelerometers would see around 
17% contribution from our purely vertical Z axis motion measured 
on the vibration platform). So significant errors start to appear for 
relatively small pitch and roll motions, which we’ve seen happen, 
for example, with satellite tests with high centers of gravity while 
undergoing slip-table X and Y swept-sine testing.3 

Additionally, the shown rotations of a, b, and g are functions of 
time. The use of time-invariant I/O transformations assumes that 
the X, Y, and Z transducers are aligned with the world coordinate 
directions at all times so are not a function of the time-varying 
roll, pitch and yaw motions that may occur. This approach is 
only reasonable if the control system is suppressing rotations,1,3,4 
which fortunately is the common case or if the resulting MDOF 
rotations are small and resulting distortion in the control transducer 
outputs is “low enough” to ignore. If this is not the case, a more 
general approach is needed. So a time-dependent I/O transforma-
tion capability is needed to deal with these more general types of 
MDOF motions.

The triplet of angles (a, b, g), are called Euler angles.5,6 They are 
also called roll, pitch, and yaw in the aeronautical and earthquake 
engineering fields. These are the names that we will use in the 
following discussion. These rotations are also useful to describe 
rotations or relative orientations of orthogonal coordinate systems. 
Unfortunately, their definition is not unique and in the literature,5,6 
there are as many different conventions as authors. The conven-
tion employed here is one of the more common ones. All rotations 
are in a counter-clockwise fashion (right-handed, mathematically 
positive sense).

Technical Approach
Euler Angles (Roll, Pitch, and Yaw). The Euler angles (a, b, 

g) relate two orthogonal coordinate systems5,6 having a common 
origin. The transition from one coordinate system to the other is 
achieved by a series of two-dimensional rotations.5,6 In many cases, 
the rotations are performed about body coordinate system axes 
generated by the previous rotation step; the step-by-step procedure 

the multi-shaker system and the Jaguar MIMO control system are 
discussed in Reference 3.

Reference 3 also details the amount of roll, pitch, and yaw that 
can occur while conducting single X and Y-axis swept-sine tests 
with the dummy mass, with MIMO and without MIMO control, 
where off-axis responses over 100% were observed typically 
without MIMO control as compared to tests with MIMO control, 
which were typically less than 10%. Large off-axis responses, such 
as those encountered without MIMO control, can cause significant 
roll, pitch, and yaw rotational responses with its concomitant 
geometric distortion.

Significant roll and pitch rotations can occur with a test article 
like the dummy mass, because large overturning moments can 
result due to its high center of gravity and cause significant pitch 
and roll moments during X and Y swept sine testing. MIMO con-
trol3 can be used to suppress these rotations, which are typically 
not desired. However, there are other cases where it’s desired to 
use such an MDOF system to excite pitch or roll modes during 
structural testing, or as is more common, the large roll and pitch 
rotations occur as a result of MIMO control not being used.3 This 
is further motivation to better understand the effects of roll, pitch, 
and yaw rotations on the output of the control transducers and 
to develop methods to correct the geometric distortion that these 
rotations can cause.

In a more detailed fashion, Figure 4 illustrates the effects on the 
orientation of control transducers by showing the vibration tables 
shown in Figures 1 or 2 rotating about the X, Y, and Z axes. As can 
be seen in the figure, the Z transducers will no longer be point-
ing in the black Z-axis direction, but rather they will be pointing 
along the red Z-axis, which is pointing away from the true verti-
cal direction as a result of rotations about the rotated X axis by 
a radians, and about the rotated Y-axis, by an angle of b radians. 
Additionally, Figure 4 also shows the table surface rotating about 
the black Z-axis by g radians. These roll, pitch, and yaw rotational 
displacements of the shake table can cause geometric distortion in 
the thus rotated Z-axis transducer outputs as well as distortions in 
the associated outputs of the also rotated X and Y axes transducers 

Figure 3. Typical four-ton dummy load used during system checkout.

Figure 4. Rotation about X, Y, and Z.
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that is used is illustrated in Figure 4.
The convention used in the following discussion is that general-

rotations will be represented by a series of rotations that are based 
on the aeronautical engineering convention. That is, a general 
rotation is represented by an initial yaw rotation, g, about the Z 
axis of the initial coordinate system, followed by a pitch rotation, 
b, about the rotated Y’ axis of this newly generated coordinate, 
and a final roll rotation, a, about the new rotated X’ axis of the 
final coordinate axis. This convention is sometimes called rotation 
about body coordinates.

The result of this sequence of rotations is that the table’s body 
coordinate system is rotated about some axis with respect to the 
world’s coordinate system. However, the control accelerometers 
that are mounted on the table will now produce accelerations 
with respect to this rotated coordinate system. Thus, we need to 
transform accelerometer outputs, which are with respect to body 
coordinates, into their equivalent values with respect to stationary 
world coordinates. As a result, the main purpose of what we need 
to do is to transform the rotated body coordinate system of the vi-
bration table back to its fixed world coordinate system counterpart 
to obtain corrected X, Y, and Z control accelerometer outputs that 
always point along world coordinate axes on a sample by sample 
basis for each of the acquired acceleration time histories.

To solve this problem, we will need to solve several associated 
problems. These are: 1) how to determine the representation of rota-
tions in terms of Euler Angles; 2) to find an efficient computational 
form to represent the associated rotation; and 3) to determine how 
to use this representation to implement a coordinate transforma-
tion from the body coordinates of the moving table to the fixed 
world coordinate system. By solving these problems, we obtain 
an efficient transformation that will convert the measurements 
obtained from the table-mounted accelerometers into acceleration 
measurements along world coordinates.

Determining Rotations in terms of Euler Angles
The usual ranges for a, b, g (roll, pitch, and yaw) are:

 0 <= a <= 360o

 0 <= b <= 360o

 0 <= g <= 360o

As discussed in References 5 and 6, rotations or transformations 
from one coordinate system into other coordinate systems are 
conveniently described by the triplet of Euler angles, (a, b, g). 
With the use of the Euler angles, three-dimensional rotations can 
be dissected into a sequence of two-dimensional rotations, where 
in each rotation, one axis remains invariant.

Reference 6 shows that these 2D transformations can be extended 
to 3D, as shown in Equation 1 for a yaw rotation via:

Equation 1 represents a yaw rotation of g radians in terms of 3D 
matrices. 2D matrix formulations for pitch and roll can also be 
extended to obtain similar matrix expressions for pitch, b, and 
roll, a, in three dimensions. See references 5 and 6 for details on 
how this is performed and also on how to compose these basic 
rotations into the overall rotation resulting from sequential yaw, 
pitch, and roll rotations.

An example of the overall matrix that results when you perform 
successive yaw, pitch, and roll rotations is given by:

 

The terms “yaw,” “pitch,” and “roll” (g, b, a) are usually used 
in aeronautical engineering to describe a change in a plane’s ori-
entation, where yaw is a rotation about the vertical Z axis, pitch 
is a rotation about the left facing horizontal Y axis, and roll is a 

rotation about the front facing 
horizontal X axis. Figure 5 
shows this convention.

However, if you want to use 
them to describe orientation 
absolutely, you have to decide 
on an orientation for which 
these values are 0. It’s normally 
chosen as when the plane is 
level, not leaning, and facing 
to the east. To achieve an arbi-
trary 3D rotation, we first rotate 
the plane by the right values of yaw, then pitch, and then roll. 
Recall that the order is important because rotations don’t commute.

For example, if you turn the plane first by pitch to 90° (so it's 
flying straight up), and then turn it through a yaw of 90°, it will be 
headed due north and leaning on its left side. Alternatively, if you 
turn the plane first in yaw by 90° (so it's flying due north), and then 
turn it through a pitch of 90°, it will be headed straight up, with the 
top of the aircraft toward due south. So, to calculate the absolute 
orientation of a body in space, a convention is needed on how to 
perform these changes in orientation in the right or standardized 
order. We will discuss the two most common conventions – mov-
ing axes and fixed axes.

So a general rotation in 3D can be described as a succession of 
2D rotations, as discussed in the previous paragraphs, and which 
are first applied about the Z axis (yaw), and then about the thus 
rotated Y’ axis (pitch), and finally about the resulting rotated X’ 
axis (roll). This is called the moving-axes rotation convention, 
where the Y’ axis is the new Y axis as a result of the yaw rotation, 
and X’ axis is the new X axis that results from the previous yaw 
and pitch rotations, as shown in Figure 4. These are also called 
rotations about body axes.

There is another convention that is equivalent but where instead 
the rotations are successively applied about the fixed axes X, Y, 
and Z. This is called the fixed-axes rotation convention. They are 
also called rotations about the world axes.

Since in our Jaguar MIMO control system we measure roll, 
pitch, and yaw with respect to the body coordinates, we will use 
the moving-axes rotation convention to implement the method 
to correct the accelerometer measurements to compensate for the 
errors caused by the rotations of the shake table. As noted previ-
ously, we will use a to represent roll, b to represent pitch, and g  
to represent yaw throughout this article.

General Rotation Matrices
There are numerous established methods5,6 that use matrices to 

represent rotations. Although these are simple and straightforward, 
they have several intrinsic problems6,7,8 that are due to certain 
singularities and numerical problems that are inherent in their 
formulation. For this reason, the method we will use to correct 
the accelerometer measurements will not use rotation matrices 
directly. Instead, the method chosen to implement the required 
rotations of the frames of reference will be based on results from 
quaternion algebra.6,9

Quaternions
The great Irish mathematician Sir William Rowan Hamilton 

discovered quaternions on October 16, 1843, as he was walking 
with his wife along the canals by the Royal Irish Academy in 
Dublin, Ireland. For many years, he had been searching for a way 
to multiply and divide “triples” of real numbers (today called 
3D vectors) by extending the complex numbers, which allow the 
division of doubles (sets of two reals) into three dimensions. On 
that day, he realized that he needed three mutually perpendicular 
imaginary units forming a right-handed coordinate system, and 
one real instead of the real and two imaginary units that he had 
been using. Apparently, he was so excited by his discovery that 
he carved the fundamental quaternion algebra equations into a 
stone on the bridge with his knife. Today, a plaque containing his 
quaternion equations commemorates the spot where the original 
stone had been on the bridge.

(1)
x

y

z

x

y
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
=

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

cos( ) sin( )

sin( ) cos( )

’

’

g g
g g

0

0

0 0 1 zz

x

y

z
z

’

( )

’

’

’

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
= [ ]

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
R g

R R R Rxyz x y za b g a b g

b g b

, ,

cos cos cos s

( )ÈÎ ˘̊ = ( )ÈÎ ˘̊ ( )ÈÎ ˘̊ ( )ÈÎ ˘̊ =

- iin sin

sin sin cos cos sin sin sin sin cos cos sin co

g b
a b g a g a b g a g a+ - + - ss

cos sin cos sin sin cos sin sin sin cos cos cos

b
a b g a g a b g a g a b- + +

È

Î

Í
Í
ÍÍ
Í

˘

˚

˙
˙
˙
˙

(2)

Figure 5. Roll (a), Pitch (b), and Yaw (g).
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This section will introduce 
Hamilton’s quaternions, their 
use to represent rotations, 
and how these can be used 
to compensate accelerometer 
measurements for the errors in-
duced by rotation of the shake 
table. We’ll discuss how qua-
ternions can be used for this 
purpose, from an algebraic and 
geometric point of view, but 
with an emphasis on intuition 
so that the method can be better 
visualized and used effectively. 

As Hamilton originally discovered, the quaternions are an 
extension of the complex numbers into four dimensions, with a 
real part and three distinct imaginary parts. Higher dimensional 
complex numbers such as quaternions are called hypercomplex. 
Many properties of quaternions can be discovered by extending 
the familiar theorems of complex-analysis with the use of a simple 
analogy to quaternions. As the complex numbers are used to 
implement rotations in 2-D, quaternions can be used to represent 
rotations in 3-D. Their main attraction is that they don’t suffer 
from the formulation and numerical problems that the previous 
method based on rotation matrices have and as a result have found 
applications in many diverse fields.

Problems with Matrices Motivate using Quaternions
Distortion
•	 After several compositions (matrix multiplications), rotation 

matrices may no longer be orthogonal, which is necessary to be 
a rotation matrix, due to floating point inaccuracies.

•	 Matrix rotations also suffer from “gimbal lock,” which can be 
caused by either cos(j) or sin(j) being zero for any value of roll, 
pitch, or yaw that in their matrix formulations, as in Eq. 3, that 
could arise during a test. This can also cause singularities in the 
matrix representation or a loss of rotational degree of freedom 
in the matrix representation of rotation.

Animation
It is not possible to implement a linear interpolation between 

two rotations (key frames):
•	 Matrices – given rotation matrices R1 and R2, (1−t)R1 +tR2 are 

not necessarily rotation matrices for all values of t.
•	 Unit vectors in axis angle representation (unit vector, angle of 

rotation) − given unit vectors (N1,f1) and (N2,f2 ), (1 − t)N1 + tN2 
are not necessarily unit vectors and (1 − t)f1 + tf2 might give a 
zero or invalid angle.

To fix these problems, we need an approach for the representation 
of rotations such that it:
•	 Yields a method that is easy to normalize and that does not suffer 

excessively from numerical sensitivities or singularities in its 
representation of rotations.

•	 Provides for a method that allows us to perform linear interpola-
tion of rotations in the correct space – the space of orthogonal 
linear transformations, which consists of only rotations.
Research8,9 to find methods for dealing with these problems has 

resulted in the consensus that the use of quaternions to represent 
rotations provides such methods. This is the primary reason we’ve 
also chosen to use quaternions to implement the needed rotational 
transformations within the Jaguar MIMO control system from Spec-
tral Dynamics to correct the accelerometer readings for the effects 
of the rotation of the shake table. The downside of this approach 
is that it is based on quaternion algebra and, as such, creates a 
need to learn at least the rudiments of quaternion operations for 
implementing the rotational adjustments that are needed. For these 
reasons, we’ll provide a quick review in the following section.

Quaternion Algebra
Definitions
•	 q = a + u = a + bi + cj + dk is a quaternion, where a is scalar 

and u is a 3-D vector.
•	 A quaternion is an extension of the complex numbers to four 

dimensions, but with three imaginary units, i, j, and k, which 

are also the familiar unit vectors along the right-handed X, Y, 
and Z axes that are found in the discussions of elementary vec-
tor analysis in 3D.

•	 The scalar a is called the real part, and the vector u is the 
imaginary part of the quaternion q. Vectors are represented by 
quaternions with a zero real part, the so-called “imaginary” 
quaternions.

Multiplication (Coordinate Free)
  

which uses the ordinary “dot” and “cross” vector products of 
vector analysis: 16 multiplications; quaternion multiplication is 
associative, non-commutative, and distributes through addition 
and “almost” acts like complex number multiplication.

 The quaternion conjugate is: q* = a – u = a – bi – cj – dk
Properties
(q1q2)*= q2

*q1
*

|q|2 = qq*= q*q = a2 + b2 + c2 + d2, which is the magnitude squared 
of a quaternion
|q1q2 |= |q1|| q2|

 

if |q|= 1, i.e., a unit quaternion, then q–1 = q*
The general case is as follows:

 

Quaternion Multiplication of the Basis Vectors i, j, and k.
i2 = j2 = k2 = ijk = −1   {Equations Hamilton carved on the bridge 
stone}
ij = –ji = k
jk = –kj = i
ki = –ik = j
{The last three are the same as the vector cross product}
Quaternion Multiplication of the vectors u and v as imaginary 
quaternions
Definition
•	 As discussed, vectors are defined as purely imaginary quaterni-

ons with a zero real part.
•	 Thus, the quaternion algebraic operations can be extended to 

vectors as:
uv = –u ◊ v + u × v
u2 = –u ◊ u 
Inverses

Unit Vectors
u2 = −1 
Unit Quaternions
•	 Unit quaternions have a magnitude of one.
•	 Unit quaternions are preserved under multiplication, i.e. |q1q2| 

= |q1||q2|=1.
•	 Unit quaternions are also rotation quaternions.
•	 Rotation quaternions can be represented as:

 

where N is a unit vector. Equation 5 is called the axis vector/angle 
representation of rotation quaternions and is illustrated by Figure 
6, which shows how a rotation quaternion is used to rotate the 
coordinate system given by the X, Y, and Z axes about the unit 
vector N by f radians. 
Connection to Rotation
Axis Vector/Angle Rotation
N = Axis Vector
f = Angle of Rotation
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Figure 6. Rotation about a unit vector.
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where vnew is the vector vold after vold has been rotated f radians 
around the unit vector N. An example is shown in Figure 6, where 
the XYZ frame of reference that contains the vector vold is rotated 
about the unit vector N by an angle f.
Quaternion Rotation with the use of Sandwiching (Sandwich 
Product)
If N is a unit vector, then q = cos(f/2)+sin(f/2)N is a unit or rota-
tional quaternion.
Then the vector v can be rotated into the vector w by the fol-
lowing triple quaternion product (sandwich product); length is 
preserved:   

Key Facts
Rq(v) = cos(f)v+(1− cos(f ))(v ◊ N)N +sin(f)N × v is the rotation of 
v about N by f radians.
(Rp ◊ Rq )(v) = Rpq (v) (Composition of Rotations ¤ Sandwich 
Product)
Comparison of Rotation Techniques – Composition
Vectors
vnew = cos(f1)vold + (1− cos(f1))(vold ◊ N1)N1 + sin(f1)N1 × vold
vcomposite = cos(f2)vnew + (1− cos(f2))( vnew ◊ N2) N2 + sin(f2)N2 × vnew
38 multiplications
Matrices
R(N1,f1) R(N2,f2)
27 multiplications
Quaternions
p q
16 multiplications
Trade-offs in the use of quaternions for implementing rotations
Advantages
•	 More compact representation: quaternion representation – four 

numbers; matrix representation, nine numbers.
•	 Faster composition: quaternion product – 16 multiplications; 

matrix product – 27 multiplications.
•	 Better for interpolating between frames (see Slerp in the fol-

lowing section).
•	 Avoids distortion – normalization function:         is simpler 

than matrix normalization.
•	 Numerically robust in the presence of floating-point, round-off 

errors.
Disadvantages
•	 Slower Rotation: Rq(v) = q v q* – 24 multiplications; R(N,f )(v) 

= R(N,f )v – nine multiplications
•	 Difficult to compose with other transformations: non-uniform 

scaling, shears, projections cannot be represented as quaternions
Interpolating Unit Quaternions
Spherical Linear Interpolation (slerp)

where cos(q) = q1◊ q2 (dot product between quaternions).
slerp maps unit quaternions to unit quaternions (along geodesics).
This is a good way to interpolate between rotations, since each 
interpolation, as t varies, produces a rotation operator (unit qua-
ternion).

Implemening Rotations Using Quaternions
As in Equation 2 for matrices, one can use the Euler angles to 

construct rotation quaternions, using the same conventions for the 
order of rotations about X, Y, and Z; where:

Equation 7 define the basic rotational unit quaternions, which 
represent rotations about X, by a radians; rotations about Y, by b 
radians; and about Z, by g radians.

By performing the required quaternion multiplications shown in 
(Eq. 8), one can obtain the general rotation quaternion about body 
and world axes, as was done with rotation matrices in Equation 2. 
Rotations about Body Axes

For the case of rotating about body axes, we have:

where:

Which is the rotation quaternion that is obtained by a sequence of 
yaw, pitch, and roll rotations about the body axes, which compared 
with Eq. 2 is much simpler. Along with the sandwich operation 
shown by Eq. 6, this quaternion can be used to implement a 
transformation between body coordinates and world coordinates. 
As for matrices, the transformation given byEquations 8 and 9 
will also map body coordinates to world coordinates. This is the 
quaternion that is used to transform the accelerometer measure-
ments on the rotating shake table from body coordinates to world 
coordinates, thereby correcting the accelerometer measurements 
for the table’s rotations.
Rotations about World Axes

Similarly, we also have for the case of rotating about world 
axes that:

where:

Which is the rotation quaternion that is obtained by a sequence of 
roll, pitch, and yaw rotations about the world axes. As for matrices, 
the quaternion transformation described by Eqs. 10 and 11 can be 
used to map body coordinates to world coordinates.

Transformations Between Body and World Coordinates
With the above roll, pitch, and yaw rotation quaternions given 

by Eqs. 9 or 11 in hand, the problem of transforming a vector,{v}, 
originally in body coordinates, into a vector, {w}, in world coordi-
nates is resolved. The additional variable needed to fully resolve 
this is to decide whether the roll, pitch, and yaw are about body 
or world axes.
Roll, Pitch, and Yaw about Body Axes

Using the previous quaternion discussions, a closed-form ex-
pression for the transformation of the vector {v}={v1,v2,v3}t, which 
contains the raw acceleration measurements, into {w}, the corrected 
tri-axial acceleration measurement is obtained. The expression ob-
tained from the use of Eqs. 6, 8, and 9 and the “sandwich” operation 
is given by Eq. 12, where the rotations are defined about body axes:

 
After some algebraic simplifications of the equations created by the 
evaluation of  Eq. 12, in terms of q1, q2, q3, and q4; the rotated vec-
tor is found to be given by the vector portion of the quaternion W, 
w=(w1, w2, w3)t, we find that its components are given by Eq. 13 as:

 
Equation 13 can be used instead of Eq. 12. Eq. 13 is usually more 

convenient to use and it produces results equivalent to what Eq. 
12 produces but in a much simpler fashion. This is because Eq. 
13 uses fewer operations than what Eq. 12 requires when used 
directly. Thus in practice Eq. 13 is what is used. Additionally, 
since quaternion algebra is used to determine the coefficients of 
the matrix vector multiplication in Eq. 13, the numerical problems 
normally associated with using matrix algebra to obtain the overall 
rotation matrix are avoided.
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4. The use of quaternion algebra and its ability to simply handle 
rotation is a powerful tool to construct the requisite transforma-
tions to rotate the body coordinate system to the world coordinate 
system, so that the control transducer outputs are obtained with 
respect to the stationary world coordinate system.

5. Rotation quaternions and their associated algebraic proper-
ties make their use self-normalizing and thus avoid the numerical 
and singularity problems that rotation matrices typically exhibit.

6. The use of quaternions enables an efficient, robust and, ac-
curate geometric transformation algorithm that can be used for a 
real-time transformation capability that converts raw transducer 
outputs aligned with body coordinates into their corresponding 
outputs that are aligned with world coordinates as specified by 
many current MDOF vibration specifications and as described in 
this article.

7. The use of quaternions as described in this article is written 
about extensively in the robotics, graphics, manipulator design, 
mathematics, physics, and engineering literature. References 6, 7, 
8, and 9 have discussions in these various areas and applications. 
In this article and in Reference 6, in a more detailed fashion, we 
show yet another application of these methods for MDOF vibration 
control and analysis.
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Roll, Pitch, and Yaw about World Axes
As has been discussed, we can also obtain an expression for the 

transformation of the vector {v}={v1,v2,v3}t into {w}, where the rota-
tions are now defined about world coordinate axes. It is obtained 
from Eqs. 6, 10, and 11, by a similar “sandwich” operation:

 
Where after some algebraic simplifications, as in the previous 

discussion, the rotated vector is found to be given by the vector 
portion of the quaternion W, w = (w1, w2, w3)t, and where its com-
ponents are now given in terms of p1, p2, p3, and p4 by:

 

 

As before, Eq. 15 can be used instead of Eq. 14, as the use of Eq. 
15 is likewise more convenient, and it produces results equivalent 
to what Eq. 14 produces; i.e., both formulations enjoy the same 
discussed advantages that quaternions provide.
Ensuring that Qxyz(a,b,g) and Qzyx(g,b,a) are respectively Rotation 
Quaternions

Note that the formulations of Eqs. 13 and 15 implicitly enforce 
the constraint: |Q|=(q1

2 + q2
2 + q3

2 + q4
2)=1, which ensures that 

either Qxyz(a,b,g) or Qzyx(g,b,a) are respectively rotation quaterni-
ons.6 Because of this, Eq. 13 and Eq. 15 are the preferred manner 
by which vectors should be rotated, as this implicit enforcement of 
the unit quaternion constraint provides more numerical robustness. 
It is the manner by which the effects of rotations on the outputs 
of accelerometers during MDOF vibration tests are corrected by 
the Jaguar MIMO control system when there are large rotational 
responses required during the test.

Conclusions
1. Significant measurement problems with control accelerom-

eters can occur when there are large (over 10°) roll, pitch, and yaw 
motions occurring on the vibration platform used to conduct vibra-
tion tests. In most cases, the control accelerometers are mounted on 
the vibration table and thus susceptible to the discussed geometric 
distortion errors.

2. If using a MIMO control and test system, MIMO can control 
the severity of undesired roll, pitch, and yaw motions to reduce 
these errors.

3. If the underlying vibration environment that is the subject 
of the test has large roll, pitch, and yaw motions, then geometric 
compensation, as discussed here, is needed to address and correct 
these errors.

The author may be contacted at: mau@cvcca.com.
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