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Several methods for measuring damping are summarized in
this article with respect to their advantages and disadvantages.
The use of Digital Filters (DF) and the Fast Fourier Transform
(FFT) are compared. In general, FFT analysis is best suited for
heavily damped structures, while it is advantageous to use DF
analysis when dealing with lightly damped structures.

In the design and analysis of vibrating structures, one of the
most important modal parameters to know is the damping. For
example, the predicted response due to a simulated input re-
quires an accurate knowledge of the damping properties. The
damping of combined and complex structures is often domi-
nated by losses at joints etc. and thus is very difficult to model
and predict analytically. In general, the damping of materials
and structures must be determined experimentally, i.e. mea-
sured.

Many different methods exist for the measurement of damp-
ing. These can be roughly divided into three groups:

O Vibration decay measurements
O Bandwidth determination of measured modal resonances
O Steady-state measurements of input and stored energy

This article will not deal with the steady-state technique
which is based on the energy balance in structures that are
excited by vibration.! In the steady-state technique, the input
power flow P is estimated from the time-averaged product of
force and velocity at the driving point. The total stored energy
E is determined as twice the kinetic energy, which is estimated
by integrating the product of mass density and squared veloc-
ity over the structure. The loss factor 5 is then determined from
the relation n = P/wE. Using this method, damping can in
theory be estimated even in frequency bands without reso-
nance frequencies.

In this article, the use of Digital Filter (DF) techniques and
Discrete Fourier Transform (DFT/FFT) techniques are com-
pared. A DF analyzer gives a real-time constant percentage
bandwidth analysis, i.e. /1 octaves, !/3 octaves, '/12 octaves and
/24 octaves which are, respectively, 70%, 23%, 6% and 3%
analyses, while a DFT/FFT analyzer gives a blockwise constant
bandwidth (narrow band) analysis.

Of course, several methods exist other than those described
in this article. For example, in Reference 11 it is demonstrated
how to measure damping via probability functions.

Damping Descriptors

There are several damping descriptors: loss factor, quality
factor, reverberation time, etc. The interrelation among some
of these descriptors is summarized in Table 1. The reason why
there are so many damping descriptors is mainly due to histor-
ical reasons and the different fields of application. For modal
damping based on frequency response functions, it is quite
natural to measure the 3 dB bandwidth Aw, Af, while for free
decay measurements one will normally measure decay rate D,
time constant z, or reverberation time Tj,. In room acoustics,
the reverberation time (the time it takes the signal level to
decrease 60 dB after the signal source has been switched off) is
used exclusively due to specifications as found in international
standards; while in mechanics the decay rate D is preferred.®
The logarithmic decrement & is very seldom used today. This
descriptor is defined as the logarithm of the amplitude ratio of
successive maxima, normally observed using an oscilloscope
and providing only one resonance is present.

In modal analysis, the decay constant o (or modal damping
frequency in rad/s) is often used since —o indicates the real
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Nomenclature

¢ = viscous damping coefficient

¢, = critical damping coefficient

dB = decibels, ten times the logarithm to a (power) ratio

e = base of natural logarithm, 2.27 . . .

o = undamped natural frequency (Hz)

f: = modal damping frequency (Hz)

g = grams

m = milli, 107

min = minutes

s = seconds

sec = seconds

A,A, A = constants, amplitudes

C, = constant, initial value

D = decay rate (dB/s)

DF = digital filters

DFT = discrete Fourier transform

E = total energy (J)

FFT = fast Fourier transform, fast version of DFT

FRF = frequency response function

H,(f) = estimator of frequency response function

H,( f) = estimator of frequency response function

Hz = Hertz (s™)

IRF = impulse response function

J = joules

MDOF = multiple degree of freedom

P = input power (W)

Q = quality factor, gain factor

SDOF = single degree of freedom

T = FFT record length

T, = averaging time

T,, = reverberation time (s)

W = watts

* = estimated value

6 = logarithmic decrement

{ = fraction of critical damping, damping ratio

¢, = damping ratio of exponential weighting function

n = loss factor

m=pi,3.14...

o = decay constant (s7)

¢ = modal damping frequency (rad/s)

t = time constant (s)

7, = time constant of structure (s)

7, = time constant of exponential detector (s)

7,, = time constant (length) of exponential weighting
function (s)

w = angular frequency (rad/s)

w, = damped natural frequency (rad/s)

w, = undamped natural frequency (rad/s)

Af=3 dB bandwidth (Hz)

AF = FFT line spacing (Hz)

Aw = 3 dB bandwidth (rad/s)

0 = percent, 1072

part of the pole location of transfer functions in the Laplace
plane. On decay curves, the decay constant o corresponds to
the number of —8.7 dB segments the curve decays per second
(i.e. the number of time constants r per second). For material
testing, damping is often expressed as a relative, thus dimen-
sionless, quantity such as loss factor # or fraction of critical
damping {.
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The original definition of loss factor is taken as the ratio be-
tween the quadrature and coincident part of the complex
modulus, which is relating stress and strain in a material. The
loss factor indicates what fraction of the vibratory mechanical
energy is lost (i.e. converted into heat) in one cycle of
vibration.%” The quality (or gain) factor Q is often used in the
field of electronics to describe the properties of resonators and
filters.

The fraction of critical damping, which only differs from the
loss factor by a factor of 2, is used in the field of modal analysis
and expresses the ratio between the modal damping frequency
o and the undamped natural frequency w,, i.e. the unsigned
ratio between the real part and the distance from the origin of
the pole location of transfer functions in the complex Laplace
plane. It can be shown that, using a viscously damped single
degree of freedom model consisting of a mass, a spring and a
viscous dashpot ¢, the fraction of critical damping (also often
called the damping ratio) equals the ratio between the actual
damping ¢ and critical damping c,. Critical damping is the
minimum viscous damping that will allow a displaced system
to return to its initial position without oscillation. The decay of
vibration of a critically damped system is exponential. In this
article, measurement of the fraction of critical damping is used
exclusively.

Measurement Conditions and Equipment
The damping measurements were performed on a freely
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Figure 1. Measurement configuration/setup shown without the frequen-
cy analyzers.

Table 2. Damping values, fraction of critical damping in percent ((%), for the different test methods. Those values in the columns indicated with an * are

heavily biased as expected.
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Figure 2. Measurement setup for the analysis and decay of the 1st reso-
nance in the /12 octave band at 866 Hz.

suspended aluminum plate with the dimensions of 30 cm x 25
cm x 2 cm. The structure was, for some measurements, excited
by an impact hammer Briiel & Kjer (B & K) Type 8202 (see
Figure 1) with a built-in B & K Force Transducer Type 8200. The
steel tip was used to ensure proper excitation in the frequency
range of interest which was from 500 Hz to 3 kHz, a range that
includes the first five modal frequencies.

In other situations, the structure was excited via a nylon
stinger by a small B & K Vibration Exciter Type 4810 (see Figure
1) using either a random or a pseudorandom signal. The input
force in these cases was also measured using a B & K Force
Transducer Type 8200.

The output vibration signal was measured using a small
lightweight (=2.4 g) B & K Accelerometer Type 4375. The force
and vibration signals were analyzed using either the B & K Dual
Channel Signal Analyzer Type 2032 (DFT/FFT) or the B & K
Dual Channel Real-Time Frequency Analyzer Type 2133 (DF).
All results were plotted on a B & K Graphics Plotter Type 2319.
In some cases, post-processing of data was carried out using
the Structural Measurement Systems (SMS) modal software
STAS SE (version 5.02, B & K Type number WT 9100) or the
B & K 3D-plot of spectra software Types WT 9121 and WT 9321.
When using the digital filter analyzer, the damping was esti-
mated by the Schroeder method, also called “Integrated Im-
pulse Response Method.”

Experimental Results Using Digital Filter Analysis
The measurement of damping using digital filter analysis
was estimated from the decay of the free vibration response
due to an impact excitation. The plate structure was impacted
at a corner point to ensure excitation of the first five modes of
interest. The acceleration was measured at another corner to
ensure that all modes of interest were included in the response
signal. The '/12 octave bandwidth was selected in order to sepa-
rate the resonance frequencies into different analysis bands.
This makes estimation of damping for each mode of vibration
possible. Exponential averaging T, of !/s2 sec was used which
means that a reverberation time Ty, > 14 - T, = "/32sec=0.44
sec could be estimated with sufficient accuracy.’ The B & K
Real-Time Frequency Analyzer Type 2133 can store spectra at
specified time intervals in a multispectrum. In this experiment
200 spectra of the response signal were stored with an interval
of 25 msec between spectra. Intervals down to 1-5 msec can be
chosen using DF techniques. Figure 2 shows the measurement
setup for the analyzer and the slice of the multispectrum at 866
Hz, i.e. the /12 octave band at 866 Hz, containing the 1st reso-
nance, as a function of time. The amplitude is presented on a
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Figure 3. 3D plot of the first 100 spectra of the multispectrum showing the
vibration decay in 1/12 octave bands.

logarithmic scale which means that the exponential decay
Alt) = Age™* (1)
will appear as
10 log [A(t)/Arl® = 10 log [Ag/Areg)* — o - £ - 10 log €
=C,—869-0-1=C,—869- -t (2

i.e. as a straight line with a slope of —8.69 dB - 0 = —8.69 dB/z,
where o is the decay constant and ¢ the time constant of the
resonance. C, is the maximum level of the response and
depends upon the amplitude and the spectral shape of the im-
pact as well as the position of the excitation and response mea-
surement. The reverberation time T, = 6.97, calculated from
the slope of the slice defined by a delta cursor in the highlight-
ed part of the graph, is given in the upper right corner of Figure
2

Figure 3 shows a 3D plot of vibration decays in the /12 octave
bands. The five modes of interest are clearly seen in the plotin
the 866 Hz, 1220 Hz, 1730 Hz, 2050 Hz and 2300 Hz /12 octave
bands. Due to the non-ideal amplitude characteristic of the fil-
ters (6 pole filters) energy has leaked into the neighboring
frequency bands. The initial broadband excitation is seen as
well.

The slices of the 2nd and 3rd resonance in the 1220 Hz and
1730 Hz band are shown in Figure 4. These decays have been
backwards integrated® in order to obtain smooth decays and
well-defined initial levels for automatic reverberation time
(i.e. damping) calculations. The reverberation times for all the
bands were estimated from the backwards integrated decays in
an evaluation range from 5 dB to 25 dB below the initial level,
except for the 866 Hz band where the evaluation range was set
between 5 dB and 15 dB below the initial level. This was due to
the long reverberation time for the 1st resonance. The rever-
beration time spectrum is given in Figure 5a and in tabular
form in the left column of Figure 6.

The reverberation time is then converted (see Table 1) to the
fraction of critical damping { by

( e 1.1% T Tsu {3}

where f; is the undamped natural frequency of the resonance.
For the calculations the center frequencies of the /12 octave
bands are used for ;. This imposes a maximum uncertainty of
3% on the results. The spectrum of the percentage of critical
damping ({% = 100 - {) called Cr-Damping is shown in Figure
5b and in tabular form in the right column of Figure 6. The
values for the percentage of critical damping are inserted in
Table 2.

A reverberation time and thus a damping value has been cal-
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Figure 4. Decaﬁ curves for the 2nd and 3rd resonances in the !/12 octave
bands at 1220 Hz and 1730 Hz. The decays have been backwards integrat-
ed in order to give smooth decays and well-defined initial levels (used for
reverberation time calculations).

culated in some of the bands not containing a resonance. This
is due to the leakage effect caused by the non-ideal filter shape
in the analysis as mentioned earlier. For those bands where a
Tgo, and thus {, could not be calculated, a warning line is in-
dicated below the frequency axis in the spectrum and an empty
space is left in the table.

One advantage of this method is that it is extremely fast.
After one hammer impact the damping values are automatical-
ly calculated in the analyzer without any operator intercession.
Also this method has practically no limitations in dealing with
very lightly damped systems.

For single resonance damping measurements however, the
basic requirement is that the resonances are separated in dif-
ferent bands. Otherwise the calculated damping values will
depend upon how the test is performed (excitation point and
response point) and how the reverberation time is calculated.
In situations with high modal density, i.e. many modes within
each band, this method will give an average damping value of
the modes. This will normally require averaging of the decay
curves over several response and excitation points. This is
extremely useful in acoustical applications.

The upper limit of damping values which can be handled by
this method will depend upon the analyzer bandwidth and the
integration time in the detector. Due to “poor” resolution, a DF
analyzer is not well suited for the measurement of damping by
bandwidth determination of measured modal resonances.
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Figure 5. Spectrum of the calculated reverberation time (a) and calculated
Jraction of eritical da"n:ft'ng (b) in percent ((%). The five bands containing
the resonances are indicated by arrows.
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onances are i
Time Reversed Decay Measurements

Using “classical” analysis techniques, i.e. filtering in /s or
!/ 1 octave bands, limitations exist due to “ringing” in bandpass
filters and smoothing caused by the detector. According to Ref-
erence 3, reliable decay curves are obtained only if the fraction
of critical damping is less than 0.017 (1.7%) for /s octave anal-
ysis. For !/1 octave and '/12 octave analysis the limits are 3 times
higher and 4 times lower respectively.

However, in Reference 4, it has been demonstrated that re-

Table 1. Interrelations between damping measurements.

Fraction of |Free decay |Free decay| Curvefit Curvefit Curvefit | Curvefit IRF decay | Curvefit | IRF decay
e : Baseband Baseband | Baseband Zoom
critical DF FFT Baseband Trapaot Baseband Zoom Pasudo Pasudo Peaido
R = % *
damping | Y12 octave [Af =16 Hz| Impact Ciibeiicd Random Random Random Random Hastons
{Bgé)?:lz) 0.0097 0.0103 0.273 0.0093 0.029 0.011 0.0134 0.013 0.0121
a 1%89:[2) 0.0267 0.0261 0.215 0.0250 0.108 0.029 0.0286 0.029 0.0275
a T%S?Eh} 0.0717 0.0738 0.193 0.0643 0.177 0.066 0.0633 0.063 0.0703
( 20%1?;{” 0.0629 0.0625 0.178 0.0688 0.130 0.071 0.0662 0.066 0.0672
(2:]%1?:12} 0.0696 0.0701 0.161 0.0640 0.144 0.063 0.0633 0.063 0.0657
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versing the time signal to the filters leads to much less distor-
tion of the decay curve and reliable damping measurements
can be performed on systems with 4 times higher damping.
Thus for /2 octave analysis, the fraction of critical damping
should be less than 0.07 (7%).

When measuring on highly damped structures (short decay
curves), it is important to choose a short enough detector aver-
aging time to avoid influencing the decay curve. Using a device
with exponential averaging (time constant z, corresponding to
an averaging time T, = 27,), the averaging time, as mentioned
earlier, should obey

T, > 21y (4)

where , is the time constant of the system under test. The fac-
tor of 2 is due to the fact that the averaging is performed on the
squared output of the filters. Thus z, is the time required for
the signal amplitude to decay 8.68 dB while z, is the time it
takes for the averaging device to decay 4.34 dB.

In Reference 3, the factor 4 for the inequality (Eq. 4) is
chosen

T, > 41, (5)

to be on the safe side. This corresponds to Ty, > 14 - T,. Howev-
er, since the response of the detector is much faster when the
signal increases instead of decreasing, it will be of great advan-
tage to use time reversed analysis. According to Reference 4,
the requirements (Eq. 5) can be satisfied by

2r, > 14 (6)

Thus it is possible to measure 8 times higher damping factors
without the need to decrease the averaging time by a factor
of 8.

Experimental Results Using FFT Analysis

The damping was measured with FFT techniques using the

following methods:

a) Free vibration decay.

b) Curve fit of frequency response functions measured using
impact excitation.

¢) The same as b) but using random excitation with a shaker.

d) Decay of the impulse response function as calculated from
the weighted frequency response function using pseudo-
random excitation with a shaker. These results were com-
pared with results of curve fit of the frequency response
function.

In all the measurements, the B & K Dual Channel Signal Ana-
lyzer Type 2032 was used.

a) Free vibration decay. The technique used here was similar
to that just described using digital filtering, except that the FFT
spectra were transferred under computer control to the memo-
ry of a computer. An HP 310 computer with 3D plot program
B & K Type WT 9121 was used for the measurements.

A frequency resolution of A F= 16 Hz was selected on the an-
alyzer which means that the time record T = '/ar = 62.5 msec
was sufficiently short to follow the decay of the signal. Averag-
ing was set to the exponential of 1 which means that the auto-
spectrum is the magnitude of the instantaneous spectrum (i.e.
no averaging). The FFT was performed with Hanning weight-
ing on the time signal. 200 frequency lines from 0 Hz to 200 -
A F=23200 Hz were transferred to the computer approximately
every 50 msec. A 3D plot of the transferred autospectra is
shown in Figure 7. The decay of the 5 resonances is clearly
seen. The initial broadband response due to the impact is very
short in this analysis. Because of the Hanning weighting and
the record length T of only 62.5 msec, it was “missed” by being
in between two spectra.

The resonances appeared in the frequency lines at 864 Hz,
1220 Hz, 1760 Hz, 2096 Hz and 2352 Hz. The slices along these
frequencies are shown in Figure 8. From the slope of these, the
decay rate and thus the fraction of critical damping can be
determined (see Table 1). The results are inserted in Table 2.

As expected, the results agree very well with the results from
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Figure 7. 3D plot of FFT spectra of free vibration decay. Interval between
spectra is 50 msec and 200 frequency lines cover the span from 0 to 3200
Hz with a resolution of Af = 16 Hz.
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Figure 8. Plot of the slices at the resonances giving the decay of vibrations.
The frequency lines containing the resonances are: 1) 864 Hz,; 2) 1220 Hz;
3) 1760 Hz; 4) 2096 Hz; and 5) 2352 Hz.

the test using DF. As for the free decay method using DF, there
is practically no lower limit for the damping values which this
method can handle. The requirement for single resonance
damping measurements is that the resonances are well sepa-
rated in the analysis (as a rule of thumb there should be at least
8 lines between the resonances when Hanning weighting is
used). The upper limit for the damping values to be estimated
by this method is set by the limited transfer rate of spectra
(typically in the order of 20 spectra per second, i.e. 10-50 times
less than using DF). If the decay is too fast (i.e. the damping is
too high) another possibility is to record the response signal in
a time buffer sufficiently long to contain the whole signal (or
most of it). The decay constant (i.e. the damping) can then be
measured by a scan analysis.

b) Curve fit of frequency response functions measured using
impact excitation. Here the impact force is measured in addi-
tion to the acceleration response. From the two signals the fre-
quency response function (acceleration/force, i.e. acceler-
ance) is estimated using dual channel FFT calculation. Figure
9 shows the measurement setup and an estimated accelerance
function. A frequency range of 3.2 kHz with a line spacing of
AF= 4 Hz was selected giving a record length of T=250 msec,
Since the response signal is much longer than 250 msec, an
exponential weighting function with a time constant of 70
msec (given as length in the setup) is applied to the response
signal in channel B. The force impulse was measured in chan-
nel A with a transient weighting function. The response signal
is shown in Figure 10 with and without multiplication by an
exponential weighting function. Notice that the signal at the
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Figure 9. Measurement setup for frequency response function measure-
ment using impact hammer excitation and an estimated frequency re-
sponse function (accelerance).
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Figure 10. Response signal (acceleration) with (a) and withowt (b) multi-
plication of the exponential weighting function.

end of the record is attenuated more than a factor of 30 with
exponential weighting which shows the well defined influence
of leakage on the analysis (to be corrected for later).

The frequency response function is transferred to the modal
analysis software (SMS STAS SE in an HP 310 computer) where
curve fitting of the individual resonances is performed. SDOF
polynomial curve fitting is used and the resulting damping
values (percentage of critical damping) are given in Table 2.

From the modal parameters, frequency, damping and resi-
due obtained from the curve fitting for the five modes, the fre-
quency response function was synthesized and is shown on top
of the measured function in Figure 11. Excellent agreement is
observed indicating proper curve fitting.

The estimated damping values are too high due to the expo-
nential weighting. However the influence of the weightin§
function is well defined and can be corrected for as follows:'

1
(corr.=c_Cw=f_m {7}

where { is the measured damping, {, is the damping from
the exponential weighting, 7, is the time constant (length) of
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thesized frequency response function. The
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using the SDOF polynomial curve fitter.

the exponential weighting and f; is the natural frequency of the
mode. This correction is provided in a user program in the
modal software and the results of the correction are given in
Table 2. Excellent agreement with the previous results are
obtained.

The advantage of this method, compared to the free decay
methods (DF or FFT), is that highly damped systems (vibration
decay within the record length T) and systems with high cou-
pling between the modes can be analyzed. In situations with
heavy coupling between the modes, a MDOF curve fitter would
have to be applied.

¢) Curve fit of frequency response functions measured using
random excitation with a shaker. First a baseband measure-
ment with a frequency span of 3.2 kHz and resolution of AF=4
Hz was used as for the impact hammer test b). The measure-
ment setup and an estimated frequency response function are
shown in Figure 12. The levels of the resonances and the loca-
tion of the antiresonances are different from the impact test
(Figure 9) because the excitation is at a different point. Howev-
er this will only affect the residues (which are local parame-
ters) and not the frequency and damping values (which are
global parameters for the structure).

Using only 4 Hz resolution the resonance peaks are heavily
affected by leakage as indicated by the low coherence at the
resonance frequencies'® as shown in Figure 13. The underesti-
mated values of the frequency response function at the reso-
nances is also called resolution bias due to the insufficient res-
olution in analysis. Again the frequency response function was
transferred to the modal software and individual resonances
where curve fitted using the SDOF polynomial curve fitter. The
resulting damping values are found in Table 2.

As expected the damping values are severely overestimated
due to the leakage in the analysis. In order to avoid the influ-
ence of leakage (or resolution bias errors), 5 zoom measure-
ments were performed around each resonance with sufficient
resolution so that leakage effects were eliminated.

The following resolutions were required:

AF = 7.8125 mHz for mode 1 at 860 Hz
AF = 62.5 mHz for mode 2 at 1198 Hz
AF = 125 mHz for mode 3 at 1756 Hz
AF = 125 mHz for mode 4 at 2091 Hz
AF = 125 mHz for mode 5 at 2341 Hz.

This resolution ensured more than 10 frequency lines in the
analysis within the 3 dB bandwidth AF of the resonances. The
force spectrum was very low at the resonance frequencies and
thus contaminated with noise at these frequencies. Hy( f) was
used as the estimate of the frequency response function since
it is immune to uncorrelated noise at the input.'

Each zoomed frequency response function was transferred
to the modal software and the resonances were curve fitted
using the SDOF polynomial curve fitter. The results are given
in Table 2. Except for the first two modes, these damping
values agree very well with those obtained from the decay
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Figure 12. Measurement setup and estimated frequency response
Sfunction using random excitation with a shaker.
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Figure 13. Frequency response function and coherence in the baseband
measurement using random force excitation. Notice the low coherence at
the resonances due to leakage (or resolution bias error).

methods and the corrected values from method b). The higher
damping values for modes 1 and 2 could be caused by the in-
fluence of the force transducer attached to the structure at the
excitation point.

The disadvantage of the zoom technique is the extremely
long analysis time required, especially for the 1st mode. The
record length here was T = !/sr = !/7812s mHz = 128 sec. For
example, 20 statistically independent averages performed with
50% overlap would take (128 + 19 - '%8/2) sec = 1344 sec = 22
min, 24 sec.'”

d) Decay of the impulse response function as calculated
from the weighted frequency response function using pseudo-
random excitation with a shaker. The frequency response
function (accelerance) is estimated using shaker excitation as
in c), however, with a pseudorandom force signal. The pseudo-
random signal is a periodic signal with a period length T equal
to the record length T in the analyzer. The sinusoidal compo-
nents in the spectrum thus coincide with the analysis lines in
the analyzer and leakage is avoided using rectangular weight-
ing." The calculated lines in the frequency response function
are thus samples of the “true” frequency response function
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Figure 14. Measurement setup and estimated gquem*y response func-
tion using pseudorandom ezcitation with a s :

and can be used for calculation of an amplitude biased but
decay rate unbiased impulse response function or for leakage-
free curve fitting."

A baseband measurement with a frequency span of 3.2 kHz
(as before) is performed. The measurement setup and an esti-
mated frequency response function are shown in Figure 14. A
frequency weighting function consisting of a short rectangular
weighting with 50% cesine taper was then used to isolate the
different resonances in the frequency response function.
Figures 15 and 16 show the weighted frequency response func-
tions and the corresponding impulse response functions
(magnitude) for modes 1 and 5 respectively. The decay appears
on alogarithmic amplitude axis as a straight line. The damping
is now extracted from the measured slope of the decay exactly
as was done in the free decay method. The reference cursor
was used to find the decay rate as seen in Figures 15 and 16.
The resulting damping values are given in Table 2. Excellent
agreement with the values from the zoom measurements in the
random test c) is obtained except for the 1st mode where {| =
0.0134% instead of {, =0.0119%. This could be caused by prob-
lems with uncorrelated noise in the input (force) at the reso-
nances. The impulse response function was calculated from
H,(f) which, as compared to the H,(f) estimator, is biased
(underestimated amplitude values) due to random noise as the
input. The estimated damping values will thus be biased as
well (overestimated). This will be investigated using zoom
analysis.

The baseband frequency response function H,( f) was also
transferred to the modal software and SDOF polynomial curve
fitting was performed on each resonance. The damping results
are given in Table 2 and are seen to be identical to the values
estimated from the impulse responses.

Finally, 100 Hz wide zoom measurements with AF=125mHz
were performed around each resonance in order to investigate
whether there was any influence from input noise as men-
tioned earlier. With A F= 125 mHz, the signal/noise ratio isim-
proved by a factor of 32 (15 dB) and the frequency response
function is sampled sufficiently often to avoid aliasing of the
impulse response function. Here the record length T is 8 sec,
i.e. T'> Tg/2 (or AF < 0.9 - AF) for all the modes. Reference 2
suggests T > T5/2.5 (or AF < 1.1 - AF) in order to obtain ac-
ceptable results using pseudorandom excitation.

The damping values calculated from the impulse responses
of the zoom measurements are given in Table 2. For the 1st
mode, the damping is now estimated to be {, = 0.0121% which
is closer to the value from the random test with zoom. However
the damping values for the 3rd, 4th and 5th modes gave slightly
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Figure 15. Weighted frequency response function isolating the Ist reso-
nance and corresponding impulse response function (magnitude). The
wei?kring netion is a transient window 40 frequency lines wide with
20 lines of cosine taper on each side (50% cosine taper).

higher values compared to the baseband test, The estimated
damping values thus seem to be influenced more by small ran-
dom errors than by systematic errors caused for example by in-
put noise. This method, using pseudorandom excitation, is
thus much faster than the one using random excitation, since a
(baseband) measurement where AF = 50 - Af gives damping
results within the overall accuracy determined by the setup.®
The requirement of AF < 1.1 - Afwas therefore not observed
and confirmed by the authors.?

As for the decay methods, damping of single modes can only
be determined if the modes are well separated in the spectrum
(say by 10 analysis lines in this case). Otherwise an average
damping of the modes in the bandwidth (determined by the
frequency weighting function) is obtained and averaging over
several excitation and response points would have to be per-
formed in order to get consistent results.

Conclusion

It has been demonstrated how damping values of single res-
onances of very lightly damped structures can be determined
by different methods using digital filters or FFT. The relative
standard deviation of the estimates was 15% for the 1st reso-
nance and 5-7% for the other resonances. The variation be-
tween the results was random rather than systematic. It was
observed that extremely small changes in the setup and the
environment influenced the damping values up to the
observed variances.
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Figure 16. Weighted frequency response function isolating the 5th reso-
n:;gnce and the corresponding impulse response function (magnitude).
The weighting function is a transient window 40 frequency lines wide
with 20 lines of cosine taper on each side (50% cosine taper).
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