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EDITORIAL
How Heavy are Your Mode Shapes?

George Fox Lang, Associate Editor

Long ago and far away in an age when 
no analyst thought seriously about using a 
finite-element model to predict dynamics, 
in a place where test engineers couldn’t 
spell FFT, we still performed modal analy-
sis. Lumped-mass models were formulated 
to approximate the dynamic behavior of 
mechanical structures. Matrix iteration and 
other methods were used to identify the 
normal modes of these undamped models. 
Each normal mode was defined by four 
parameters:
•	 Natural frequency
•	 Viscous damping factor
•	 Nondimensional mode shape
•	 Modal mass

Ask any modern modal practitioner today 
for the modal results of a test or analysis and 
he will probably give you three parameters 
per mode. If you ask, “Where are the modal 
masses?” he is likely to look down his nose 
at you and say, “These are orthonormalized 
(unit modal mass or UMM) mode shapes 
– all of the modal masses are one.” That 
smug and knowing expression is apt to fade 
from his face if you query, “But what are the 
physical dimensions or engineering units of 
those unit masses? One what?”

The sorry fact is that the units of modal 
mass are routinely overlooked by modern 
practitioners. The proper dimension of 
modal mass is not specified by any inter-
nationally recognized standard, and that 
compromises the value of any set of mode 
shape vectors for use in a team-executed 
project. If the analyst lives in a European or 
Asian Système international d’unités world 
(one where strict ISO metric is spoken), his 
structural FRF measurements were taken 
with a force channel calibrated to Newton 
(N) and an acceleration channel calibrated 
to meter per second-squared (m/s2) units. 
As a result, the modal masses of his mode 
shapes (unit mass or otherwise scaled) are 
in units of kilogram (kg).

In contrast, an American colleague enters 
mv/lb and mv/g scale factors to his FFT 
analyzer. He measures force in pounds 
and acceleration in gravitational units or 
gs. His orthonormalized mode shapes are 
thus scaled to one lb/g (colloquially, one 
mass-pound). Now let’s presume both of 
these competent practitioners test the same 
structure over the same bandwidth and 
that neither blunders in his test. They each 
produce virtually the same set of natural 
frequencies and damping factors and a set 
of orthonormalized mode shapes. The only 
difference in the two results is that every 
element in the American’s vectors is larger 
than his compatriot’s by a factor of 2 2. .

In this age of international cooperative 
design, the difference between kilogram 

and mass-pound-scaled orthonormalized 
modes can mean the difference between 
project success and failure! Modal models of 
various components are commonly brought 
together from the test and analysis worlds 
to produce a dynamic model of the whole 
structure. Err the vector lengths for a single 
component and the total model will exhibit 
erroneous frequencies, damping and mode 
shapes. You can’t balance your checkbook 
if most of the entries are in dollars but some 
are in an unspecified currency.

This little matter of modal mass units 
can bankrupt your expensive test and 
FEM collaboration. And that collaboration 
doesn’t need to be international to suffer 
such failure. Any two dynamicists holding 
different opinions on (or not knowing) the 
mass units scaling of their mode shapes are 
sufficient to sour the cooperative result. 
Add in the occasional guy who likes his 
acceleration in inch/second2 or his force 
in dynes, and the league of the unwashed 
who just don’t bother attaching physical 
units to their FRFs, and the problem be-
comes obvious: having natural frequencies 
fn damping factors xn and mode shapes {f}n 
is not enough – you need the modal masses 
Mn and their dimensional units to have a 
complete model.

So what exactly is a modal mass? To 
answer that, I’ll fall back to a simplistic 
undamped lump-mass model where N 
masses are connected by linear springs, 
some of which attach the “structure” to 
ground. Each mass is allowed to move in 
a single direction, the degree of freedom 
(DOF) xj. The N DOF can be conveniently 
arranged in a vector {x}. The general equa-
tions of forced dynamic motion may then 
be written as [ ]{ } [ ]{ } [ ]M x K x F�� + = . Owing 
to Maxwell-Betti reciprocity and Beltrami-
Michell compatibility, [K] and [M] are 
symmetric (N × N) matrices. Further, [K] is 
known to be positive definite if the modeled 
structure is statically stable (stands on its 
own). The N diagonal elements of [M] are 
the physical masses, mjj and the off-diagonal 
elements reflect any dynamic coupling 
between them. The [K] matrix contains the 
stiffness terms reflecting the interconnect-
ing springs, kjk (and their static coupling) 
between the masses. For the special case 
of free sinusoidal vibration at frequency f 
these equations collapse to [K]{x} = w2[M]
{x}, where w = 2pf. 

Now we can solve the free vibration 
problem using any number of numerical 
methods. One of the oldest, matrix iteration, 
actually predates the digital computer and 
adds some wonderful physical understand-
ing of modal vectors. Pre-multiply the free 
vibration equation by the inverse of [K] and 

divide it by w2, obtaining 1/w2{x} = [K]–1[M]
{x}. Note that the left side of this equation 
multiplies a mode shape vector by a scalar; 
the right side multiplies the same vector 
by a matrix.

Multiplying a vector by a scalar produces 
a vector with a different length but the same 
direction. Multiplying a vector by a matrix 
changes both the length and the direction. 
So, a solution vector of this equation is one 
that is not rotated by the matrix multiplica-
tion. A solution may be found by guessing a 
“normalized” vector f{ }. The vector is nor-
malized by dividing all its elements by the 
largest element value so that all contained 
DOFs are limited to the range ±1. This trial 
vector is multiplied by the dynamic matrix 
[K]–1[M], resulting in a new vector that is 
normalized in the same manner.

The largest vector element used for this 
second normalization is retained as a trial 1/
w2 value. If the starting and final vectors are 
element-for-element identical (within ac-
ceptable error), the process stops. The vector 
is retained as the solution vector f{ }n and its 
natural frequency is retained as fn = wn/2p. If 
the two vectors do not match, the computed 
vector is used as a new starting vector and 
the process is repeated. Eventually this 
iterative process will converge to the mode 
with the lowest natural frequency (largest 
1/w2 eigenvalue). Once a solution vector (an 
eigenvector) is found, it is eliminated from 
further iterative consideration by use of its 
generalized orthogonality property. This 
permits further iteration to find the second 
and higher modes.

A complete solution to [K]{x} = w2[M]{x} 
consists of N natural frequencies fn each 
matched to a mode shape vector f{ }n. If we 
stack these N solution vectors side by side, 
they form an N × N transformation matrix, 
f[ ] that may be used to express any motion 

of the structure as a summation of motions 
in the N mode shapes. That is, x q{ } = [ ]{ }f  
where {q} is a vector of modal participa-
tion factors, the amount of each mode to 
add to the summation. If we substitute this 
definition in the equations of forced motion 
and then pre-multiply the equations by 
the transpose of the transformation, form-
ing  [ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] { }f f f f fT T TM q K q f�� + =
something quite miraculous happens – both 
resulting matrices are diagonal; all of the 
off-diagonal elements are zero. Thus, the 
modal vectors uncouple the equations of 
motion, making each dynamic equation 
independent of all the others. The result-
ing “generalized” equations take the form 
[ ]{ } [ ]{ } [ ]M q K q Fgen gen gen�� + = . The N diagonal 
elements, Mn of [Mgen] are the modal masses. 
To orthonormalize the mode shapes, we 
must divide each (±1 scaled) modal vector 
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the proportionately damped case discussed 
here. When such a system is experimentally 
tested, each ��x Fa b/ measurement reflects am-
plitude (at each mode) proportional to the 

product of two complex-valued 
modal coefficients (complex vec-
tor elements) divided by a scalar 
constant with mass-proportional 
dimension.

If our purpose in testing a 
structure is simply to identify 
its resonance frequencies and 
damping and to admire a few 
animated mode shapes, we can 
live with an incomplete model. If 
the resulting modal model stays 
within the software system that 
generated it, we can still success-
fully play some “what if” games 

using eigenvector modification and simple 
FEM-for-test modelers. But if we want to 
contribute a component modal model to 
a larger modeling effort, our contribution 
must be complete and consistent with the 
larger model’s metrics in all regards. In 
particular, the length scaling of any compo-
nent model’s mode shape vectors must be 
consistent with the host model to correctly 
convey the motion/force relationships of 
the added component. 

Perhaps it is time to have an internation-
ally accepted standard describing what con-
stitutes a proper component modal model? 
Simply adhering to SDRC’s 40-year-old 
specifications for a universal file format is 
a step in the right direction but falls short of 
the authority of a formal standard.

A few senior SEM members could get to-
gether at the next IMAC to start this process. 
People whose lives depend on combined 
FEM and modal test results might breathe 
a little easier knowing everyone involved 
in the dynamic characterization of new 
hardware fully understands how heavy 
their contributions are.

The author can be contacted at: gflang@verizon.
net.

element by the square-root of its resulting 
Mn. 

When orthonormalized modal vectors 
are used to generalize the equations of 
motion, the result becomes 
[ ]{ } [ ]{ } [ ]I q q Fn gen�� + =w2 .  That 
is, orthonormalized modal vec-
tors transform the physical mass 
matrix to an identity matrix and 
the stiffness matrix to a diagonal 
matrix with wn

2  elements on 
the diagonal. So, each modal or 
generalized mass equals 1 mass 
unit, while the diagonal elements 
of the generalized stiffness matrix 
are the squared circular natural 
frequencies.

In contrast, performing the 
same type of congruence trans-
formation using ±1-scaled modal vectors 
produces a generalized mass matrix with N 
different modal masses, each less than the 
total physical mass in the model. The result-
ing N different diagonal stiffness values in 
the associated [Kgen] matrix have no obvious 
physical interpretation. At first glance, it 
would appear there is relatively little need 
to orthonormalize modal vectors. But this 
is not true – the experimentalist is actually 
damned to measure them! 

Consider the analytic expression for the 
frequency response function (FRF) relating 
motion of DOF a to a force applied at DOF 
b. This may be derived from the general-
ized equations of motion by recognizing 
the relationships of Eq.1. The result is Eq. 2.

However, when dealing with experi-
mental measurements made from a real 
structure, no mass or stiffness matrices 
are known. All we know are the locations 
and directions of each DOF pair between 
which acceleration/force measurements are 
made. Further, the FRF measurement and 
subsequent curve-fitting does not separately 
identify the three frequency-independent 
terms fan, fbn and Mn – it merely returns the 
amplitude constant, Aabn. Given no other 
available basis for modal vector normaliza-

tion, all of the Mn terms are assumed equal 
to 1, and the fan fbn term is assumed to be 
the product of two orthonormalized modal 
coefficients.

To determine the individual modal coef-
ficients from a vector of fan fbn products, a 
driving-point measurement such as ��x Fb b/
must be measured and used as a reference. 
Taking the square root of its Abbn value 
provides orthonormalized fbn, which may 
be subsequently divided into the remaining 
Aabn to determine the remaining orthonor-
malized elements of {fn}.

For simplicity, I have chosen to present 
this explanation in terms of undamped real 
modes. However the results for damped 
systems, including those demonstrating 
complex modes, are entirely synonymous. 
For example, if the system is proportion-
ately damped, that is if [C] = a[M] + b[K] 
(a and b being positive real constants), its 
eigenvectors, {fn}, are identical to those 
of the undamped case, and forming the 
congruence transform [f]T[C][f] produces a 
diagonal generalized damping matrix [Cgen] 
with diagonal elements of 2xnwn surrounded 
by zeros. Each xn is a viscous damping factor 
(0 to 1) associated with the nth mode. The 
resulting acceleration/force FRF may be 
written as Eq. 3.

While the complex-mode solution of 
nonproportionately damped systems is 
mathematically more involved, it parallels 

��q q x q F Fa an

T

n gen b bn{ } = - { } = { } { } { } = { }w f f2 ,  and 

��x
F M

Aa

b

an bn

nn

N

n
abn

n

N

n

=
-( ) =

-( )= =
Â Âf f w

w w
w

w w1

2

2 2
1

2

2 2

��x
F M

Aa

b

an bn

nn

N

n n n
bm

n n nn

N

=
- -

=
- -= =

Âf f w
w x w w w

w
w x w w w1

2

2 2

2

2 2
12 2ÂÂ

(1)

(2)

(3)

Equations


